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ABSTRACT
Hyperspectral images (HSI) are multidimensional and

multicomponent data with a huge number of spectral bands.
To improve classifiers efficiency the principal component
analysis (PCA), referred to as PCAdr, the maximum noise
fraction (MNF) and more recently the independent compo-
nent analysis (ICA) are the most commonly used techniques
for dimensionality reduction. But to apply those techniques,
and in general when dealing with multi-way data, a stan-
dard technique consists in vectorizing images provide two-
way data. As an alternative, in this paper, we propose to con-
sider HSI as array data or tensor -instead of matrix- which
offers multiple ways to decompose data orthogonally. This
new method is based on multilinear algebra tools which gen-
eralize the PCA to higher order. We show that the result of
classification is improved by taking advantage of jointly spa-
tial and spectral information and by performing simultane-
ously a dimensionality reduction on the spectral way and a
projection onto a lower dimensional subspace of the two spa-
tial ways.

1. INTRODUCTION

The emergence of hyperspectral images (HSI) implies the ex-
ploration and the collection of a huge amount of data. Hy-
perspectral imaging sensors provide a huge number of spec-
tral bands, typically up to several hundreds. It is conceded
HSI contains many highly correlated bands providing a con-
siderable amount of spectral redundancy. This unreasonably
large dimension not only increases computational complex-
ity but also degrades classification accuracy [6]. Indeed, the
estimation of statistical properties of classes in a supervised
classification process needs the number of training samples
to exponentially increase when the number of data dimen-
sions increases. In HSI training data lack, hence the need
for feature selection and reduction of data dimensionality,
by extracting features from transformed feature. This pre-
vious research has demonstrated that high-dimensional data
spaces are mostly empty, indicating that the data structure
involved exists primarily in a subspace. Dimensionality re-
duction (DR) extracts features that maximize the separation
between the underlying classes and as a result increases clas-
sification and detection efficiency.

Due to its simplicity and ease of use, the most popular
DR approach is the PCA, referred to as PCAdr, which maxi-
mizes the amount of data variance by orthogonal projection.
A refinement of PCAdr is the independent component anal-
ysis (ICA), referred to as ICAdr [7] which uses higher-order

statistic. But the preliminary step to apply those methods
is to vectorize the images. Therefore, they rely on spectral
properties of the data only, thus neglecting to the spatial re-
arrangement. To overcome it, [1] proposes a feature extrac-
tion method based on multichannel mathematical morphol-
ogy operator which incorporates the image representation.

In this paper, we propose to use multilinear algebra tools
for the DR problem, while considering the data as multi-way
data. As was pointed out in [12] the natural representation
of a collection of images is a three-dimensional array, or
third-order tensor, rather than a matrix of vectorized images.
Hence, instead of adapting data to classical matrix-based al-
gebraic techniques (by rearrangement or splitting), the mul-
tilinear algebra, the algebra of higher order tensors proposes
a powerful mathematical framework for analyzing the mul-
tifactor structure of data. Recently used, Tucker3 tensor de-
composition has been developed with the aim of generaliz-
ing the matrix singular value decomposition (SVD). Tucker3
thus achieves a multimode PCA, also known as higher or-
der SVD (HOSVD) [5] and lower rank-(K1,K2,K3) tensor
approximation (LRTA-(K1,K2,K3)) [5]. These multilinear
tools have been recently applied in blind source separation
to process lower rank approximation of cumulant tensor in
ICA, in seismic wave separation, to noise filtering in color
images [10] and to faces recognition [14].

Our aim is to adapt the LRTA-(K1,K2,K3) to the DR
problem, referred to as LRTAdr3 -(K1,K2,D3), to improve
classification efficiency in hyperspectral context. It performs
jointly a dimensionality reduction of the spectral way (by
extracting D3 uncorrelated spectral components) and trans-
forms the two spatial ways into a lower dimension subspaces
equal to K1 and K2. As a result, this multimodal DR method
takes advantage of spatial and spectral informations.

The remainder of the paper is organized as follows: Sec-
tion 2 presents the multi-way model and a short overview
of its major properties. Section 3 introduces the multimode
PCA. Section 4 shows how the LRTA-(K1,K2,K3) is derived
to reduce the dimensionality, while reviewing the PCAdr
method. Section 5 contains some comparative results of clas-
sification performance after dimensionality reduction of hy-
perspectral images. Finally, concluding remarks are given in
Section 6.

2. MULTI-WAY MODELLING AND PROPERTIES

We define a tensor of order 3 as N-way data, the en-
tries of which are accessed via 3 indices. It is denoted
by X ∈ RI1×I2×I3 , with elements arranged as xi1i2i3 , i1 =
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Figure 1: Tucker3 decomposition model.

1, . . . , I1; i2 = 1, . . . , I2; i3 = 1, . . . , I3, R being the real man-
ifold. Each index is called way or mode and the number of
levels in the mode is called dimension of that mode. The
mode is built on vector space E(n) of dimension In, which
is the number of data sampled in the physical way associ-
ated with mode n. Each way of this multidimensional array
is associated with a physical quantity. For instance, in mul-
tivariate image analysis, an HSI is a sample of I3 images of
size I1× I2. Each element has three indices and data can be
geometrically arranged in a box of dimension I1 × I2 × I3.
HSI data can be modelled as a three-way array: two modes
for rows and columns and one mode for spectral channel.

Foremost, let us give a brief review of tensor rank def-
initions which can be found in [5]. The n-mode rank of
tensor data X ∈ RI1×I2×I3 , denoted by Rankn(X ), is
the dimension of its n-mode vector space E(n) composed
of the In-dimensional vectors obtained from X varying in-
dex in and keeping the other indices fixed. X is called a
rank−(K1,K2,K3) if Rankn(X ) = Kn whatever n = 1,2,3.

This multi-way, or tensor modelling permits to consider
multivariate data as inseparable whole data which involves a
joint processing on each mode without separability assump-
tion rather than splitting data or processing only the vector-
ized images. This model naturally implies processing tech-
nics based on multilinear algebra. The Tucker3 model [13]
is the commonly used tensor decomposition model. This
Tucker3 model permits the approximation of a lower rank
−(K1,K2,K3) tensor, LRTA-(K1,K2,K3).

3. REVIEW ON LRTA−(K1,K2,K3)

The LRTA−(K1,K2,K3) is the high-order generalization of
the PCA. In the Tucker3 decomposition model, any 3-way
data X ∈ RI1×I2×I3 can be expressed as :

X = C ×1 U(1)×2 U(2)×3 U(3) (1)

where U(n) are orthogonal matrix holding the Kn eigen-
vectors associated with the Kn largest eigenvalues, C ∈
RI1×I2×I3 is the core tensor and ×n is the n-mode product,
properties which can all be found in [5]. When Kn = In,
Tucker3 decomposition is called HOSVD, and when Kn < In,
it is called LRTA-(K1,K2,K3). An example of the Tucker3
three-way decomposition model is illustrated in Fig. 1.

Given real 3-way data X ∈ RI1×I2×I3 , the LRTA-
(K1,K2,K3) problem consists in finding the lower rank-
(K1,K2,K3) multi-way data X̂ , with Kn < In, ∀n = 1,2,3,
which minimizes the following quadratic Frobenius norm:

∥∥∥X −X̂
∥∥∥

2

F
. (2)

Thus the best lower rank-(K1,K2,K3) multi-way approxima-
tion of X is:

X̂ = X ×1 P(1)×2 P(2)×3 P(3), (3)

and:
P(n) = U(n)U(n)T

, (4)

is the projector on the Kn-dimensional subspace of E(n)

which minimizes (2).
In a vector or matrix formulation, the definition of the

projector on the signal subspace is based on the eigenvectors
associated with the largest eigenvalues of the covariance ma-
trix of the observation vector set. By extension, in the tensor
formulation, the projectors on the n-mode vector spaces are
estimated by computing the best LRTA-(K1,K2,K3), in the
least-squares sense. X̂ ∈ RI1×I2×I3 is achieved after an al-
ternating least squares (ALS) algorithm convergence. This
ALS algorithm can be summarized in the following steps:
1. initialisation k = 0: Perform HOSVD [4] to initialize the

projectors ∀n=1 to 3, P(n)
0 = U(n)

0 U(n)T

0 . U (n)
0 contains

the Kn eigenvectors associated with the Kn largest eigen-
values of the unfolding matrix Xn [9].

2. ALS loop: while
∥∥∥X −X̂k

∥∥∥
2

F
> 10−4,

(a) for n=1 to 3 :

i. X̂k = X ×q P(q)
k+1×r P

(r)
k+1, with q 6= r 6= n;

ii. n-mode unfold X̂k into matrix X̂n,k

iii. compute matrix C(n)
k = X̂n,kXT

n,k;

iv. process C(n)
k SVD, and U(n)

k+1 ∈ RIn×Kn contains
the Kn eigenvectors associated with the Kn largest
eigenvalues;

v. compute P(n)
k+1 = U(n)

k+1U
(n)T

k+1 ;

(b) compute X̂k+1 = X ×1 P(1)
k+1×2 P(2)

k+1×3 P(3)
k+1

3. output: X̂kstop = X ×1 P(1)
kstop

×2 P(2)
kstop

×3 P(3)
kstop

, the best
lower rank-(K1,K2,K3) approximation of X .

The LRTA-(K1,K2,K3) uses intact multi-way structure to
derive jointly the n-mode projectors. Indeed, the LRTA-
(K1,K2,K3) takes into account the cross-dependency of in-
formation contained in each mode thanks to the ALS algo-
rithm. The next section shows how the LRTA-(K1,K2,K3)
can be an interesting tool for hyperspectral images.

4. LRTADR3 -(K1,K2,D3), A DIMENSIONALITY
REDUCTION TOOL

4.1 Principal component analysis for DR
In hyperspectral context, there is a great interest in reducing
the spectral ways by selecting the more significants spectral
features in order to maximize the separation between classes.

Suppose that we collect I3 images of full size I1 × I2.
Each of the I3 images X is transformed into a vector xT

by row concatenation. The tensor X ∈ RI1×I2×I3 becomes
a matrix X ∈ RI3×p where p = I1 · I2. The aim of the DR is
to extract a small number D of features with D < I3, called
principal component (PC). Each PC is generated by project-
ing the data spaced onto the nth eigenvector associated with
the nth largest eigenvalue. Therefore, the D PCs generate a
reducing matrix Z ∈ RD×p. Figure 2 a) illustrates the PCAdr
strategy, and the processus to define the PCs is :
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a) b)

Figure 2: Dimensionality reduction strategy : a) PCAdr. b) LRTAdr3-(K1,K2,D3)

a)
Classes Training Test Color

samples samples
field 1 002 40 811 green 1
forest 1 367 5 537 green 2
road 139 3 226 blue 1
shadow 372 5 036 pink
target 1 128 519 red
target 2 78 285 blue 2
target 3 37 223 yellow

b)

Figure 3: Classes in the HYDICE image RGB (a), informa-
tion classes and samples (b).

1. Perform the PCA on X to find eigenvalues λi and their
corresponding eigenvectors ui, for i = 1, . . . , I3.

2. Define the eigenvalue diagonal matrix Λ ∈ RD×D hold-
ing the D largest λi, for i = 1, . . . ,D and their associated
eigenvectors in the matrix U ∈ Rp×D.

3. Sphere the X matrix : Z = Λ−1/2UT X.
The data can be reshape to an multivariate images Z ∈
RI1×I2×D.

4.2 Multimodal DR
By the way described above, we can turn the well-known
LRTA-(K1,K2,K3) into a spectral dimensionality reduction
tool, referred to as LRTAdr3 -(K1,K2,D3). It extracts D3 spec-
tral PCs in order to derive the tensor Z ∈ RI1×I2×D3 . The
challenge carried out thanks to the LRTAdr3 -(K1,K2,D3) is
to jointly reduce the dimensionality of the spectral mode and
to transform the spatial modes into a lower dimensional sub-
space, different number of components -(K1,K2,D3) can be
retained for each mode. The LRTAdr3-(K1,K2,D3) model
can be written:

Z = X ×1 P(1)×2 P(2)×3 Λ−1/2U(3)T
, (5)

Where U is the matrix holding the D3 eigenvectors associ-
ated with the D3 largest eigenvalues, Λ is the diagonal eigen-
values matrix holding the D3 largest eigenvalues and Pn are
the n-mode projectors defined in the section 3.

Figure 2 b) illustrates the LRTAdr3 -(K1,K2,D3) scheme.
The major LRTAdr3 -(K1,K2,D3) attribute in relation to the
PCAdr is the use of the spatial information in order to select
the PCs. Indeed, thanks to the ALS loop, the spectral features
are estimated iteratively like the spatial n-mode projectors.
They are optimal in the sense of the mean square error.

To estimate the D3-dimension [2] introduces some crite-
ria which determine the virtual dimensionality defining the
minimum number of spectrally distinct signal sources that
characterize the hyperspectral data. Concerning the (K1,K2)-
dimensional subspace, [11] proposes to extend the Akaike
information criterion (AIC) to estimate the signal subspace
in the case of Gaussian additive noise. In this paper, we fo-
cus on introducing multimodal tools in hyperspectral context
and all (K1,K2,D3)-dimensions are fixed empirically.

5. RESULTS

The data used in the experiments are real data collected by
HYDICE imaging, with a 1.5 m spatial and 10 nm spec-
tral resolution. The full scene consists of 310 lines and 220
samples with 148 spectral bands. The absorption bands have
been preliminary removed. This HSI can be represented by a
3-order tensor, noted by X ∈ R310×220×148.

Figure 3 a) shows the entire scene used for experiments.
The land cover classes are : field, trees, road, shadow and 3
different targets. The resulting number of training and testing
pixels for each class are given in Fig. 3 b). For convenience,
a preprocessing remove the mean of each vector pixels of the
initial multi-way data X .

To highlight the advantage of multimodal DR method we
compare the classification result after applying the LRTAdr3 -
(K1,K2,D3) and the PCAdr. The classification is performed
thanks to a well-known and largely used algorithm in hy-
perspectral, the spectral angle mapper (SAM) [8] algorithm.
Figure 4 shows a visual classification result obtained from
the original tensor X and after the DR methods which select
10 spectral features and where the spatial dimensional sub-
spaces have been fixed to 40 for the LRTAdr3 -(40,40,10).

Visually 4 a) permits to appreciate the DR usefulness,
all black pixels in the classification result represent the un-
classified pixels. In comparison with PCAdr, the LRTAdr3 -
(40,40,10) provides classes which are more homogeneous
and the means area corresponding to the background and the
target more identifiable with less unclassified pixels.
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Table 1: Overall (OA) and individual test accuracies in
percentage obtained after applying the PCAdr-(D3) and the
LRTAdr-(K1,K2,D3).

D3 =5 bands D3 =10 bands
Initial PCAdr ! LRTAdr PCAdr ! LRTAdr

Class Image ! K1 K2 !K1 K2 !K1 K2 ! K1 K2 !K1 K2 !K1 K2
!310 220 ! 60 60 ! 40 40 !310 220 ! 60 60 ! 40 40
! ! ! ! ! !

field 88.9 93.2 ! 88.3 ! 95.4 ! 97.7 97.5 ! 98.3 ! 99.7 ! 100
forest 4.4 41.0 ! 54.3 ! 62.3 ! 72.9 64.1 ! 69.5 ! 75.8 ! 82.5
road 85.3 98.7 ! 83.3 ! 94.7 ! 95.5 89.6 ! 95.6 ! 91.1 ! 97.7
shadow 80.1 95.1 ! 95.7 ! 97.4 ! 96.8 93.8 ! 96.1 ! 93.5 ! 95.7
target 1 64.9 67.0 ! 54.9 ! 72.7 ! 76.7 63.6 ! 57.6 ! 79.6 ! 81.3
target 2 80.7 77.9 ! 75.4 ! 67.7 ! 66.3 68.4 ! 73.7 ! 83.2 ! 84.2
target 3 31.5 39.6 ! 44.9 ! 65.8 ! 78.0 42.8 ! 38.5 ! 63.6 ! 51.3

! ! ! ! ! !
OA 78.98 87.96 ! 84.76 ! 91.83 ! 94.61 92.73 ! 95.36 ! 95.83 ! 97.32

D3 =20 bands D3 =30 bands
PCAdr ! LRTAdr PCAdr ! LRTAdr

Class ! K1 K2 !K1 K2 !K1 K2 ! K1 K2 !K1 K2 !K1 K2
!310 220 ! 60 60 ! 40 40 !310 220 ! 60 60 ! 40 40
! ! ! ! ! !

field 98.4 ! 99.1 ! 99.9 ! 99.8 98.6 ! 99.2 ! 99.9 ! 99.9
forest 81.6 ! 74.3 ! 77.2 ! 79.6 83.0 ! 72.4 ! 76.6 ! 81.0
road 90.8 ! 96.2 ! 96.9 ! 98.0 91.9 ! 96.5 ! 98.3 ! 97.9
shadow 93.9 ! 96.2 ! 95.9 ! 95.8 93.6 ! 96.1 ! 96.1 ! 95.4
target 1 56.8 ! 76.1 ! 83.0 ! 80.5 50.7 ! 77.6 ! 81.3 ! 80.9
target 2 59.3 ! 75.4 ! 83.5 ! 85.9 57.5 ! 84.6 ! 83.9 ! 85.9
target 3 45.9 ! 38.5 ! 45.4 ! 43.8 47.0 ! 41.7 ! 48.1 ! 53.5

! ! ! ! ! !
OA 95.15 ! 95.64 ! 96.75 ! 96.90 95.43 ! 95.61 ! 96.78 ! 97.15

a) Classification result from initial data.

b) Classification result from c) Classification result from
Z ∈ R310×220×10 extracted Z ∈ R310×220×10 extracted

thanks to PCAdr thanks to LRTAdr3 -(40,40,10).

Figure 4: Dimensionality reduction outcome for classifica-
tion, 10 spectral features are extracted.

To appreciate quantifiable comparisons between the two

DR methods, Table 1 gives overall (OA) and individual test
accuracies in percentage exhibited by SAM classifier. OA is
defined as follows :

OA =
1
M

i=P

∑
i=1

aii, (6)

where M is the total number of samples, P is the number
of classes Ci for i = 1, . . . , P and ai j is the number of test
samples that actually belong to class Ci and are classified into
C j for i, j = 1, . . . , P.

The classification results are evaluated for several num-
bers of spectral features retained, and for each case we test
empirically several spatial (K1,K2)-dimensional subspaces
for the LRTAdr3-(K1,K2,D3). Table 1 shows that beyond 20
bands the PCAdr and the LRTAdr3-(K1,K2,D3) have more
and more related OA and they do not add more classifica-
tion improvement. The other important remark report on
the Table 1, is that the difference between the classifica-
tion efficiency obtained from the LRTAdr3-(K1,K2,D3) and
the PCAdr is all the more significant as the values of the
(K1,K2)-dimensional subspaces decrease. It is revealed that
the LRTAdr3 -(K1,K2,D3) permits better classification effi-
ciency by jointly selecting only 10 spectral features and re-
ducing the spatial dimensional subspaces to 40. It is con-
ceded that the number of spectral features retained have an
impact on the classification efficiency. The results obtained
show that the spatial subspaces dimensions are also impor-
tant.

6. CONCLUSION

An multivariate data analysis tool referred to as LRTAdr3 -
(K1,K2,D3) has been proposed. This multimodal dimension-
ality reduction tool takes into account the spatial and spectral
information to select optimal spectral features in the sense of
the mean square error. It reveals to be quite interesting for
classification efficiency of high-dimensional hyperspectral
data. Indeed the classification result depends not only on the
number of extracted spectral features but also on the dimen-
sion of spatial subspaces. Those promising results encourage
us to integrate tensorial approach in the ICAdr method with
the same proposed strategy. This further work could over-
come a major issue for PCAdr [3] which is that many subtle
materials or rare targets require higher order statistics to be
characterized.
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