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ABSTRACT

The number of signals plays an important role in array pro-
cessing. The performance of direction finding algorithms re-
lies strongly on a correctly specified number of signals. When
the number of signals is unknown, conventional approaches
apply the information theoretic criterion or multiple tests to
estimate the number of signals and parameters of interest si-
multaneously. These methods usually require a series of max-
imizations over parameter spaces of different dimensions and
result in high computational cost. In this work, we develop
a novel approach for finding ML estimates without knowing
the number of signals. Given an upper bound on the number
of signals, the proposed method carries out one maximization
and selects relevant components from the estimated parame-
ter vector. Simulation results show that the proposed method
provides comparable estimation accuracy as the standard ML
method does.

1. INTRODUCTION

The problem of estimating direction of arrival (DOA) is a key
issue in array processing. Among existing methods, the max-
imum likelihood (ML) approach has the best statistical prop-
erties. It is also known to be robust against small sample num-
bers, signal coherence and closely located sources.

The standard ML method assumes the number of signals,
m, to be known and maximizes the concentrated likelihood
function over anm-dimensional parameter space. In the case
of unknown numbers of signals, conventional approaches es-
timate the number of signals together with unknown param-
eters using the information theoretic criterion based methods
[5, 8] or the multiple hypothesis tests [3, 4]. Given an upper
bound on the number of signals,M , these methods maximize
the likelihood function over a series of parameter spaces with
increasing dimensions. The ML estimates obtained fromM
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different parameter spaces are compared with each other. Fi-
nally, one of theM estimates is selected by the underlying
criterion. The total computational cost can be very high due
to the multi-dimensional search for each assumed model or-
der.

In this work, we suggest a novel procedure that requires
onlyone maximization over anM -dimensional parameter space.
According to a recent study [2], the ML estimator derived
from an overestimated model order contains components that
converge to the true parameters. Furthermore, the compo-
nents that are associated with the true parameters lead to an
increase of the log-likelihood function. Motivated by thisob-
servation, we define the relevance value for each component
of the estimated parameter vector. With the help of relevance
values, we can easily select the relevant estimates that coin-
cide with the true parameters. As a byproduct, we can use the
number of the relevant estimates to determine the number of
signals. Clearly, the proposed approach requires no sequential
maximization over various parameter spaces and is computa-
tionally more attractive than the conventional methods.

In the following, we give a brief description of the signal
model. Section 3 describes useful properties of ML estima-
tion of misspecified models. In section 4, we develop the ro-
bust ML estimation method. Simulation results are presented
and discussed in section 5. Our concluding remarks are given
in section 6.

2. PROBLEM FORMULATION

Consider an array ofn sensors receivingm narrow band sig-
nals emitted by far-field sources located atθm =[ θ1,. . ., θm]T .
The array outputx(t) is described as

x(t) = Hm(θm)sm(t) + n(t), t = 1, . . . , T, (1)

where theith column d(θi) of the matrix

Hm(θm) = [d(θ1) · · ·d(θi) · · ·d(θm)] (2)

represents the steering vector associated with the signal ar-
riving from θi. The signal vectorsm(t) is considered as a
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stationary, temporally uncorrelated complex normal process
with zero mean and covariance matrixCs = Esm(t)sm(t)′

where(·)′ denotes the Hermitian transpose. The noise vector
n(t) is a spatially and temporally uncorrelated complex nor-
mal process with zero mean and covariance matrixνIn where
ν is the noise spectral parameter andIn is ann × n identity
matrix. Thus, the array outputx(t) is complex normally dis-
tributed with zero mean and covariance matrix

Cx = Hm(θm)CsHm(θm)′ + νIn. (3)

Based on array observations{x(t)}T
t=1 and a pre-specified

number of signals,m, the ML estimatêθm(T ) is obtained by
minimizing thenegativeconcentrated likelihood function [1]

lT (θm) = log det
(

P (θm)ĈxP (θm)+ν̂P
⊥(θm)

)

, (4)

ν̂ =
1

n − m
tr

(

P
⊥(θm)Ĉx

)

(5)

whereP (θm) represents the projection matrix onto the col-
umn space ofHm(θm) andP

⊥(θm) = In −P (θm). Ĉx =
1
T

∑T

t=1 x(t)x(t)′ denotes the sample covariance matrix. The
problem of central interest is to estimate the DOA parameters
when the true number of signals,m0, is unknown.

The asymptotic behavior of the ML estimator depends
strongly on the choice ofm. For an underestimatedm (<
m0), the ML estimator provides partial information about the
true parameter,θ0, if widely separated sources are assumed.
For an overestimatedm (> m0), the ML estimate contains
components that coincide with the true parameters. Moti-
vated by this observation, we suggest an algorithm that re-
quires only an upper bound on the number of signals rather
than the exact knowledge ofm.

3. USEFUL RESULTS

In this section, we briefly review useful properties of ML es-
timation under misspecified numbers of signals. In particular,
we focus on the case in which the assumed number of signals,
m, is larger than the true number of signals,m0.

Based on the general theory of ML estimation of misspec-
ified models [6, 7], a recent study [2] shows that under reg-
ularity conditions, form 6= m0, the ML estimator obtained
by minimizing (4) converges to a well defined pointθ

∗

m asT
increases. This limiting parameterθ

∗

m is characterized by the
following properties.
Property 1 The limiting pointθ∗

m minimizes a criterion sim-
ilar to the concentrated likelihood function:

Q(θm) = log det
(

P (θm)Cx0
P (θm)+ν̃P

⊥(θm)
)

, (6)

ν̃ =
1

n − m
tr

(

P
⊥(θm)Cx0

)

, (7)

whereCx0
represents the true covariance matrix of the array

output. It can be computed from (3) at the true parametersθ0,
Cs0 andν0.

Property 2 For m > m0, the assumedsignal subspace
sp{H(θ∗

m)} is related to thetruesignal subspacesp{Hm0(θ0)}
as follows:

sp{Hm(θ∗

m)} ⊃ sp{Hm0(θ0)}, (8)

wheresp(A) denotes the column space of a matrixA.

Property 3 For m > m0, the minimum value ofQ(θm) is
equal to that ofQ(θ0), i.e.

Q(θ∗

m) = Q(θ0). (9)

Property 3 implies that for an overestimated model order, the
value ofQ(θ∗

m) does not change with increasing number of
parameters.

4. ROBUST ML ESTIMATION

From Property 2 in Section 3 we learn that if we assume more
signals than necessary, the ML estimator results in a signal
subspace that contains the true signal subspace. This implies
that given proper array manifold,θ∗

m containsm0 compo-
nents that coincide with those of the true parameter vector
θ0. Motivated by this observation, we proposed the following
procedure that requires only an upper bound on the number
of signals and still provides reliable results.

Let M denote an upper bound on the number of signals
and θ̂M be the ML estimator obtained by minimizing the
negative log-likelihood function (4) withm = M :

θ̂M = arg min
θM

lT (θM ). (10)

SinceM ≥ m0, theM × 1 vectorθ̂M = [θ̂1, . . . , θ̂M ]T con-
tains more elements than them0 × 1 true parameter vector
θ0 does. As discussed previously, for largeT , a subset of the
elements in̂θM may coincide with those ofθ0. The elements
of θ̂M that are associated with those ofθ0 , are referred to
asrelevantestimates. According to Property 2 and Property
3, the remaining(M − m0) components ofθ∗

M are not pre-
dictable and do not change the value of the criterion (6). Thus
the next step is to identify therelevantelements of̂θM .

Motivated by Property 3, we define therelevancevalue
for each component of̂θM as follows:

R(θ̂i) =
1

lT (θ̂M )
[lT (θ̃i) − lT (θ̂M )], (11)

where θ̃i contains all elements of̂θM except theith com-
ponentθ̂i:
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θ̃i = [θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂M ]. (12)

The log-likelihoodlT (θ̃i) is computed by (4) using the(M − 1)

dimensional vectorθ̃i. The value ofR(θ̂i) indicates the con-
tribution of theith element̂θi to the log-likelihood function.
We use the normalizing factor1/lT (θ̂M ) to improve numeri-
cal stability. Comparing (4) and (6), we notice thatlT (θ̂m)
is an estimate forQ(θ∗

m) .
From Property 3, we know that the(M − m0) elements

of θ
∗

M that are not associated with the true parameterθ0 do
not change the value ofQ(θ0). Thus, a high relevance value
R(θ̂i) implies that θ̂i is associated with one ofθ0’s com-
ponents. A low relevance value (usually close to zero) is an
indication that the underlying estimate does not correspond to
any true parameter.

Let R(1) ≥ R(2) ≥ . . . ≥ R(M) denote the ordered rele-

vance values with corresponding{θ̂(1), θ̂(2), . . . , θ̂(M)}. Us-
ing this ordering, one can easily recognize the significanceof
each individual estimate. Furthermore, we can choose the rel-
evance estimates if the associated relevance values exceeda
given thresholdε. More precisely, the set of relevant estimates
is given by

S = {θ̂(1), θ̂(2), . . . , θ̂(k)} (13)

where

R(1) ≥ R(2) ≥ . . . ≥ R(k) ≥ ε. (14)

Note that the number of components inS provides indirectly
an estimate for the number of signals. How to choose the
thresholdε in a systematic way is still under investigation.

In summary, given an upper bound on the number of the
signalsM , the proposed algorithm proceeds as follows.

Input: {x(t) : t = 1, . . . , T}, M , ε.

1. Find the ML estimatêθM by (10).

2. Compute the relevance values

R(θ̂i) = lT (θ̃i) − lT (θ̂M ), i = 1, . . . , M .

3. Use the ordered relevance values

R(1) ≥ R(2) ≥ . . . ≥ R(k) ≥ ε

to find the set of relevant estimates

S = {θ̂(1), θ̂(2), . . . , θ̂(k)}.

Output: {θ̂(1), θ̂(2), . . . , θ̂(k)}

Table 1: Robust ML Estimation Algorithm for
Unknown Numbers of Signals.

5. SIMULATION

In this section, we apply the robust ML estimation to simu-
lated data and assess its performance. In particular, we shall
investigate whether the relevant estimates provide usefulin-
formation about the true parameters.

In our experiment, a uniform linear of 10 sensors with
inter-element spacings of half a wavelengthλ/2 is employed.
The narrow band signals are generated bym0 = 2 uncorre-
lated signals located at[ 28◦ 36◦] of various strengths. The
two signals are separated about half of the beamwidth. The
difference of signal strengths is[ 1 0 ] dB where0 dB
corresponds to the reference signal. The signal to noise ra-
tio (SNR), defined as10 log

(

E(|si(t)|
2)/ν

)

for the ith sig-
nal, varies from−6 to 10 dB in a 2 dB step. We generate
T = 100 snapshots for each of the 200 trials performed. The
upper bound on the number of signals is chosen to beM = 4.
The thresholdε is chosen to be0.01. For comparison, we ap-
ply the ML approach to the same batch of data using the cor-
rect number of signals,m0 = 2. The estimates obtained under
the true number of signals are denoted byθ̂0 = [θ̂01 θ̂02]

T .
Fig. 1 shows the ordered relevance values averaged over

200 trials. The first and second largest relevance values,R(1)

andR(2), are much higher than the remaining relevance val-
ues,R(3) andR(4). This is a strong indication that the cor-
responding estimates are associated with the true DOA pa-
rameters. Furthermore, one can observe that while the largest
two relevance values become larger with increasing SNRs,
the two smallest relevance values decrease slightly. The dif-
ference between the relevance values associated with relevant
estimates and the remaining relevance values become larger
at high SNRs.

The sample mean and standard deviation of the estimates
θ̂(i), i = 1, . . . , 4 and θ̂0j , j = 1, 2 are plotted in Fig. 2
and Fig. 3, respectively. In Fig. 2, one can observe that the
components of̂θM corresponding to the two largest relevance
values,̂θ(1) andθ̂(2), have the same mean value as the ML es-
timates obtained under the true number of signals,m0 = 2.
Furthermore, the average values ofθ̂(1) andθ̂(2) remain con-
stant over the entire SNR range and coincide with the true
parameter vectorθ0 = [ 28◦ 36◦]. The mean values of redun-
dant estimates,̂θ(3) andθ̂(4), lie between−20◦ and10◦ and
have large variations over different SNRs.

In Fig. 3, the relevant estimates,θ̂(1) and θ̂(2) show a
slightly higher variance than those obtained under the true
number of signals. Therefore, if one chooses the relevant es-
timates correctly, the performance is only slightly worse than
the standard ML method. We can also observe that the re-
dundant estimates,̂θ(3) andθ̂(4), have a much higher variance

thanθ̂(1) andθ̂(2). This implies that the redundant estimates
spread over a large interval of the parameter space.

As shown in Fig. 2 and Fig. 3, the relevant value is a
good criterion for finding the estimates that correspond to the
true parameters. Using the thresholdε = 0.01, we have a
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Probability of Correct Detection
SNR −6 −4 −2 0 2 4 6 8
Prob. 0.98 0.98 0.96 0.97 0.96 0.97 0.96 0.99

Table 1. Empirical Probability of Correct Detection vs. SNR.

high probability of correct detection. Bycorrect detectionwe
mean that the number of relevant estimates equals the true
number of signals, i.e.k = 2. Table 1 shows that the empiri-
cal probability of correct detection is as high as0.98 at SNR
as low as−6 dB. Overall, the probability of correct detection
is higher than95%.

In summary, the proposed algorithm provides good esti-
mation performance without knowing exact numbers of sig-
nals. Based on the relevance values, we can easily choose
the set of relevant estimates that coincide with the true pa-
rameters. Furthermore, with high probability, the number of
selected relevant components is equal to the true number of
signals. Thus, the robust ML approach provides accurate es-
timates of both the parameters of interest and the number of
signals.

6. CONCLUSION

We propose a novel robust ML method for unknown numbers
of signals. The proposed algorithm computes the ML esti-
mates using an upper bound on the number of signals. To
select the relevant components from the estimated parameter
vector, we define the relevance value which measures the con-
tribution of each element to the likelihood function. The set
of relevant estimates consists of components with relevance
values larger than a given threshold. Numerical results show
that the proposed algorithm achieves comparable estimation
accuracy as the standard ML approach does. Furthermore, the
number of signals can be accurately determined by the num-
ber of relevant estimates. Compared to conventional methods
based on the information theoretic criterion or multiple tests,
the proposed algorithm provides a computationally more at-
tractive solution.
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