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ABSTRACT 
A novel method for direction of arrival (DOA) 

estimation of digitally modulated signals in wireless 
communication systems is presented. The method is based on 
the idea of exploiting the digital character of the sources 
through a clustering strategy. By construction, the proposed 
technique is capable of dealing with cases in which there are 
more signals than sensors, and, in addition to that, the 
employed clustering method is responsible for significantly 
mitigating the effects resultants from the presence of noise. 
The performance of the proposed approach is verified with 
the help of numerical simulations focused on spatial 
resolution and capability. The results reveal the advantage of 
taking into account the modulation information of the signals 
inside the estimator, in contrast with the classical MUSIC, 
ESPRIT and MODE estimators. 

1. INTRODUCTION 

 
The idea of employing techniques for direction of arrival 
(DOA) estimation in the context of telecommunications has 
been present in the literature for a long time: this is 
particularly understandable in the light of the relevance of 
beamforming and spatial multiplexing in multiuser scenarios 
[1][2][3]. Many solutions are natural candidates in such 
class of applications, among which we may highlight the 
MUltiple SIgnal Classification (MUSIC) [4], Estimation of 
Signal parameters via Rotational Invariance Technique 
(ESPRIT)[5] and maximum likelihood (ML) approaches [6].  

When formulated under the aegis of communication 
systems, the problem of DOA estimation is seconded by 
several potential difficulties, such as the presence of noise, 
incident angle proximity, time-varying directions, limitations 
in the number of antennas, an elevated number of signals to 
be detected and restricted computational resources. On the 
other hand, a digitally modulated signal possesses certain 
special features that can be taken into account in the 
development of DOA estimation methods. For instance, in 
[7] the noncircularity of BPSK modulation is explored, and 

in [8] an EM algorithm is developed under the finite alphabet 
knowledge. In this work, we propose another method that 
incorporates some of these specificities using a clustering-
based approach. It is important to remark that the very idea 
of employing a clustering method in a spatial filtering 
problem is quite unusual in the literature (an exception is the 
work [9], which, however, is developed in a distinct context). 

The technique is based on two steps: 1) a clustering 
phase in which the centers produced by the impinging of 
digital signals are found and 2) a “DOA calculation” phase in 
which the position of the centers is used to estimate the 
directions of arrival. After exposing the method, we shall 
compare it to three representative benchmarks: the subspace-
based MUSIC and ESPRIT algorithms and the Method Of 
Direction Estimation (MODE) algorithm [10]. 

The paper is structured as follows: in Section 2, the 
signal model is described; in Section 3, the classical DOA 
algorithms are presented; the clustering-based method is the 
subject of Section 4, and Section 5 is devoted to the 
experimental results; finally, Section 6 contains our 
conclusions and views on promising extensions of this work. 

2. SIGNAL MODEL 

The essence of DOA estimation lies in making use of a 
certain differences in the manner whereby sensors placed in 
distinct points of the space capture compositions of several 
sources to find out their location: this can be understood as a 
direct consequence of the idea of spatial diversity. 

In this work we will consider a uniform linear array 
(ULA), in which sensors are equally spaced by a distance d 
equal to one half of the wavelength along a straight line. In 
this context, the following two assumptions concerning the 
impinging signals are considered:  
i. they are digitally-modulated (which means, among other 

things, that their samples belong to a finite alphabet); 
ii. they are supposed to be in phase when captured by the 

first element of the array. 
The first assumption, which is valid in the vast majority 

of the modern wireless systems [1], is not so usual in the 
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classical DOA framework, but, as it will be seen in section 4, 
is crucial to our formulation. The second assumption is, in 
essence, a somewhat “idealized” (although by no means 
unusual, as it can be seen, for instance, in [11]) hypothesis 
whose adoption is justifiable especially on the basis of the 
simplicity of the resulting model, a simplicity that will allow 
us to expose with the utmost clarity the potentials and 
limitations of the proposed approach. As it will be stated in 
Section 6, a next step of this work is to analyze a more 
practical scenario, in which there is no need for an 
assumption of this nature.  

Given these hypotheses and caveats, let us consider that 
N narrowband signals s1(n), s2(n), …, sN(n) impinge on the 
M-element ULA with DOAs 1, 2, …, N. The signals are 
uncorrelated, and composed of i.i.d. symbols drawn form a 
finite alphabet. The input vector, which contains the signals 
at all antennas of the array, can be written as 
 )()()( nnn νAsx  ,   (1) 
where s(n) denotes the vector containing the samples of the 
signals,  (n) is the sensor noise vector, assumed to be 
formed by zero mean complex white Gaussian noise 
samples, and  
  )()()( 21 N aaaA   (2) 
is a matrix composed of source steering vectors  

 TMjjj
k

kkk eee  )1(21)(  a , being )sin()/.2( kk d   . 
It is important to remark that other aspects like the 

existence of fading could be taken into account, but this was 
not done here for the sake of simplicity, in accordance with 
the line of reasoning exposed previously in this section. 

3. CLASSICAL DOA ESTIMATION ALGORITHMS 

Subspace-based methods are among the most popular 
solutions to the problem of estimating the directions of 
arrival of far field sources impinging on an array of 
antennas. Two methods of this class will be considered in 
this work: the fêted MUSIC and ESPRIT algorithms. 

The MUltiple SIgnal Classification (MUSIC) 
algorithm, proposed by Schimidt [4], is a nonparametric 
spectral estimation technique that makes use of an 
eigendecomposition to estimate the DOA spectrum. The 
Estimation of Signal Parameters via Rotational Invariance 
Techniques (ESPRIT) is an eigen-space method developed 
by Roy and Kailath [5]. This algorithm is based on the 
notion of decomposing the sensor array into two (possibly 
overlapping) subarrays and of using the cross-correlation 
between them to estimate the source bearings. 

Another useful technique, which is obtained from the 
conditional ML estimator by making certain approximations 
which are valid for a sufficiently large number of snapshots, 
but are independent of the number of sensors and the degree 
of correlation between the sources, is called MODE 
(Method Of Direction Estimation) [10]. This technique 
adopts a reparameterization of the original ML estimator to 
circumvent the need for multidimensional search, which 
gives rise to a constrained nonlinear optimization problem 
based on the signal subspace of the received data covariance 
matrix. 

4. CLUSTERING-BASED DOA ESTIMATION 

Let us consider for a while equation (1): it reveals that 
signals at the various antennas are simply linear 
combinations of the sources to which white Gaussian noise 
is added. This appears to be a commonplace, but, 
nonetheless, we must not forget a most relevant prior 
information: the transmitted signals are digital in nature. 
Consequently, the samples associated with each source are 
restricted to a finite alphabet, which means that, in the 
absence of noise, the input vector also has a limited number 
of possible values. In the presence of noise, there will be 
“data clouds” around these very values.  

This idea, which is well-known in the context of 
temporal equalization [12], has not been extensively 
explored in bearing estimation. In order to gain insight on 
this question, let us return to the scenario we have been 
outlining: an input space filled with data clouds placed 
around values resulting from the structure of the mixing 
matrix A and the characteristics of the transmitted alphabet. 
If it were possible to find out the position of these centers, 
would not this knowledge hold the key to determining A 
(i.e. the DOAs)? To look for an answer to this question is the 
starting point of our proposal. 

In order to illustrate the idea underlying the method, 
consider a simple case in which two BPSK signals are 
received by an array of two elements. The outputs of each 
element in the absence of noise (i.e., in the presence of 
noise, the centres of the noisy clouds), are given by: 

       
      21

212

211
 jj ensensnx

nsnsnx
 

  . (3) 

As we have just discussed, since the signals are drawn from a 
BPSK constellation, both x1(n) and x2(n) will assume a finite 
number of distinct values. Table 1 shows all possible 
combinations of the transmitted signals and the 
corresponding observed values at the antennas.  

 

 ns1   ns2   nx1   nx2  

1  1  2  21  jj ee    
1  1  0  21  jj ee    
1  1  0  21  jj ee    
1  1  2  21  jj ee    

Table 1 – Possible values at the antennas. 
 

The equations associated with x2(n) form a system that 
is, in principle, solvable, because there are two non-
redundant equations and two variables. However, yet another 
question must be answered: without having access to the 
signals s1(n) and s2(n), how can we discover the relationship 
between a measured value of x2(n) and its corresponding 
equation (i.e., how could we rebuild the last column of Table 
1 by considering exclusively the received data)? A solution to 
this difficulty is given by x1(n), which is formed by sums of 
the transmitted samples: a close look at columns 3 and 4 of 
Table 1 reveals that the value of x1(n) indicates the number of 
positive and negative signs in the exponentials of the 
equations generated by x2(n). Having this in mind, we may 
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divide the equations into classes determined by the values of 
x1(n). In the example, there would be three classes:   
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. (4) 

Consequently, the proposed algorithm will encompass two 
steps:  

Step 1 - Determination of the cloud centers by means of 
a clustering method. The tool adopted in this work will be 
presented in Section 4.1. 

Step 2 - Estimation of the DOAs by solving the so 
obtained system of equations. After having found the centers 
of the data clouds (i.e. the clusters – the states of the 
channel), one would be able to classify them in accordance 
with the idea exposed above. After that, the next step would 
be to select two non-redundant equations from the set and to 
solve them – notice that exchanges in one of the members of 
a pair of equations are allowed within a given class. A system 
like this has the advantage of being linear, since it is possible 
to solve it with respect to auxiliary variables of the form ( zk 
= e-jk): notice that this “linear character” would not exist if 
more than two elements of the steering vector were used. 

There are a few aspects that must be considered before 
the explanation of the method per se is concluded: 

 If more than two signals impinge on the array, there 
will be additional equations and classes. Since the 
number of equations grows exponentially, the linear 
system should always be solvable. This means that, 
in theory, it is possible to estimate an arbitrary 
number of DOAs using only two antennas (in the 
“real world”, the performance of the method would 
be limited by difficulties in the process of 
estimating the centers of the clouds). 

 In practice, the system of equations will probably 
not be exactly redundant – center estimation is not 
perfect. Therefore, it is viable to consider the 
possibility of solving a system with more equations 
than variables. 

 Although two antennas are, in theory, enough to 
estimate any number of DOAs, in practice, 
additional antennas can be employed. These 
antennas, however, are included having in mind the 
sole aim of aiding the clustering process: the 
(nonlinear) equations engendered by additional 
elements of the array were not used by us in this 
work. 

4.1 The clustering method 
The problem of finding the centers from the received data is 
fundamentally an unsupervised clustering problem. 
Assuming the number of clusters to be known, the clustering 
problem can be summarized as the determination of a set of 
centers that minimizes the cost function 
 2

1

,
j

K

i j
j i C

J
 

  x c   (5) 

where K is the number of clusters, xi are the  received vectors 
and cj is the center associated with the cluster Cj. In the 
context of DOA estimation, K is equal to N, where  is the 
number of symbols of the digital modulation and N is is the 
number of received signals. 

There are several algorithms designed to solve this 
optimization problem, among which one of the simplest is 
the k-means algorithm [13]. Given an initial set of centers 
arbitrarily chosen, in each iteration of the k-means algorithm, 
one of the vectors in the training set is used to update the 
value of the closest center. The new value of the center is 
given by the old value plus a shift towards the training 
vector, proportional to the distance between them. However, 
despite its simplicity and efficacy in many applications, the 
performance of the k-means algorithm heavily relies on its 
initializations and it is not possible to guarantee that the 
algorithm will find the global solution of (5). 

Local convergence of the clustering technique would 
result in severe performance degradation of the proposed 
method. Therefore, it becomes of great importance to 
consider the application of clustering techniques based on 
multimodal search tools, like the Iterated Local Search (ILS) 
algorithm[14]. 

The ILS operation takes place on two different levels: 
one consisting of an evolutionary-based global search, and 
another based on a local search strategy, performed in our 
implementation by the k-means algorithm. The conjunction 
of these features confers to the ILS a good balance between 
exploration and exploitation of the search space, which 
constitutes an essential element for a successfully multimodal 
optimization task. Table 2 summarizes the ILS algorithm. 
 

1. Create a starting solution Q; 
2. Q = Local search (Q); 
3. While stopping criterion is not met 
3.1. R = Mutate (Q); 
3.2. Q’ = Local search (R); 
3.3. If J(Q’) < J(Q) then Q = Q’; 
4. Return Q; 

Table 2 – The ILS algorithm. 
 

In the first step of the algorithm, an initial solution Q, 
i.e., the initial set of centers, is randomly chosen from the 
training samples. A local search, performed by the k-means, 
is done in the second step using Q as initialization. In the 
following, a loop is carried out until a maximum number of 
iterations is reached. In each iteration, a mutation operator is 
applied to the current solution and the result (R) is used as 
the initialization of a new local search (k-means), resulting in 
a new set of centers (Q’). The mutation operator is 
responsible for the global search capabilities of the algorithm 
and relies on the fact that the clusters in the received vectors 
space have approximately the same cardinality. This feature 
of the received vectors is due to the hypothesis on the 
transmitted signals. Thus, the mutation operator tries to 
equalize the cardinalities of the clusters, performing the 
following actions on the current solution: 

Action 1 – The centers of the clusters in Q with 
cardinality smaller than 0.5 times the average expected 
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cardinality, i.e., the total number of vectors in the training set 
divided by K, are suppressed; 

Action 2 – A copy of the centers of the clusters with 
cardinality greater than 1.5 times the average expected 
cardinality is included in the mutated solution. Also, a 
random perturbation is added to these copies. 

In the step 3.3, the cost of both solutions Q and Q’ are 
evaluated using (5) and the worst solution is discarded. After 
the stopping criterion is met, the estimated centers are 
returned. 

5. EXPERIMENTAL RESULTS 

The performance of the proposed method, which we shall 
refer to as Clust-DOA, was evaluated in three different 
scenarios under a Binary Phase-Shift Keying (BPSK) 
modulation assumption. The scenarios were chosen with the 
purpose of assessing the real potential of the proposal with 
respect to spatial resolution, capability, and accuracy. By 
capability, we mean the maximum number of sources the 
method is capable of detecting. In the first two scenarios, 3 
antennas are employed to estimate the DOAs of two 
uncorrelated signals of equal power, and the performance of 
the proposed technique is compared with other 3 techniques 
(ESPRIT, MUSIC1 and MODE) for SNRs ranging from -10 
to 15 dB. The signal-to-noise ratio is defined by 

2SNR 10log(1/ )  , where 2  is the noise variance. The 
data set contains 2000 snapshots and the simulations were 
performed over 10000 trials.  In the last scenario, 2 antennas 
are used to estimate 6 closely spaced DOAs, a situation that 
could not be handled by the aforementioned methods. 

Figures 1 and 2 shows the results for the first scenario, 
in which the signals arrive at angles of 10 and 20. The 
estimation errors, given in terms of the Root Mean Square 
Error (RMSE) between the true and estimated DOA, are 
shown in Figure 1. It can be noticed that the proposed 
method attains a considerably lower RMSE for “severe” 
SNR values when compared to the other methods, which 
have a similar performance. In Figure 2 the histograms of 
the estimates obtained with the different methods for SNR = 
5 dB (a “not so severe” condition) are presented. Even 
though all methods apparently provide unbiased estimates, 
the proposed method achieves the smallest variance among 
the tested algorithms. 

In the second scenario, the signals arrive at -2 and 2 
degrees, thus posing a harder task to the estimation 
algorithms. In this case, the difference between the 
performance of the proposed method and that of the others is 
even more pronounced, as it can be seen in Figure 3. For a 
SNR value of 5 dB, it is shown, in Figure 4, that the Clust-
DOA algorithm is the only method capable of effectively 
resolving the two directions of arrival estimates. 

In the third scenario, the proposed method has to deal 
with 6 uncorrelated signals arriving at 10, 15, 20, 25, 30 and 

                                                        
1 It is important to mention that our implementation of the MUSIC algorithm 
is favoured by the fact that the number of impinging signals is fixed (and 
given) a priori. For instance, if a single peak is found by the algorithm, it is 
assumed that there are two signals impinging in the same direction. 

35 degrees using only 2 antennas: it is important to remark 
that the other methods will not be able to resolve all the 
angles, due to intrinsic assumptions. We have, in Figure 5, 
the histograms of the estimates obtained with the Clust-DOA 
method for a SNR value of 5 dB.  
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Figure 1 – Root Mean Square Error for the first scenario (10 and 20 

degrees), with SNR ranging from -10 to 15 dB. 
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Figure 2 – Histograms for the estimates obtained with the different 

methods, SNR = 5 dB. 
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Figure 3 – Root Mean Square Error for the second scenario (-2 and 

2 degrees), with SNR ranging from -10 to 15 dB. 
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Figure 4 – Histograms for the estimates obtained with the different 

methods, SNR = 5 dB. 
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Figure 5 – DOA estimates - SNR = 5 dB. 

It is interesting to notice that, even in this most 
unfavorable situation, the proposed method is able to fairly 
estimate the DOAs. Naturally, the method is no panacea: as 
expected, the variances of the estimates are larger than the 
ones in the previous scenarios. In the third scenario, for a 
SNR value of 0dB, we observed the variance of the 
estimates when the number of sensors is increased. The 
results are summarized in Table 3, which shows the root 
mean square error for different numbers of antennas. The 
explanation for this dependence lies in the fact that the 
clustering problem is simpler to be solved in a higher-
dimensional space.  
 

# Antennas 2 3 4 5 
RMSE [deg] 5.2639 3.8105 2.9363 2.5445 

Table 3 – Root Mean Square Error for the third scenario, with 
different number of antennas, SNR = 0 dB. 

6. CONCLUSIONS AND PERSPECTIVES 

A new method for DOA estimation that exploits the finite 
nature of the transmitted data in a digital communication 
system has been presented. The results, obtained in three 
different scenarios, reveal that the proposed technique is 
able to meet two crucial expectations: it performs very well 

when there are more sources than antennas, and the fact that 
it is based on an efficient clustering process mitigates the 
noxious effects originated by the presence of strong noise 
and/or of closely impinging signals. Further perspectives are 
the inclusion of fading in the signal model and an analysis of 
scenarios in which assumption ii) of Section 2 is not 
considered. 
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