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ABSTRACT different parameter spaces are compared with each other. Fi

) i ] nally, one of theM estimates is selected by the underlying
The number of signals plays an important role in array progyiterion. The total computational cost can be very high due
cessing. The performance of direction finding algorithms reyq the multi-dimensional search for each assumed model or-
lies strongly on a correctly specified number of signals. Whe yo.
the number of signals is unknown, conventional approaches |, this work, we suggest a novel procedure that requires
apply the information theoretic criterion or multiple ®$0 41y one maximization over ai/-dimensional parameter space.
estimate the number of signals and paramgters of.interest iccording to a recent study [2], the ML estimator derived
multaneously. These methods usually require a series of majom an overestimated model order contains components that
imizations over parameter spaces of different dimensiads a converge to the true parameters. Furthermore, the compo-
result in high computational cost. In this work, we developpents that are associated with the true parameters lead to an
a novel approach for finding ML estimates without knowingjncrease of the log-likelinood function. Motivated by tiois-
the number of signals. Given an upper bound on the numbekryation, we define the relevance value for each component
of signals, the proposed method carries out one maximizatiosf the estimated parameter vector. With the help of relesanc
and selects relevant components from the estimated paramgyj,es, we can easily select the relevant estimates that coi
ter vector. Simulation results show that the proposed ntethogige with the true parameters. As a byproduct, we can use the
provides comparable estimation accuracy as the standard Miymper of the relevant estimates to determine the number of

method does. signals. Clearly, the proposed approach requires no séglien
maximization over various parameter spaces and is computa-
tionally more attractive than the conventional methods.

In the following, we give a brief description of the signal

The problem of estimating direction of arrival (DOA) is a key model. Schoq 3 describes useful _propertles of ML estima-
tion of misspecified models. In section 4, we develop the ro-

issue in array processing. Among existing methods, the max- D . )
imum IikeIihgo% (ML) ap%roach hgas the bgest statistical prop ust ML est|ma_t|on mgthod. Simulation FeS“'ts are presbnte
erties. Itis also known to be robust against small samplenumand dls_cussed in section 5. Our concluding remarks are given
bers, signal coherence and closely located sources. In section 6.

The standard ML method assumes the number of signals,
m, to be known and maximizes the concentrated likelihood 2. PROBLEM FORMULATION
function over amm-dimensional parameter space. In the case . . .
of unknown numbers of signals, conventional approaches eg:_onsme_r an array Of SeNsors receiving: narrow band S'Tg'
timate the number of signals together with unknown paramrJaIS emitted by far-f|e_ld sources locatedat=01....,0m]" .
eters using the information theoretic criterion based wth The array output(¢) is described as

[5, 8] or the multiple hypothesis tests [3, 4]. Given an upper

1. INTRODUCTION

bound on the number of signals, these methods maximize x(t) = Hp(0)sm(t) +n(t), t=1,....7, (1)
the likelihood function over a series of parameter spacés wi ' _
increasing dimensions. The ML estimates obtained figm Where theith column d(6;) of the matrix

P.-J. Chung acknowledges support of her position from thattiSh H,,(0,,)=[d(01) --d(6;)-d(6.)] (2)

Funding Council and their support of the Joint Researchtinstwith the . . . .
Heriot-Watt University as a component part of the EdinbuRgisearch Part- rgpresents the steerlng vector assocated W“h the signal a
nership. riving from 6;. The signal vectos,,(t) is considered as a
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stationary, temporally uncorrelated complex normal pssce whereC,, represents the true covariance matrix of the array
with zero mean and covariance mat€ik = E's,,,(t)s»(t)’  output. It can be computed from (3) at the true paramégrs
where(-)’ denotes the Hermitian transpose. The noise vecto€ s, andvy.

n(t) is a spatially and temporally uncorrelated complex nor-

mal process with zero mean and covariance matfixwhere  property 2 For m > my, the assumedsignal subspace

v is the noise spectral parameter ahdis ann x nidentity ¢, 1 F(9* )} is related to théruesignal subspace{ H,.o(6o)}

m

matrix. Thus, the array outpu(t) is complex normally dis- 35 follows:
tributed with zero mean and covariance matrix

Sp{H'rn (a;kn)} ) Sp{HmO (00)}; (8)

C,=H,(0,)CsH,,(0,,) +vI,. (3) .
wheresp(A) denotes the column space of a matfix

Based on array observatiofs(t) }_, and a pre-specified
number of signalsy, the ML estimate,,,(T') is obtained by

minimizing thenegativeconcentrated likelihood function [1] Property 3 For m > mo, the minimum value ot(6y) is

equal to that of) (), i.e.

I7(0.) = logdet (P(0,,)C.P(8,,)+0P*(6.,,)), (4) Q(67,) = Q(60). )
Property 3 implies that for an overestimated model order, th
D= tr(pl(gm)éw) (5) value ofQ(6;,) does not change with increasing number of
n—m parameters.

whereP(60,,) represents the projection matrix onto the col-
umn space oH,, (6,,) andP+(0,,) = I,,— P(0,,). C, =
% ZtT:l x(t)x(t)’ denotes the sample covariance matrix. The
problem of central interest is to estimate the DOA paranseterFrom Property 2 in Section 3 we learn that if we assume more
when the true number of signats,, is unknown. signals than necessary, the ML estimator results in a signal
The asymptotic behavior of the ML estimator dependssubspace that contains the true signal subspace. Thisnpli
strongly on the choice ofx. For an underestimated (<  that given proper array manifold, containsm, compo-
my), the ML estimator provides partial information about thenents that coincide with those of the true parameter vector
true parametey, if widely separated sources are assumedg,. Motivated by this observation, we proposed the following
For an overestimategh (> my), the ML estimate contains procedure that requires only an upper bound on the number
components that coincide with the true parameters. Motiof signals and still provides reliable results.
vated by this observation, we suggest an algorithm that re- et M denote an upper bound on the number of signals
quires only an upper bound on the number of signals ratheind 6,, be the ML estimator obtained by minimizing the

4. ROBUST ML ESTIMATION

than the exact knowledge of. negative log-likelihood function (4) withn = M:
3. USEFUL RESULTS O = argmin (). (10)
M
In this section, we briefly review useful properties of ML es-SinceM > my, the M x 1 vector@,; = [f, . ..,0x]7 con-

timation under misspecified numbers of signals. In paricul tains more elements than the, x 1 true parameter vector
we focus on the case in which the assumed number of signalg, does. As discussed previously, for laffjea subset of the
m, is larger than the true number of signals;. elements irf,; may coincide with those @,. The elements
Based on the general theory of ML estimation of misspecof § u that are associated with those 6f, , are referred to
ified models [6, 7], a recent study [2] shows that under regasrelevantestimates. According to Property 2 and Property
ularity conditions, form # mg, the ML estimator obtained 3, the remaining M — m,) components 08, are not pre-
by minimizing (4) converges to a well defined po#ljf, asT'  dictable and do not change the value of the criterion (6).sThu

increases. This limiting paramet@], is characterized by the the next step is to identify thelevantelements o8 ;.
following properties.

Property 1 The limiting point@;,, minimizes a criterion sim- Motivated by Property 3, we define thelevancevalue
ilar to the concentrated likelihood function: for each component d@f,; as follows:
. 1 - N
B N where 01 contains all elements oéM except theth com-
v=_— mtr(P (0:m)C), (7)  ponentd;:
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5. SSMULATION

0;=1[01,...,0i1,0i11,...,0M] (12)
The log-likelihoodir(8;) is computed by (4) using the/ — 1) In this section, we app_ly the robust ML estlma.tlon to simu
. . ~ A lated data and assess its performance. In particular, we sha
dimensional vectod;. The value ofR(6;) indicates the con- . . . ; .
o : - Lo . investigate whether the relevant estimates provide ugeful
tribution of theith elemen®; to the log-likelihood function.

- . ) .~ formation about the true parameters.
We use the normalizing factdy/lr (0 ,,) to improve numeri- P

. . : A In our experiment, a uniform linear of 10 sensors with
_cal stab|!|ty. Compan*ng (4) and (6), we notice that(6:,) inter-element spacings of half a wavelengit2 is employed.
is an estimate forQ(60;,) .

The narrow band signals are generate = 2 uncorre-
From Property 3, we know that tH&d/ — my) elements g J drby

£0* th iated with th lated signals located &t28° 36°] of various strengths. The
of 8 that are not associated with the true paramégedo two signals are separated about half of the beamwidth. The

notAchange the valqe @p(0y). Thus, a high relevance value difference of signal strengths is1 0 ] dB where0 dB
R(0;) implies that 0, is associated with one @y's com-  ¢,rresponds to the reference signal. The signal to noise ra-
ponents. A low relevance value (usually close to zero) is ag (SNR), defined ag0log (E(|si(t)|2)/1/) for the ith sig-
indication that the underlying estimate does not corredpon 5| varies from—6 to 10 dB in a 2 dB step. We generate

any true parameter. T = 100 snapshots for each of the 200 trials performed. The
Let Ry > R(g) > ... > Ry denote the ordered rele- ypper bound on the number of signals is chosen tblbe 4.
vance values with correspondif€1, f(2),...,0an}. Us-  The threshold is chosen to b6.01. For comparison, we ap-

ing this ordering, one can easily recognize the significarice ply the ML approach to the same batch of data using the cor-
each individual estimate. Furthermore, we can choose the reect number of signalspo = 2. The estimates obtained under
evance estimates if the associated relevance values eaceethe true number of signals are denotedihgy= [0o1 Ho2]” .
giventhreshold. More precisely, the set of relevantestimates  Fig. 1 shows the ordered relevance values averaged over
is given by 200 trials. The first and second largest relevance vaRgs,
L R and Ry, are much higher than the remaining relevance val-
S ={01),002),-- 0} (13)  ues,R() andR(,). This is a strong indication that the cor-
where responding estimates are associated with the true DOA pa-
rameters. Furthermore, one can observe that while thediarge
Ry >Ry >...> Ry > e (14) two relevance values become larger with increasing SNRs,
the two smallest relevance values decrease slightly. The di

Note that the number of componentsSrprovides indirectly . :
: ; ference between the relevance values associated wittarglev
an estimate for the number of signals. How to choose the_.. -
: . e ) S éstimates and the remaining relevance values become larger
thresholdk in a systematic way is still under investigation.

at high SNRs.

In summary, given an upper bound on the number of the i :
. : The sample mean and standard deviation of the estimates
signalsM, the proposed algorithm proceeds as follows. G i = L.....4and éOj, i — 1.2 are plotted in Fig. 2

and Fig. 3, respectively. In Fig. 2, one can observe that the

>

components of , corresponding to the two largest relevance
. L valuesf;y andd ), have the same mean value as the ML es-
nput: {(t) : £ =1,.... T} M, e. timates E)t)ataine((j )under the true number of signalg,= 2.
1. Find the ML estimat®,; by (10). Furthermore, the average valuesﬁgf) andé(g) remain con-
stant over the entire SNR range and coincide with the true
2. Compute the relevance values parameter vectdd, = [ 28° 36°]. The mean values of redun-
R(0;) = 10(8;) — lr(Onr), i=1,..., M. dant estimatess) andf4), lie between-20° and10° and
have large variations over different SNRs.
3. Use the ordered relevance values In Fig. 3, the relevant estimate8;, andf show a
Ruy>Ra >...> Ryy > ¢ slightly hlgh_er variance than t_hose obtained under the true
number of signals. Therefore, if one chooses the relevant es
to find the set of relevant estimates timates correctly, the performance is only slightly woitsart
—Ih.. b 7 the standard ML method. We can also observe that the re-
S =1{00),002,--,00)}- ) . X . ;
dundant estimate8 sy andd 4, have a much higher variance
output: {01y, 02, - -, i)} thand(,) andf . This implies that the redundant estimates
spread over a large interval of the parameter space.

— : As shown in Fig. 2 and Fig. 3, the relevant value is a
Table 1: Robust ML Estimation Algorithm for good criterion for finding the estimates that correspondiéo t
Unknown Numbers of Signals. true parameters. Using the thresheld= 0.01, we have a
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Probability of Correct Detection
-6 -4 =2 0 2 4 6 8
0.98 098 096 097 096 0.97 0.96 0.99

10

SNR
Prob.

Table 1. Empirical Probability of Correct Detection vs. SNR.

high probability of correct detection. Byorrect detectionve
mean that the number of relevant estimates equals the tri g
number of signals, i.ek = 2. Table 1 shows that the empiri- ~
cal probability of correct detection is as high(a88 at SNR

as low as—6 dB. Overall, the probability of correct detection

is higher thar95%.

In summary, the proposed algorithm provides good esti
mation performance without knowing exact numbers of sig-
nals. Based on the relevance values, we can easily choo
the set of relevant estimates that coincide with the true pe
rameters. Furthermore, with high probability, the numbfer o
selected relevant components is equal to the true number of

signals. Thus, the robust ML approach provides accurate e&ig.

107
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Relevance Value, M=4

1. Relevance value. Upper bound on the number of sig-

timates of both the parameters of interest and the number ofals)M = 4. The true DOA parameté, = [28° 36°], SNR

signals.

6. CONCLUSION 2]
We propose a novel robust ML method for unknown numbers
of signals. The proposed algorithm computes the ML esti-
mates using an upper bound on the number of signals. T3]
select the relevant components from the estimated paramete
vector, we define the relevance value which measures the con-
tribution of each element to the likelihood function. The se
of relevant estimates consists of components with relevanc
values larger than a given threshold. Numerical resultg/sho
that the proposed algorithm achieves comparable estimatid4
accuracy as the standard ML approach does. Furthermore, the
number of signals can be accurately determined by the num-
ber of relevant estimates. Compared to conventional method
based on the information theoretic criterion or multiplstse 5]
the proposed algorithm provides a computationally more at[-
tractive solution.
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Robust ML Estimation, Mean of 9(‘)
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Fig. 2. Mean value ofl;), i =1,..., M.
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Fig. 3. Standard deviation @k, i = 1,..., M.
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