
LOW-DIMENSIONAL MOTION FEATURES FOR AUDIO-VISUAL SPEECH
RECOGNITION

Andrés Vallés Carboneras∗, Mihai Gurban+, and Jean-Philippe Thiran+

+Signal Processing Institute, ∗E.T.S.I. de Telecomunicación
Ecole Polytechnique Fédérale de Lausanne (EPFL) Universidad Politécnica de Madrid
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ABSTRACT

Audio-visual speech recognition promises to improve the
performance of speech recognizers, especially when the au-
dio is corrupted, by adding information from the visual
modality, more specifically, from the video of the speaker.
However, the number of visual features that are added is typ-
ically bigger than the number of audio features, for a small
gain in accuracy. We present a method that shows gains
in performance comparable to the commonly-used DCT fea-
tures, while employing a much smaller number of visual fea-
tures based on the motion of the speaker’s mouth. Motion
vector differences are used to compensate for errors in the
mouth tracking. This leads to a good performance even with
as few as 3 features. The advantage of low-dimensional fea-
tures is that a good accuracy can be obtained with relatively
little training data, while also increasing the speed of both
training and testing.

1. INTRODUCTION

Humans use visual information subconsciously to under-
stand speech, especially in noisy conditions, but also when
the audio is clean. The same integration can be performed
by computers to improve the performance of speech recogni-
tion systems, when dealing with difficult audio conditions.
Audio-visual speech recognition (AVSR) improves recog-
nition rates beyond what is possible with only audio. An
overview of AVSR can be found in [1].

While for audio speech recognition the types of fea-
tures that are used are more or less established, with mel-
frequency spectral coefficients being used in the majority of
approaches, the same is not true for visual features.

We propose a method for extracting visual features
based on the motion of the lips and show how these low-
dimensional features lead to an audio-visual speech recogni-
tion accuracy comparable to that of discrete cosine transform
(DCT) features, which are used in many AVSR systems. We
then show how adding only a one-dimensional variable de-
scribing the average brightness from the image center further
improves the performance of the system. For experiments,
we use two different types of multimodal integration, feature
fusion and decision fusion.

Our low-dimensional features are differences between
the optical flow vectors computed on different regions of the
speaker’s mouth. Other approaches based on the optical flow
have been proposed in the literature, but the dimensionality
of their features is much higher. For example Gray et al.
[2] use a 140 dimensional input vector as a visual feature.
To that, they add a 150 dimensional vector consisting of the
pixels of the downsampled images of mouths. Our feature

vector has only three dimensions: the vertical and horizontal
relative movement, and the average luminance of the center
of the mouth.

The advantage of having a low-dimensional feature vec-
tor is that less data is necessary to train the audio-visual rec-
ognizer and the performance is improved when little data is
available, since estimation errors caused by a too high di-
mensionality are avoided. Moreover, both training and test-
ing are much faster when the dimensionality of the features
is smaller. Our method also includes an estimation of the
position of the mouth’s middle line, which should improve
the accuracy of the motion features. Actually, the fact that
we use differences of motion vectors means that any move-
ment of the head is canceled, since it will be present in both
components that we differentiate.

Our paper is structured as follows. We introduce the
background on audio-visual speech recognition in Section 2.
In Section 3 we describe the details of our method and the
database that we use. Section 4 illustrates our results and dis-
cuses them in comparison with results obtained on the same
database with the widely used DCT visual features. Section 5
concludes our paper and presents directions for future work.

2. AUDIO-VISUAL SPEECH RECOGNITION

In this section we briefly present the structure of an audio-
visual speech recognition system. While all such systems
share common traits, they can differ in three major respects.
The first one is the visual front-end; i.e., the part of the sys-
tem that tracks the region of the mouth and extracts the vi-
sual features. The second one is the audio-visual integration
strategy, that is, the way audio and visual information are put
together in order to reach a decision about the recognized
word. Finally, the type of speech recognition system can dif-
fer depending on the particular task (isolated-word recogni-
tion, continuous speech or large-vocabulary speech recogni-
tion). Our system recognizes sequences of words separated
by silence, from a small-vocabulary database.

The majority of speech recognition systems use hidden
Markov models [3] (HMMs) as the underlying classifiers
used to represent and recognize the spoken words. Our
audio-visual system also used HMMs, with two types of
modality integration.

2.1 Visual front-end

All audio-visual speech recognition systems require the iden-
tification and tracking of the region of interest (ROI), which
can be either only the mouth, or a larger region, like the en-
tire face. This typically begins with locating the face of the
speaker, using a face detection algorithm. The second step is
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Figure 1: The general structure of an audio-visual speech
recognition system.

locating the mouth of the speaker and extracting the region
of interest. This region can be scaled and rotated such that
the mouth is centered and aligned.

2.2 Visual feature types

Once the ROI has been extracted, the useful information that
it contains needs to be expressed using as few features as
possible. This is because the high dimensionality of the ROI
impairs its accurate statistical modeling. Three main types of
features are used for visual speech recognition [1]:

• Appearance based features, extracted directly from the
pixels of the ROI.

• Shape based features, extracted from the contour of the
speaker’s lips.

• Joint appearance and shape features, the result of com-
bining both previous types.

In general, the use of shape features requires a good lip
tracking algorithm and makes the limiting assumption that
speech information is concentrated in the contour of the lips
alone. Several articles report that DCT features outperform
shape based ones [4, 5]. Both DCT features and motion-
based features like the ones we use fall into the first category,
as no lip contour is extracted.

2.3 Audio-visual integration

The integration of audio and visual information [1] can be
performed in several ways. The simplest one is feature con-
catenation [6], where the audio and video feature vectors are
simply concatenated before being presented to the classifier.
Here, a single classifier is trained with combined data from
the two modalities.

Although the feature concatenation method of integra-
tion does lead to an improved performance, it is impossible
to model the reliability of each modality, depending on the
changing conditions in the audio-visual environment.

Using decision fusion, separate audio and video classi-
fiers are trained, and their output log-likelihoods are linearly
combined with appropriate weights. There are three possible
levels for combining individual modality likelihoods [1]:

• Early integration, in the case when likelihoods are com-
bined at the state level, forcing the synchrony of the two
streams.

• Late integration, which requires two separate HMMs.
The final recognized word is selected based on the n-best
hypothesis of the audio and visual HMMs.

• Intermediate integration, which uses models that force
synchrony at the phone or word boundaries.

Aside from feature fusion, we also tested our recognition
system with early decision fusion, in this case using a multi-
stream HMM classifier [7].
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Figure 2: The feature extraction steps.

3. OUR PROPOSED METHOD

3.1 The data

For our experiments, we use sequences from the CUAVE
audio-visual database [8]. They consist of 36 speakers re-
peating the 10 digits. We use only the static part of the
database, that is, the first 5 repetitions.

The video sequences are filmed at 30 fps interlaced, so
we can effectively double this framerate through deinterlac-
ing. The average length of one video sequence is around 50
seconds (3000 deinterlaced frames).

Out of the 36 sequences, 30 are used for training, and 6
for testing. We use a six-fold crossvalidation procedure, that
is, we repeat training and testing 6 times, each time changing
the respective sets using a circular permutation. The perfor-
mance reported is the average on the 6 runs.

To extract the ROI, the region of the mouth is located,
scaled and rotated, so that all the mouths have more or less
the same size and position. The mouth tracking procedure
is semi-automatic, that is, correlation-based tracking is used
until correlation falls under a threshold, at which point user
input is required to refresh the search mask. However, since
this method is not perfect, there is a need to estimate the
position of the center line of the mouth while extracting the
features.

On the audio side, different levels of white gaussian noise
are added in order to show the gains obtained by combining
our visual features with audio at different SNRs.

3.2 The low-dimensional visual features

When reducing the dimension of the visual features, the aim
should be to represent the basic mouth motion, rather than
to capture details of the articulation. The features built in
such a way do not lead to a high performance in automatic
lipreading (video-only), but they contain enough information
to complement the audio vectors. Our goal here is to obtain
visual features with a very low dimensionality.

Our proposed method uses two motion values and the
brightness of the center of the mouth as visual features. The
Lucas-Kanade optical flow [9] algorithm is used for motion
analysis. Appending the brightness further improves system
performance.

Our two motion features are extracted from the vertical
and horizontal relative motion of the mouth and contain in-
formation about the opening and closing of it, leaving out
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complex movements near the contour. On its side, the in-
tensity of the center provides information about the use of
tongue and teeth when articulating. These three features lead
to a representation that is just as informative as the higher-
dimensional DCT features.

An important issue for the visual feature processing is its
dependence on the accuracy of the optical flow algorithm. In
our case, the ROI has a very low contrast, leading to “false”
responses in the optical flow, which we need to identify and
eliminate.

The block diagram in Fig. 2 illustrates the main steps that
we take to extract features from a video sequence. (notice
that the numbers point out the sequence of actions).

The main processes are the following: at first, in the Max.
Motion Estimation step, we estimate the maximum ampli-
tude movement in the video sequence. This maximum will
be used in the Motion filter block to remove the motion vec-
tors whose amplitude is smaller than a certain percentage of
the maximum one. Thus, we eliminate the smallest ampli-
tude optical flow vectors, which are usually due to the afore-
mentioned errors in the optical flow computation.

Once the maximum movement is estimated, the system is
restarted: images are handled one by one and optical flow is
computed using two consecutive frames. The flow resulted
is filtered in order to deal with the “false” motion the opti-
cal flow algorithm output. Once motion is “clean”, features
are computed. Afterwards an Interpolation step is needed to
increase the video rate to 100Hz, as audio-visual synchrony
is required by our integration methods. All features are then
normalized to mean zero and variance one in the Normaliza-
tion step.

As it can be noticed in the figure, once we have a thresh-
olded version (Small Motion Deletion) of the optical flow, the
mouth is tracked. This is further useful for deleting “false”

Figure 5: Mouth tracking example.

movements as well as for computing the features.
Specifically, the track lies in estimating the height of the

mouth location in both vertical and horizontal components,
namely, horizontal and vertical axes. The latter one is used
in Symmetrical Filter, where we take advantage of the sym-
metry of mouth movements around a central vertical line.
Thus, both the left and right sides are analyzed and non-
symmetrical motion is eliminated. This filtering, in addition
to Small Motion Deletion, allows only true motion to pass to
the Features Computation step. However, some noisy move-
ment still remains in practice. From left to right, fig. 3 shows
the same image with the original optical flow, after erasing
low amplitude motion, and finally after the whole Motion
Filter.

Besides in filtering, the tracked axes are also useful for
feature computation. For the case of the central brightness,
we take advantage of that central point location is known.
Thus, such visual component is computed as a 9-terms aver-
age using the intensity of the nearest pixels around the cen-
tral, including this one.

On the other side, motion features are computed as fol-
lows. For the vertical case, the horizontal axis splits the im-
age into two parts. Overall motions are computed for each
of the two parts. Afterwards their difference is computed, re-
sulting in a positive feature value when the upper and lower
motion vectors point outwards (i.e. the mouth is opening),
or a negative value when the upper and lower motion vectors
point towards the center (i.e. the mouth is closing). Anal-
ogous manipulation is carried out for the horizontal compo-
nent.

Here are the exact feature definitions:

Fv =
1

N
· (OFv+ ·Nv+ −OFv− ·Nv−) (1)

Fh =
1

N
· (OFh+ ·Nh+ −OFh− ·Nh−) (2)
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Figure 6: Results with feature fusion.

Here OFv+ and OFv− represent the overall vertical mo-
tion of the mouth, computed as the maximum vertical motion
components for the upper and respectively lower parts of the
mouth. The horizontal components are obtained analogously.
We expect these maxima to be more robust to optical flow
errors than other ways of computing overall motion, such as
taking the mean. Also, a weight is applied, allowing us to
deal again with noisy movements due to optical flow com-
putation. Specifically, the optical flow components OFv+ and

OFv− are weighted by
Nv+

N
and

Nv−

N
, where N is the total num-

ber of pixels and Nv+ and Nv− refer to the number of pixels
of the upper and lower part respectively that contribute to the
movement.

As seen, our feature extraction method is highly depen-
dent on mouth location, so accurate mouth center tracking
is needed. This is done in the Mouth Tracker step. Images
in which the lips are “clearly” moving in opposite directions
are automatically selected by analyzing the central columns
in the case of the horizontal axis tracking and central rows
in the estimation of the vertical axis. These selected frames
provides information of the location of the mouth, as we will
see.

Specifically, for the vertical case, first an overall mo-
tion estimation is done, deciding if mouth is either closing
or opening. Then, the optical flow vectors distribution must
be such that for the opening case, the downwards vector (yd)
located the highest must be under the upwards (yu) vector lo-
cated the lowest. For the closing case, the upwards vector
located the highest must be under the downwards vector lo-
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Figure 7: Results with decision fusion.

cated the lowest must be complied. Analogous analysis is
done for the horizontal component

Fig. 4 shows an example of an “opening vertical case”
where optical flow distribution is appropriate to perform the
tracking, i.e., where the frame is selected. The dashed line of
the figure passes through every “column estimation”, com-
puted as the middle point between yu and yd . The average of
such points is assumed to be the estimation of the track for
frame. That is way these selected frames provide information
of mouth location.

The arithmetic means of the last 15 selected images are
computed by mobile average, resulting the final track. Figure
5 shows the results of the Mouth Tracker.

3.3 Our speech recognition system

We used the HTK library [10] to build the HMMs for speech
recognition. The word models have 8 states per word, and
one gaussian for each state. Our audio features are the
mel-frequency cepstral coefficients (MFCCs), with delta and
delta-delta values, adding up to a total of 39 coefficients.

We use either feature fusion, simply concatenating the
audio and visual feature vectors, or early decision fusion to
obtain our results. In the case of the latter, the audio-visual
HMM’s state-level emission probabilities are estimated sep-
arately for the audio and visual streams. The emission prob-
ability b j(ot) for state j and observation ot is computed as
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follows [10]:

b j(ot) =
S

∏
s=1

N(ost ; µ js,Σ js)
λs (3)

where N(o; µ ,Σ) is a multivariate gaussian with mean µ and
covariance matrix Σ. The stream weight λs for stream s is
chosen manually for the moment.

The product rule is one of the most widely used probabil-
ity combination rules, along with the sum rule, the min rule
or the max rule [11]. These rules are compared in [12], with
the purpose of combining the outputs of classifiers trained on
different types of audio-only features. The product rule was
found to be the best performer. The same weighted product
rule can be found in [6], integrating word-level probabilities.

4. RESULTS

We performed two types of experiments on the CUAVE
database. First, we used the simpler type of audio-visual in-
tegration, feature fusion, to obtain the results presented in
Fig. 6. Then we used decision fusion, leading to improved
results, as can be seen from Fig. 7. In both cases, we com-
pared our motion features with DCT features, either with 16
or with 128 coefficients. The accuracy presented is the word
recognition accuracy. Since we are recognizing sequences
of words, substitutions, deletions and insertions all count as
errors.

The feature fusion experiments show that, for a high di-
mensionality, there is not enough data for proper training.
This can be seen from the fact that all tests with 128 DCT
coefficients have a very bad recognition rate, while the 16
DCT coefficients perform quite well. Our low-dimensional
features have a good performance, outperforming the DCT
features by 2-3%.

With decision fusion, both DCT feature types perform
similarly well. Again, our low-dimensional features outper-
form the DCT by a few percents when the central pixel is
added. Overall, decision fusion outperforms feature fusion
in all cases. However, the combination weight for the two
streams is chosen manually such that the best accuracy is ob-
tained. As future work, we intend to implement a way to
find this weight automatically, either by estimating the SNR
of the audio, or by using reliability estimates based on the
output probabilities for the two streams.

Finally, it can be seen that adding a single pixel to the two
motion features always leads to an improved performance.
These three-dimensional features perform just as well as the
128-dimensional DCT features.

5. CONCLUSION

We have presented a visual feature extraction method that
creates very low-dimensional features derived from optical-
flow vectors. The center line of the mouth is tracked so
that the accuracy of the features is improved. Our low-
dimensional visual features outperform the commonly-used
DCT features, both with feature fusion and with decision fu-
sion.

As future work, we would like to improve the quality of
the estimation of the optical flow, and possibly replace it with
a block matching motion estimation algorithm. We would

also like to improve the decision fusion method, by finding a
way to compute the stream weights dynamically.
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