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ABSTRACT

A new probabilistic speech enhancement filter is pre-
sented in this paper considering the three state possibili-
ties of discrete cosine transform (DCT) coefficients of noisy
speech: speech absence, speech and noise are constructive,
and destructive. The conditional probabilities of the three
events are calculated using Gaussian approximations. Un-
like conventional fixed values, the speech presence or ab-
sence probability in different spectral coefficients is experi-
mentally calculated. A novel set of gain functions is proposed
for accommodation of the aforesaid three possibilities, and
merged into one, called the expected gain. It is used on the
noisy speech component for enhancement. Experimental re-
sults are presented to show the effectiveness of the proposed
denoising filter.

1. INTRODUCTION

Speech enhancement has been a challenging task for sig-
nal processing researchers for decades. Different researchers
proposed different methods and ideas for suppression of the
unwanted noise, corrupting the speech in practical condi-
tions. Development and widespread deployment of digital
communication systems during the last twenty years have
brought increased attention to the role of speech enhance-
ment in speech processing problems [1]-[6].

There are a variety of approaches for retrieving speech
signal from noisy observations such as the traditional Wiener
filtering [6], spectral subtraction rules [1]-[3], power spec-
tral estimation, coefficient thresholding [5], Kalman filter-
ing and perceptual filtering. Among them the Wiener and
spectral subtraction type algorithms are widely used because
of their low computational complexity and impressive per-
formance. In general, using the family of spectral subtrac-
tion type algorithms the enhanced speech spectrum is ob-
tained by subtracting an average noise spectrum from the
noisy speech spectrum or by multiplying the noisy spectrum
with a gain function [4]. The phase of the noisy speech is
kept unchanged since it is assumed that the phase distortion
is not perceived by human ear. The main shortcoming of this
method, however, is that it introduces musical noise in the
enhanced speech.

The reduction of musical noise using only an attenuat-
ing filter gain is a difficult task. In effect all of the men-
tioned approaches can be generalized as a amplitude reduc-
tion type algorithm, except [10] where a low distortion dual
gain Wiener filter has been reported based on the construc-
tive and destructive interference of speech and noise in the
frequency domain. It is experimentally observed that in most
spectral components, the speech and noise are additive or a

noisy component is noise dominant, which is the reason be-
hind the overall success of the attenuative gain type speech
enhancement techniques. In this paper the idea presented in
[10] of a dual gain Wiener filter has been taken a step further
by introducing three different gains with a rigorous statisti-
cal analysis. Furthermore, the limitations of the dual gain
Wiener filter is discussed and a new idea of probabilistic fil-
ter gain is presented.

We begin the analysis in a similar approach as [8] to
formulate a soft decision Wiener filter considering speech
presence and absence probability. The assumption of speech
presence and absence probability being equal has been mod-
ified by performing extensive experiments on average human
speech spectrum. Next we extend the concept by determining
the conditional probability of speech and noise being con-
structive or destructive, given speech is present in that partic-
ular spectral component. A set of gains is proposed for use
in the three different cases and the expected value of these
gains is used for speech enhancement.

2. PROPOSED METHOD

Let x(t), d(t) and y(t) denote the clean speech, noise and
noisy speech samples, respectively for thet-th sample in time
domain. If it is assumed that the noise is additive,y(t) can be
expressed as

y(t) = x(t)+d(t). (1)

The discrete cosine transform (DCT) domain representation
of (1) in then-th frame andk-th frequency index is

Yn,k = Xn,k +Dn,k (2)

whereXn,k, Dn,k andYn,k are the DCT coefficients of clean
speech, noise and noisy speech, respectively. Since DCT
coefficients are real,Xn,k and Dn,k can be constructive or
destructive, depending on their polarity. Again, speech can
be absent in the sampleYn,k, that is speech amplitude can be
negligible comparing to the noise amplitude. Thus we define
three mutually exclusive events that can occur for a noisy
componentYk:

H0 : Speech is absent : Yk = Dk,

H+ : Speech and noise are constructive :XkDk > 0,

H− : Speech and noise are destructive :XkDk < 0.

The probability thatYn,k is in stateH0 is obtained accord-
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ing to Bayes rule,

p(H0|Yn,k) =
p(Yn,k|H0)p(H0)

∑
i

p(Yn,k|Hi)p(Hi)

=
p(H0)

p(H0)+ p(H+)
p(Yn,k|H+)

p(Yn,k|H0)
+ p(H−)

p(Yn,k|H−)

p(Yn,k|H0)

(3)

Now assumingXn,k andDn,k as Gaussian we can write,

p(Yn,k|H0) =
1

√

2πE{Y2
n,k|H0}

exp

(

−
Y2

n,k

2E{Y2
n,k|H0}

)

=
1

√

2πE{D2
n,k}

exp

(

−
D2

n,k

2E{Dn,k}

)

(4)

Also for the eventsH+ andH−,

p(Yn,k|H+) =
1

√

2πE{Y2
n,k|H+}

exp

(

−
Y2

n,k

2E{Y2
n,k|H+}

)

(5)

p(Yn,k|H−) =
1

√

2πE{Y2
n,k|H−}

exp

(

−
Y2

n,k

2E{Y2
n,k|H−}

)

(6)

The assumption of normal distribution for eventsH+ andH−
is loosely valid, and is used only for simplification. Now we
determine the unknown terms in (3). Firstly,

p(Yn,k|H+)

p(Yn,k|H0)
=

√

√

√

√

E{Y2
n,k|H0}

E{Y2
n,k|H+}

exp

(

−
Y2

n,k

2E{Y2
n,k|H+}

+
Y2

n,k

2E{Y2
n,k|H0}

)

(7)
and secondly,

p(Yn,k|H−)

p(Yn,k|H0)
=

√

√

√

√

E{Y2
n,k|H0}

E{Y2
n,k|H−}

exp

(

−
Y2

n,k

2E{Y2
n,k|H−}

+
Y2

n,k

2E{Y2
n,k|H0}

)

(8)
Now we need to determine the quantities,

E{Y2
n,k|H+} = E{X2

n,k}+E{D2
n,k}+2E{Xn,kDn,k|H+} (9)

E{Y2
n,k|H−} = E{X2

n,k}+E{D2
n,k}+2E{Xn,kDn,k|H−} (10)

It can be showed that for a Gaussian random variable,

E{|X|} =
√

2
π σX. Thus,

E{Xn,kDn,k|H+} = E{|Xn,k||Dn,k|} =
2
π

σX(k)σD(k) (11)

and

E{Xn,kDn,k|H−} = −E{|Xn,k||Dn,k|} = − 2
π

σX(k)σD(k)

(12)

Using these quantities in (9) and (10), substituting the values
of E{Y2

n,k|H+} and E{Y2
n,k|H−} into (7) and (8), and upon

simplification we have,

p(Yn,k|H+)

p(Yn,k|H0)
=

1
√

ξn,k +1+ 4
π
√

ξn,k

exp

( γn,k
2 (ξn,k + 4

π
√

ξn,k)

ξn,k +1+ 4
π
√

ξn,k

)

(13)
and

p(Yn,k|H−)

p(Yn,k|H0)
=

1
√

ξn,k +1− 4
π
√

ξn,k

exp

( γn,k
2 (ξn,k− 4

π
√

ξn,k)

ξn,k +1− 4
π
√

ξn,k

)

(14)
where,

γn,k = SNRpost(n,k) =
Y2

n,k

E{D2
n,k}

ξn,k = SNRprior(n,k) =
E{X2

n,k}
E{D2

n,k}

Using (13) and (14), we have from (3),

p(H0|Yn,k) =
p(H0)

p(H0)+ p(H+) fn,k + p(H−)φn,k
(15)

where,

fn,k =
1

√

ξn,k +1+ 4
π
√

ξn,k

exp

( γn,k
2 (ξn,k + 4

π
√

ξn,k)

ξn,k +1+ 4
π
√

ξn,k

)

(16)
and

φn,k =
1

√

ξn,k +1− 4
π
√

ξn,k

exp

( γn,k
2 (ξn,k− 4

π
√

ξn,k)

ξn,k +1− 4
π
√
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)

(17)
Similarly the probability thatYn,k is in stateH+ is obtained
using Bayes rule,

p(H+|Yn,k) =
p(Yn,k|H+)p(H+)

∑
i

p(Yn,k|Hi)p(Hi)

=
p(H+)

p(H+)+ p(H0)
p(Yn,k|H0)

p(Yn,k|H+) + p(H−)
p(Yn,k|H−)

p(Yn,k|H+)

(18)

Now, approaching as before,

p(Yn,k|H−)

p(Yn,k|H+)
=

√

√

√

√

E{Y2
n,k|H+}

E{Y2
n,k|H−}

exp

(

−
Y2

n,k

2E{Y2
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+
Y2

n,k

2E{Y2
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)

using the quantities of (9), (10) and using similar simplifica-
tion, we obtain,

p(Yn,k|H−)

p(Yn,k|H+)
=

√

√

√

√

ξn,k +1+ 4
π
√

ξn,k

ξn,k +1− 4
π
√

xin,k
exp

(

− 4γn,k
π

√

ξn,k

(ξn,k +1)2− 16
π2 ξn,k

)

Thus,

p(H+|Yn,k) =
p(H+)

p(H+)+ p(H0) f−1
n,k + p(H−)ψn,k

(19)
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Figure 1: (a) Speech presence probability in different
DCT coefficients (experimental (··) and fitted curve (-)),
(b)Variation of ideal filter gain when signal and noise are de-
structive.

where,

ψn,k =

√

√

√

√

ξn,k +1+ 4
π
√

ξn,k

ξn,k +1− 4
π
√

xin,k
exp

(

−4γn,k
π

√

ξn,k

(ξn,k +1)2− 16
π2 ξn,k

)

.

(20)
Similarly the probability thatYn,k is in stateH− will be given
as,

p(H−|Yn,k) =
p(H−)

p(H−)+ p(H0)
p(Yn,k|H0)

p(Yn,k|H−) + p(H+)
p(Yn,k|H+)

p(Yn,k|H−)

(21)

Substituting (17) and (20) into (21), we obtain

p(H−|Yn,k) =
p(H−)

p(H−)+ p(H0)φ−1
n,k + p(H+)ψ−1

n,k

. (22)

Up to this point we have achieved our desired conditional
probability expressions in suitable formulations. The prob-
lem now remains is how to estimatep(H0), p(H+) and
p(H−).

3. DETERMINATION OF P(H0), P(H+) AND P(H−)

It is obvious that speech presence in all frequency index can-
not be equally likely. And for noisy speech, noise is ex-
pected to be present in all frequency components irrespec-
tive of speech presence or absence. It follows that speech
presence or absence does not depend on noise presence in
anyway.

This fact encouraged us to determine experimentally the
real probability of speech presence in the DCT domain using
a very large number of speech utterances. The details of the
procedure is described in the experiment section. The results
presented in Fig. 1 (a) shows the speech presence proba-
bility in different DCT coefficients. We can clearly see that
the probability of speech presence is very high at the lower
mid range frequency and gradually decreases at the higher
frequencies. Assuming that the curve can be expressed by
a nonlinear equation, we conclude that the probability of
speech absence in thekth DCT coefficient will be a function
of k itself:

p(H0) = 1−υ(k) (23)

where υ(k) is the mathematical equation of the curve in
Fig. 1(a) expressing speech presence probability for differ-
ent values ofk. In this paper, we have approximated this
function using a curve fitting method.

For p(H+)and p(H−), since the DCT coefficients of
speech and noise are both random in nature, it is equally
likely that they will be constructive or destructive. Thus,after
determiningp(H0), if p(H+) andp(H−) are equal, it follows
that,

p(H+) = p(H−) = 0.5× (1− p(H0))

4. THE IDEAL GAIN FILTER

It is apparent that the relative polarity of speech and noise
spectral components is very important in determining an op-
timum gain. As for the conventional Wiener filter, even
though it minimizes the mean squared error in a given sample
space, its gain is always less than unity. Which means, it is
always an attenuating filter even though some noisy speech
components are actually reduced by the interference of noise
components. The basic principle of a denoising filter with
gainWn,k is expressed as

X̂n,k = Wn,kYn,k (24)

whereX̂n,k denotes the enhanced speech component. The-
oretically, the ideal optimum filter gain should be less than
unity only when eventH+ has occurred. For eventH−, how-
ever there can be three cases.|Xn,k| > |Dn,k| and |Xn,k| <

|Dn,k| and |Xn,k| = |Dn,k|. If |Xn,k| = |Dn,k|, the ideal filter
gain is infinite, because hereYn,k = 0.

When|Xn,k| > |Dn,k|, Yn,k is less thanXn,k in magnitude,
and of the same sign. Thus we need a gain that is greater than
one in this region.

A very interesting case arises when|Xn,k| < |Dn,k|. Here
in Yn,k, noise is greater than the signal and thus it has re-
duced the signal so much that it is now of an opposite polar-
ity of Xn,k. Which means, the ideal filter should have a gain
that is negative and of appropriate magnitude, so that (24) is
satisfied. Which means it will actually modify the phase of
the noisy signal appropriately to reconstruct the clean signal.
The variation of the idealWn,k with the relative magnitude
of |Xn,k| and |Dn,k| is shown in Fig. 1 (b). As expected, the
gain is discontinuous at|Xn,k|= |Dn,k|, and at lower values of
|Xn,k|, it is negative. It approaches 1 for very high SNRs and
reduces to zero at very low SNRs. If we are to use different
gains for constructive and destructive interference between
speech and noise, we must derive a gain that follows approx-
imately the ideal gain curve, except for the discontinuity.

5. THE ATTENUATING AND THE AMPLIFYING
GAIN

Though the dual gain Wiener filter presented in [10] is very
unique in nature and the concept of using different gains for
constructive and destructive interference is interesting, the
gain expressions fail to meet the criteria for the ideal filter
mentioned in the previous section. The destructive gain pro-
posed in [10] cannot guarantee a value that is greater than
one in the range where signal is greater than noise and de-
structive interference has occurred. Also it fails to give a
negative gain in the region when noise is stronger than the
signal. Therefore, the dual gain algorithm proposed in [10]
requires further investigation. Here we attempt to derive an
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expression for an exact gain that closely follows the ideal fil-
ter characteristics.

It is obvious from (24) that we want the gainWn,k to be,

Wn,k =
Xn,k

Yn,k
.

SubstitutingYn,k from (2),

Wn,k =
Xn,k

Xn,k +Dn,k
.

Multiplying the numerator and denominator byXn,k,

Wn,k =
X2

n,k

X2
n,k +Xn,kDn,k

This equation can be written in the following form for the
constructive and destructive cases,

Wn,k =
X2

n,k

X2
n,k±|Xn,k||Dn,k|

(25)

where the+ sign is for constructive and− sign for destruc-
tive noise interference. It is clear that the values of (25) can-
not be obtained directly, which is the reason why the ear-
lier approaches were always aimed to minimize the mean
squared error. Since we cannot determine the instantaneous
terms|Xn,k||Dn,k| andX2

n,k, we replace them by their expected
values:

Wn,k =
E{X2

n,k}
E{X2

n,k}±E{|Xn,k||Dn,k}|

Dividing the numerator and denominator byE{D2
n,k} and us-

ing the relations (11) and (12) we have,

Wn,k =
ξn,k

ξn,k± 2
π
√

ξn,k
(26)

where+ and− signs will be used for constructive and de-
structive interferences, respectively. We denote these gains
as the attenuating and the amplifying gain.

It is easily notable that the gain in (26) is always less
than unity for eventH+, for all ξn,k > 0. However. for the
destructive case, this gain has a discontinuity atξn,k = 4

π2 ,
which is similar to our ideal filter gain. This discontinuityis
obvious but impractical, since we cannot predict for which
component the noise has exactly canceled the signal.

To handle this discontinuity, we modify (26) for the am-
plifying gain as

W−
n,k =

ξn,k

ξn,k− 2
π
√

ξn,k +λ

whereλ is a positive constant. Using this modification, we
have actually discarded the negative property of the gain.
This is done because it is safer to reduce the component in
magnitude rather than to use a high gain with a negative po-
larity for the destructive case. That would introduce a very
prominent distortion in case of a wrong decision of polarity.

Now that we have distinct gain expressions for the con-
structive and destructive events, we now use our probabilities
to utilize our gains. We now summarize our proposed gains
in three different events, which are in fact the only possible
events, as follows.

W0
n,k = 0 when speech is in stateH0

W+
n,k =

ξn,k

ξn,k+
2
π
√

ξn,k
when speech is in stateH+

W−
n,k =

ξn,k

ξn,k− 2
π
√

ξn,k+λ
when speech is in stateH−

(27)

Thus the probabilistic filter gain will be the expected value
of the gains given by

W̄n,k = W0
n,kp(H0|Yn,k)+W+

n,kp(H+|Yn,k)+W−
n,kp(H−|Yn,k). (28)

The concept of expected gain is necessary because we do not
have certain knowledge of the eventsH+ andH−. An opti-
mum expression is still to be developed for handling these
two cases including the special case of sign reversal of a
noisy component.

6. EXPERIMENTS AND DISCUSSION

We have performed two different experiments that were re-
quired for the implementation of our algorithm. First, the
experimental speech presence/absence probability is deter-
mined and approximated. Second, our proposed probabilis-
tic gain is tested and a comparative performance analysis is
presented.

6.1 Determination of speech absence probability

In this experiment 1000 utterances were used from the
TIMIT database, having almost equal number of male and fe-
male speakers. The sampling frequency was 8 kHz. A frame
size of 512 samples (64 ms) was taken with 50% overlap and
the 512 point DCT was calculated in each frame. In total,
92332 speech frames were processed. The event of speech
absenceH0 is defined as,

H0 : |Xk| <
1
10

√

E{X2
k }

where Xk is the kth DCT index of a clean speech frame.
Stated otherwise, speech components lower than one-tenth
of the standard deviation of that frame, has been considered
to be negligible. Thus, the probability of speech presence
given the DCT index isk,

p(H0) =
n(H0|k)

N

wheren(H0|k) is the number of occurrence of eventH0 for
the kth DCT index andN = 92332. Fig. 1 (a) is the plot
of p(H0) vs. k. A curve was fitted to this envelope using a
15th order polynomial and thus the functionυ(k) in (23) was
approximated.

6.2 Implementation of the expected gain

The probabilistic filter gain using the expected value of gains
in different conditions presented in this paper, has been tested
using 5 male and 5 female utterances randomly taken from
the TIMIT database. All of the utterances were corrupted
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with white noise of SNR ranging from -10dB to +25dB,
taken from the ‘NOISEX’ database. The sampling frequency
was 8 KHz. A frame size of 32 ms (256 samples) was used
for framing and the overlap-add method with 50% overlap
was used for signal decomposition.

The value of the a priori SNR was calculated using
the variable averaging parameterα proposed in [4]. We
have usedλ = 1 in (27) in the destructive case. The re-
sults obtained from the conventional Wiener filter, paramet-
ric method (PARA) [11] and the MPE algorithm [7] which
incorporates speech presence and absence probability in its
gain functions are also presented for comparison. The aver-
aged results of the 10 utterances are plotted in Figs. 2 and 3.
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Figure 2: (a) Variation of overall SNR with input SNR, (b)
Variation of average segmental SNR with input SNR.
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From Fig. 2 (a), we can see that the proposed method us-
ing λ = 1 shows significant SNR improvement compared to
parametric method (PARA) [11], modified power estimation
(MPE), and conventional Wiener filter.

In Fig. 2 (b), we clearly observe the superiority of the
proposed method in terms of the average segmental SNR
(AvgSegSNR). This quality index, which is highly corre-
lated to human listening, is higher than other methods for
almost the entire input SNR range. The better listening qual-
ity is also certified by the PESQ (Perceptual Evaluation of
Speech Quality) scores [9] shown in Fig. 3. Nevertheless,
it is the listening quality we are most concerned about. It is
observed that using the optimum averaging parameter pro-

posed in [4], even though the overall SNR and other qual-
ity indices are significantly improved, the listening quality is
degraded. Still, the variable averaging parameter is the key
to better estimation ofξn,k, which is an important parameter
that determines the accuracy of the probabilities we have de-
termined. The proposed method, uses this optimumα. This
is the basic advantage of our probabilistic soft-thresholding
idea. Better estimation of the a priori SNR and an optimum
gain in constructive and destructive cases will definitely take
this probabilistic method a leap forward.

7. CONCLUSION

A novel probabilistic filter gain considering constructive
and destructive interference of noise has been proposed for
speech enhancement. Simulation results presented have
demonstrated superiority of the this filter over some popu-
lar speech enhancement algorithms.
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