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ABSTRACT
This paper focuses on the development of an automatic sound
classifier for digital hearing aids that aims to enhance the
listening comprehension when the user goes from a sound
environment to another different one. The approach con-
sists in dividing the classifying algorithm into two layers that
make use of two neural network algorithms that work more
efficiently: the input signal discriminated by the first layer
into either speech or non-speech is ulteriorly classified more
specifically depending on whether the user is in a conversa-
tion (both in quiet and in the presence of background noise)
or in a noisy ambient in the absent of speech. The system
results in having three classes, labeled “speech in quiet”,
“speech in noise”, and “noise”. A brief discussion on the
computational complexity of this approach illustrates its fea-
sibility to be implemented on a conventional digital hearing
aid.

1. INTRODUCTION

Hearing aids are usually designed and programmed for only
one listening environment. However it has been shown
that their users usually prefer to have different amplifica-
tion schemes in different listening conditions [1][2]. Thus,
modern digital hearing aids generally allow the user to man-
ually select among different programs (different frequency
responses or other processing options such as compression
methods, directional microphone, feedback canceller, etc.)
depending on the listening conditions. The user has there-
fore to recognize the acoustic environment and choose the
program that best fits this situation by using a switch on the
hearing instrument or some kind of remote control.

This indicates the need for hearing aids that can be auto-
matically fitted according to user preferences in a variety of
listening conditions. In a study with hearing-impaired sub-
jects, it was observed that the automatic switching mode of
the instrument was deemed useful by a majority of test sub-
jects, even if its performance was not perfect [3].

The two most important listening environments for a
hearing aid user are speech in quiet and speech in noise [4].
While the first situation is usually easy to handle, neverthe-
less speech in noise is a much more difficult environment
for the hearing aid user as a consequence of its low signal-to-
noise ratio. Therefore, automatic detection of noise in the lis-
tening environment can be helpful to the user, since it would
allow switching on or off different features of the hearing
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Figure 1: Simplified block diagram of a DSP-based hearing
aid. F labels the feature vector describing the signal, x(t) the
input signal from the microphone and y(t) the output signal
to feed the loudspeaker.

aid, such as directional microphone or a noise suppression
algorithm. In this respect, implementing such a classifier
on the hardware resources of a hearing aid is a challenging
goal. To understand this, it is convenient to have a look at the
block structure of a digital hearing aid represented in Fig. 1.
This consists basically of a microphone to convert sound into
electric signal, a digital signal processing (DSP) integrated
circuit (IC) and a small loudspeaker to convert the electric
signal back to sound. Fig. 1 shows the two main functional
blocks that must be implemented on the mentioned DSP. The
first one, labeled “functional block A”, corresponds to the set
of signal processing stages aiming to compensate the hearing
losses. The second one (“functional block B”) is the classi-
fying system itself. The key point is that the DSPs used in
hearing aids have generally very considerable constraints in
terms of computational capacity and memory, which must be
taken into account when implementing the classifier.

The purpose of this work is the development of a two-
layer, NN-based sound classifier, which programmed on a
DSP-based hearing aid, assists it to enhance the user’s listen-
ing skills. As it has been commented, the distinction between
speech and any other signal is the crucial task. This is just the
reason that compels us to explore a divide-and-conquer strat-
egy that leads to a classification systems composed of the
two layers represented in Fig. 2. The first one discriminates
the input sound into either speech or non-speech, this second
category being named noise in our work, because particular
emphasis is put on speech intelligibility. If the discriminated
signal has been found to be speech, a second algorithm in the

©2007 EURASIP 227

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



Layer #1 Layer #2

NN #1

NN #2

Speech
in quiet

Speech
in noise

Non
speech

F

Figure 2: Scheme of the proposed system, consisting of two
NN-based classifiers arranged in a two-layer structure.

second layer classifies it into either speech in quiet or speech
in noise. The hearing aid will thus select the listening pro-
gram best adapted to the current environment by means of
the control signal illustrated in Fig. 1.

The paper is structured as follows: first the implemented
method will be described, including the feature extraction
process, the classification algorithm and the sound database
used for the experiments. After that, some results will be
shown, to illustrate the behavior of the proposed system. A
brief discussion on the computational complexity of the sys-
tem and the feasibility of its implementation on a hearing aid
DSP will also be made. The paper will conclude with a dis-
cussion on the results obtained.

2. SYSTEM OVERVIEW

As represented in the “Functional Block B” in Fig. 1, the
system we propose is composed of two basic stages: a feature
extraction process, and the classifier itself.

2.1 Features Extraction
The input audio signal is divided into frames with a length
of 64 samples, and with no overlap between adjacent frames.
Then, a WOLA (Weighted Overlap-Add) filter bank with 64
bands is computed, and all the considered features are cal-
culated. Finally, the mean and standard deviation values are
estimated for a number of frames in order to soften the val-
ues.

The features that will be considered in this work, which
have been chosen among the most popular in several au-
dio classification applications, will be now briefly described.
More detailed descriptions of these features can be found, for
instance, in [5], [6] and [7].

2.1.1 Spectral Centroid.

The spectral centroid can be associated with the measure of
brightness of a sound, and is obtained by evaluating the cen-
ter of gravity of the spectrum:

Centroidt =
∑

N
k=1 |Xt [k]| · k
∑

N
k=1 |Xt [k]|

(1)

where Xt [k] represents the k-th frequency bin of the spec-
trum at frame t, and N is the number of samples.

2.1.2 Spectral Roll-off.

The spectral roll-off (RollO f ft ) is usually defined as the fre-
quency bin below which a PR% of the magnitude distribution

is concentrated:

RollO f ft

∑
k=1

|Xt [k]|= PR ·
N

∑
k=1
|Xt [k]| . (2)

A typical value for PR is PR=85%. The spectral roll-off
can give an idea of the shape of the spectrum.

2.1.3 Spectral Flux.

It is associated with the amount of spectral local changes, and
is defined as follows:

Fluxt =
N

∑
k=1

(|Xt [k]|− |Xt−1[k]|)2 . (3)

2.1.4 Zero Crossing Rate (ZCR).

The ZCR is computed from the temporal signal x[n] using the
expression:

ZCRt =
1
2

N

∑
n=1
|sign(x[n])− sign(x[n−1])| (4)

where sign(·) represents the sign function, which returns
1 for positive arguments and −1 for negative ones. This pa-
rameter takes higher values for noise and unvoiced speech
than for voiced speech.

2.1.5 High Zero Crossing Rate Ratio (HZCRR).

This feature, proposed in [6], is computed from the ZCR, and
is defined as the number of frames whose ZCR is 1.5 times
above the mean ZCR on a window containing M frames.

It can be demonstrated [6] that the HZCRR takes higher
values for speech than for music since speech is usually com-
posed by alternating voiced and unvoiced fragments, while
music does not follow this structure.

2.1.6 Short Time Energy (STE).

It is defined as the mean energy of the signal within each
analysis frame.

2.1.7 Low Short-Time Energy Ratio (LSTER).

Similarly to the HZCRR, the LSTER is obtained from the
STE, and defined as the ratio of frames whose STE is 0.5
times below the mean STE on a window that contains M
frames.

2.1.8 Mel-Frequency Cepstral Coefficients (MFCCs).

These are a set of perceptual parameters calculated from the
STFT [8] that have been widely used in speech recognition.
They provide a compact representation of the spectral enve-
lope, such that most of the signal energy is concentrated in
the first coefficients. The application of these parameters for
music modeling was discussed by Logan in [9]. To represent
speech, 13 coefficients are commonly used, although it has
been demonstrated that for classification tasks, it is enough
to take into account only the first five coefficients [10].

2.1.9 Voice2White (V2W).

This parameter, proposed in [5], is a measure of the energy
inside the typical speech band (300-4000 Hz) respect to the
whole energy of the signal.
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2.1.10 Percentage of Low Energy Frames (LEF).

It is defined as the proportion of frames with RMS power
less than 50% of the mean RMS power within a one-second
window [11].

2.1.11 Loudness.

Defined as an exponential function of the energy of the audio
signal: Loudnesst = Energy0.23

t .

2.1.12 Spectral Flatness Measure (SFM).

This feature gives an idea of the flatness of the spectrum,
and according to [12], is defined as the relation between the
geometric and arithmetic means of the power spectral density
for each critical band.

2.1.13 Bandwidth

This feature is calculated from the spectral centroid:

BW =
∑

N
k=1(k−Centroid)2 · |X [k]|2

∑
N
k=1 |X [k]|2

(5)

2.2 Classification System
As it was commented before, the objective of this work is to
classify the input audio signal as speech in quiet, speech in
noise, or noise. While it would be possible to use a single
classifier to distinguish among the three considered classes,
this approach has some disadvantages for this particular ap-
plication. To explain this, let us consider that the input signal
is speech in quiet. If the classification algorithm confuses
it with noise, the hearing aid will reduce the gain and the
user will probably loose all the information. On the contrary,
if the speech in quiet is confused with speech in noise, the
hearing aid will switch on some mechanisms, in this case un-
necessary, to reduce the noise, without affecting too much
to the received speech information. From this it can be ob-
served that the distinction between speech (with and with-
out noise) and noise is much more critical in terms of max-
imum allowed probability of error than the distinction be-
tween speech in noise and speech in quiet.

As previously mentioned, to solve this problem a divide
and conquer strategy was applied, that is, rather than using
one single classifier, the use of two more specialized binary
classifiers is proposed. Each one of these classifiers will be
based on a neural network, and will be separately trained.

Neural networks can be viewed as massively parallel
computing systems consisting of a large number of simple
processors with many interconnections [13][14]. A three-
layer feedforward backpropagation neural network (also
called multilayer perceptron or MLP) was implemented.

The nodes in the hidden layer used a logsig activation
function, while a linear transfer function was used for the
nodes in the output layer. The weights of each node were
adjusted using a gradient descent algorithm to minimize the
mean squared error (MSE) between the output of the network
for a certain training data set and the desired output. The net-
work was trained using the Levenberg-Marquardt backprop-
agation algorithm [15] with bayesian regularization [16].

2.3 Network size considerations
One argument against the feasibility of neural networks for
being used on DSP-based hearing aids consists in the, a pri-

ori, high computational complexity, which, among other top-
ics, is related to the network size. However it is worth ex-
ploring its implementation because, as pointed out in [3] and
[17], neural networks are able to achieve very good results in
terms of probability of error when compared to other popu-
lar algorithms such as a rule-based classifier, the Fisher linear
discriminant, the minimum distance classifier, the k-Nearest
Neighbor algorithm, or a Bayes classifier.

The “negative” facet, as mentioned, could arise from the
fact that the computational complexity of a neural network is
the highest of all those classifiers. This complexity depends
on the number of weights that need to be adapted, and conse-
quently on the number of neurons which compose the neural
network. In particular, the number of simple operations re-
quired by a neural network to produce one output is given
by:

Nop = W (2L+2M +1)+2M−1 (6)

where W , L and M are the number of hidden, input and
output neurons respectively. Note that L equals the dimen-
sion of the feature vector.

From this, it can be observed that one way to achieve
this goal is, as commented before, to decrease the number of
input features (that is the dimensionality of the feature vector
inputting the network), and thus the number of input neurons.
It is for this reason that only one feature will be considered.

On the other hand, it will be also necessary to reduce the
number of neurons in the hidden layer. As a rule of thumb,
a number of hidden neurons equal to the logarithm of the
number of training patterns has been empirically shown to be
appropriate [18]. In our experiments, the number of hidden
neurons was changed from 1 to 10 and the best value in terms
of validation error was chosen.

2.4 Database Used

The sound database used for the experiments consisted of a
total of 2936 files, with a length of 2.5 seconds each. The
sampling frequency was 22050 Hz with 16 bits per sample.
The files corresponded to the following categories: speech in
quiet (509 files), speech in stationary noise (727 files), speech
in non-stationary noise (728 files), stationary noise (486 files)
and non-stationary noise (486 files). Noise sources were var-
ied, including those corresponding to the following environ-
ments: aircraft, bus, cafe, car, kindergarden, living room, na-
ture, school, shop, sports, traffic, train, train station. Music
files, both vocal and instrumental, were also considered as
noise sources. The files with speech in noise presented dif-
ferent Signal to Noise Ratios (SNRs) ranging from 0 to 10
dB.

The database was then divided into three different sets
for training, validation and test, including 1074 (35%), 405
(15%) and 1457 (50%) files respectively. The division was
made randomly and ensuring that the relative proportion of
files of each category was preserved for each set.

3. RESULTS

This section presents the results obtained with the proposed
system. For the sake of clarity, the results for each one of the
classification tasks will be shown separately.
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Speech/Non-Speech Clean/Noisy
Centroid 86.7% (W = 3) 75.0% (W = 10)
Roll-off 85.3% (W = 8) 74.3% (W = 10)
Spectral flux 76.4% (W = 6) 76.3% (W = 9)
ZCR 86.1% (W = 7) 74.2% (W = 5)
HZCRR 74.0% (W = 4) 59.4% (W = 7)
STE 80.5% (W = 9) 79.1% (W = 7)
LSTER 76.9% (W = 8) 79.3% (W = 3)
MFCC 87.4% (W = 4) 84.7% (W = 4)
V2W 84.9% (W = 3) 80.3% (W = 8)
LEF 66.3% (W = 6) 60.7% (W = 8)
Loudness 81.1% (W = 8) 88.4% (W = 2)
SFM 86.6% (W = 3) 78.3% (W = 2)
Bandwith 86.7% (W = 7) 69.9% (W = 8)
Best 5 92.2% (W = 5) 95.0% (W = 6)
All 96.6% (W = 24) 95.9% (W = 14)

Table 1: Probabilities of correct classification obtained for
the speech/non-speech and clean/noisy speech tasks. The
number of hidden neurons (W ) is also indicated.

3.1 Speech/Non-speech Classification
The objective of this first task is to classify the input file as
either speech or non-speech. Speech files include those with
speech in quiet as well as those with speech in noise. Non-
speech files are those with either music or background noise.

Table 1 shows the results obtained by the different algo-
rithms and sets of features used. A MLP with three layers
was trained for different numbers of hidden neurons. The
experiment was repeated 10 times, and the best network in
terms of validation error was selected. The results show the
probability of correct classification achieved for the test set,
jointly with the number of hidden neurons, W . The results
obtained for the combination of the best 5 features and for
all the features are also shown for comparative purposes.

As it can be observed, the best result is obtained with
the Mel-Cepstrum Cepstral Coefficients (87.4%), followed
by the spectral centroid (86.7%).

3.2 Clean/Noisy Speech Classification
The goal of this second task is to distinguish between speech
in quiet and speech in noise. Table 1 shows the results ob-
tained. As occurred in the Speech/non-speech classification
task in Sect. 3.1, the shown probability corresponds to the
network that exhibits the lower MSE for the validation set.

The best result is now achieved by the loudness feature,
with a probability of correct classification equal to 88.4%,
with only two neurons in the hidden layer.

4. CONSIDERATIONS ON REAL TIME
IMPLEMENTATION

As it was stated before, our goal is the implementation of
this classifier on a hearing aid. In our system, a sampling fre-
quency of 22050 Hz is considered, with a frame length of 64
samples, which corresponds to 2.9µs. This implies a rate of
344 frames per second. Since our DSP has a total computa-
tional power of approximately 3 MIPS, around 2 MIPS being
already used, only 1 MIPS is thus available for the classifi-
cation algorithm. This means that roughly speaking, a total
number of 2900 instructions is available per frame.

From the previous section, the best feature for the
speech/non-speech classification task is the set of MFCCs,
which however, suffer from an excessively high computa-
tional complexity. As a consequence, it has been decided
to use the spectral centroid, since it provides a similar result
in terms of probability of correct classification with a much
lower computational complexity. For the clean/noisy speech
classification task it was decided to use the loudness, since
its complexity is affordable in our system.

Note that both the total energy (needed to compute the
spectral centroid) and the loudness value must be computed
for other processing tasks included in Functional Block A,
shown in Fig. 1. Their computational cost will therefore not
be considered here.

With regards to the spectral centroid, the number of op-
erations required has been found to be 64 products, 63 sums
and 1 division. This makes a total of 128 simple operations.
Nevertheless, to complete the calculation of the selected fea-
tures it is necessary also to compute their mean and variance.
For doing so the following estimators are considered:

µ̂ =
1
N ∑

i
Xi (7)

σ̂
2 =

1
N ∑

i
(Xi− µ̂)2 =

1
N ∑

i
X2

i − µ̂
2 (8)

The mean value requires thus 2 sums and 1 division per
frame, and the standard deviation 3 sums, 1 product and 1
division. Note that this value is independent of the number
of frames considered, since they are performed using a slid-
ing window. With all this, for each frame, and considering
the four selected features, the number of simple operations
required to compute them is equal to 128+2 ·3+2 ·5 = 144.

Although eq. (6) allowed us to estimate the number of
simple operations required by a MLP, it is convenient to con-
sider a more conservative estimation, such as:

Nop = W (2L+2M +1)+2M−1+20W (9)

Note that this is Eq. (6) with an additional number of
operations equal to 20W . This is necessary to compute the
logsig activation function (the logarithm is tabbed in the
DSP).

For the speech/non-speech task, where L = 2, W = 3 and
M = 1, the number of simple operations needed per frame has
been found to be 82. Similarly, for the clean/noisy speech
classifier, the number of simple operations required is 55.
This takes a total of 144 + 82 + 55 = 281 operations needed
by the whole classification algorithm per frame.

The summarized results suggest that, when properly tai-
lored, the proposed MLP can be feasible implemented on the
DSP aiming at classifying into the three classes of interest.

5. DISCUSSION

This paper has proposed the use of a two-layer NN-based
sound classifier for a hearing aid to distinguish among speech
in quiet, speech in noise and noise. The reason to adopt
this two-layer strategy is that the relative importance of each
particular probability of classification is different (e.g., the
speech/non-speech discrimination is more critical than the
clean/noisy speech classification).
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With the proposed system, the probability of correct clas-
sification obtained for the speech/non-speech task is equal to
86.7%. For the clean/noisy speech task this probability is
equal to 88.4%. A brief study of the computational complex-
ity associated to this kind of implementation concludes that,
in spite of the doubts related to the feasibility of neural net-
works for being used in hearing aids, a proper design makes
it possible its implementation.
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