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ABSTRACT
The paper provides a comparative performance analy-

sis of the normalized multichannel frequency-domain least-
mean-squares (MCFLMS) and variable step size MCFLMS
(VSS-MCFLMS) algorithms used in blind channel identifi-
cation. Both the algorithms eliminate the need of a priori
estimation of the step size parameter for rapid convergence
to the desired solution. We perform the convergence analy-
sis of the normalized MCFLMS (NMCFLMS) and show that
even for a moderate SNR, the algorithm fails to converge to
the eigenvector corresponding to the minimum eigenvalue of
the data correlation matrix and hence misconverge to a fic-
titious solution. On the other hand, we show that the VSS-
MCFLMS algorithm converges, both in noise-free and noisy
conditions, to the eigenvector corresponding to the minimum
eigenvalue and therefore more noise robust as compared to
the NMCFLMS. The enhanced noise robustness of the VSS-
MCFLMS algorithm over the NMCFLMS algorithm was ver-
ified using computer simulation results for a wide range of
SNRs.

1. INTRODUCTION

Traditionally, channel identification is done by using train-
ing sequence that is known to both the source and receiver.
Blind channel identification aims at identifying the channel
impulse response without using a training signal; instead, it
uses only the channel output along with certain a priori sta-
tistical information on the input to identify the channel. Both
single and multi channel identification schemes are reported
in the literature by many researchers. Multi channel identifi-
cation schemes, however, are increasingly becoming popular
due to their suitability in removing the unknown channel ef-
fects more effectively than their single channel counterparts.
Various techniques reported so far can be categorized into
two big groups, adaptive and nonadaptive techniques. Some
examples of using adaptive techniques are least-squares ap-
proach [1], recursive least square (RLS) algorithms, the LMS
algorithm [2]. Among the adaptive filtering algorithms, the
LMS algorithm is considered as a benchmark [3]. The main
short-coming of the LMS algorithm, however, is related to
the selection of appropriate step-size which greatly influ-
ences the speed, final misalignment and stability of the al-
gorithm.

Multichannel LMS algorithm can be implemented both
in the time and frequency domain. However, the frequency
domain approach is considered superior as it requires less
computation and shows faster convergence speed. The nor-
malized multichannel frequency-domain LMS (NMCFLMS)
has been suggested as an efficient and effective method for
BCI [4]. Its performance, however, deteriorates with noise
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Figure 1: Block diagram of a SIMO FIR system.

[5] even in a moderate signal to noise environment. The con-
vergence analysis of the NMCFLMS algorithm is yet to be
reported in the literature. A variable step size multichan-
nel frequency-domain LMS (VSS-MCFLMS) algorithm has
been reported in [6] which optimizes the performance of the
algorithm in each iteration in order to achieve minimum mis-
alignment with the true channel impulse response. The con-
vergence analysis as well as the stability of the algorithm
with the VSS-MCFLMS algorithm is yet to be explored.

In this paper, we give the convergence analysis of the
NMCFLMS algorithm and show that it is very likely that
the algorithm does not converge, in presence of noise, to the
eigenvector corresponding to the minimum eigenvalue of the
data correlation matrix. We also perform the convergence
analysis of the VSS-MCFLMS algorithm and show that it
ensures the convergence of the algorithm to the eigenvector
corresponding to the minimum eigenvalue both in noise-free
and noisy conditions. Based on these analytically obtained
insights, we argue that the VSS-MCFLMS algorithm is more
noise robust as compared to the NMCFLMS algorithm.

2. PROBLEM FORMULATION

The input-output relationship of a single input multiple out-
put (SIMO) finite impulse response (FIR) channel as de-
picted in Fig. 1 is given by

ui(n) = s(n)∗hi(n) =
L−1

∑
l=0

hi,l(n)s(n− l) (1)

xi(n) = ui(n)+ vi(n), i = 1,2, · · · ,M (2)

where M is the number of sensors, L is the length of the
impulse response, s(n), ui(n), xi(n), vi(n) and hi(n) denote,
respectively, the common source signal, ith channel output,
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ith channel output corrupted by background noise, observa-
tion noise, and impulse response of the source to ith sensor.
It is assumed that the additive noise on M channels is un-
correlated white random sequence, i.e., E{vi(n)v j(n)} = 0
for i 6= j and E{vi(n)vi(n− n′)} = 0 for n′ 6= 0. It is also
assumed that vi(n) are uncorrelated with s(n). Using vector
notation, (1) can be written as

ui(n) = hT
i s(n)

where, hi = [hi,0 hi,1 · · ·hi,L−1]T denotes the time-invariant
impulse response vector of the ith channel and s(n) =
[s(n) s(n−1) · · ·s(n−L+1)]T .

A BCI algorithm estimates h = [hT
1 hT

2 · · · hT
M]T solely

from the observations xi(n), n = 0,2, · · · ,N − 1, where N
denotes the data length. The identifiability conditions com-
monly stated are: i) The channel transfer functions don’t con-
tain any common zeros, and ii) The autocorrelation matrix of
the source signal is of full rank.

3. INSIGHT TO MISCONVERGENCE OF THE
NMCFLMS ALGORITHM

In this section we first review the NMCFLMS algorithm re-
ported in [4] and then develop an analytical method to show
the insight of misconvergence of the NMCFLMS algorithm
in presence of noise. We define yi j(m) as the filtered signal
block which is produced by filtering the mth signal block of
ith channel by the estimate of the impulse response of the jth
channel. It can be expressed in matrix notation as

yi j(m) = W01
L×2LCxi(m)W10

2L×Lĥ j(m)

where, the matrix Cxi(m) is a circulant matrix with its first
column xi(m), and

yi j(m) = [yi j(mL) yi j(mL+1) · · · yi j(mL+L−1)]T

W01
L×2L = [0L×L IL×L]

xi(m) = [xi(mL−L) · · · xi(mL) · · · xi(mL+L−1)]T

W10
2L×L = [IL×L 0L×L]T

ĥ j(m) = [ĥ j,0(m) ĥ j,1(m) · · · ĥ j,L−1(m)]T

where I denotes an identity matrix and 0 is a matrix of zeros.
The frequency-domain block error based on the the cross-
relation between the ith and jth channel is determined as

ei j(m) = yi j(m)−y ji(m)

= W01
L×2L[Cxi(m)W10

2L×Lĥ j(m)

−Cx j(m)W10
2L×Lĥi(m)].

Let FL×L be the discrete Fourier transform (DFT) matrix of
size L×L. Then the block error sequence in the frequency-
domain can be expressed as

ei j(m) = FL×Lei j(m)

= W 01
L×2L[Dxi(m)W 10

2L×Lĥ j(m)

−Dx j(m)W 10
2L×Lĥi(m)]

where underline denotes frequency domain and the circulant
matrix Cxi(m) is decomposed as

Cxi(m) = F−1
2L×2LDxi(m)F2L×2L

where Dxi(m) is a diagonal matrix whose elements are ob-
tained from the DFT coefficients of the first column of
Cxi(m) and

W 01
L×2L = FL×LW01

L×2LF
−1
2L×2L

W 10
2L×L = F2L×2LW10

2L×LF
−1
L×L

ĥ j(m) = FL×Lĥ j(m).

The frequency-domain cost function J f (m) using the
frequency-domain block error signal ei j(m) is defined as

J f (m) =
M−1

∑
i=1

M

∑
j=i+1

eH
i j(m)ei j(m)

where ‘H’ denotes the Hermitian transpose. The NMCFLMS
algorithm is derived by minimizing the cost function J f (m)
in which the gradient vector for parameter update is com-
puted by taking the partial derivative of J f (m) with respect
to ĥ

∗
k(m), k = 1,2, · · · ,M, where the superscript ‘∗’ denotes

complex conjugate.
The update equation of the NMCFLMS [4] is expressed

as

ĥ
10
k (m+1) = ĥ

10
k (m)−ρP−1

k (m)
M

∑
i=1

D∗
xi
(m)

×e01
ik (m), k = 1,2, · · · ,M (3)

where,

Pk(m) =
M

∑
i=1,i 6=k

D∗
xi
(m)Dxi(m)

ĥ
10
k (m) = W 10

2L×Lĥk(m)

e01
ik (m) = W 01

2L×Leik(m)

W 01
2L×L = F2L×2L[0L×L IL×L]T F−1

L×L.

Here 0 < ρ < 2 is the adaptation constant, which acts as a
trade-off parameter between the speed of convergence and
excess mean-square error. In order to balance the two com-
peting criteria, ρ = 1 is used in the rest of the paper. In or-
der to interpret the result of eigenvector analysis of the NM-
CFLMS algorithm, we need to represent the update equa-
tion in L length. Therefore, premultiplying (3) by W 10

L×2L =
FL×L[IL×L 0L×L]F−1

2L×2L, we get

ĥk(m+1) = ĥk(m)−W 10
L×2LP

−1
k (m)

M

∑
i=1

D∗
xi
(m)

×W 01
2L×Leik(m), k = 1,2, · · · ,M. (4)

The update equation of (4) can be modified as

ĥk(m+1) = ĥk(m)−2W 10
L×2LPk(m)−1W10

2L×LW
10
L×2L

×
M

∑
i=1

D∗
xi
(m)W01

2L×Leik(m)

= ĥk(m)−2Pk(m)W10
L×2L

×
M

∑
i=1

D∗
xi
(m)W01

2L×Leik(m) (5)
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where we have used the relation [4]

W10
2L×2L = 0.5 I2L×2L = W10

2L×LW
10
L×2L

and

W 10
L×2LPk(m)−1W 10

2L×L = Pk(m).

Concatenating the M equations of (4) into a longer one, we
can write the update equation for the NMCFLMS algorithm
as

ĥ(m+1) = ĥ(m)−2P(m)R̃(m)ĥ(m) (6)

where,

P(m) =




P1(m) 0 . . . 0
0 P2(m) . . . 0
...

...
. . .

...
0 0 . . . PM(m)


 (7)

and R̃(m) is the ML×ML autocorrelation matrix defined in
[4]. Taking the statistical expectation, (6) can be written as

¯̂h(m+1) = ¯̂h(m)−2PR ¯̂h(m) (8)

where, ¯̂h(m) = E{ĥ(m)}, P = E{P(m)} and E{R̃(m)}=
R, assuming statistical independence among the three terms.
The autocorrelation matrix, R, is Hermitian and hence it can
be represented as

R = UΛUH (9)

where, U is an unitary matrix whose columns are the eigen-
vectors of R and Λ is a diagonal matrix with diagonal ele-
ments equal to the eigenvalues of R. Substituting (9) into (8)
and premultiplying by UH we obtain,

¯̂h
o
(m+1) = ¯̂h

o
(m)−2UHPUΛ ¯̂h

o
(m)

∼= (I−2ΛpΛ) ¯̂h
o
(m) (10)

where

Λp = Diag
[
UHPU

]
(11)

¯̂h
o
(m) = UH ¯̂h(m)

and Diag[·] refers to a diagonal matrix with diagonal ele-
ments of UHPU. Since P is a strongly diagonal matrix, we
have found that UHPU is very close to a diagonal matrix.
Therefore, our approximation in (10) introduces insignificant
error. Now, (10) can be written as

¯̂h
o
(m+1) = (I−Λn)

¯̂h
o
(m) (12)

where, the resultant eigenvalue matrix for the NMCFLMS
algorithm is expressed as

Λn = 2ΛpΛ. (13)

We see from (13) that an additional multiplying factor,
Λp appears in the resultant eigenvalue profile of the NM-
CFLMS algorithm which modulates the eigenvalues of the
data correlation matrix. From (11) we can derive the analytic

expression of the diagonal components of Λp which can be
expressed in vector form as




u2
11 p1 +u2

12 p2 + . . .+u2
1(ML)pML

u2
21 p1 +u2

22 p2 + . . .+u2
2(ML)pML

...
u2

j1 p1 +u2
j2 p2 + . . .+u2

j(ML)pML
...

u2
(ML)1 p1 +u2

(ML)2 p2 + . . .+u2
(ML)(ML) pML




where, u j1 u j2 . . . u j(ML) are the components of eigen-
vector uλ j with j = 1,2, . . . ,ML and p1, p2, . . . , pML are the
diagonal components of P . Since uλk

is a unit norm vector,
if p1, p2, . . . , pML were equal, the diagonal elements of Λp
would be equal. But p1, p2, . . . , pML are computed from
the received data of different channel and hence they are in
general unequal. As a result the diagonal elements of Λp are
also unequal. Therefore, the scaling factor of the minimum
eigenvalue is usually not the minimum one.

In the noise-free case the minimum eigenvalue of the data
correlation matrix is zero. As a result the minimum value in
the resultant eigenvalue profile of the NMCFLMS algorithm
remains zero, even after a larger scaling factor is attached to
it. But in noisy conditions, the eigenvalues of the data cor-
relation matrix comes closer to each other. Therefore, it is
very likely that the minimum eigenvalue remains no longer
minimum in the resultant eigenvalue profile. In that case the
NMCFLMS algorithm will fail to converge to the eigenvector
corresponding to the minimum eigenvalue of the data corre-
lation matrix.

To verify the above statement, we present in Fig. 2, the
eigenvalue profiles of original data correlation matrix and
those obtained from the NMCFLMS algorithm for a 5 chan-
nel acoustic systems with 128 coefficients at SNR=20 dB.
The scaling factor Λp is also depicted in the figure. It is seen
that though the eigenvalue in position 29 is the minimum in
original correlation matrix, the situation is no longer main-
tained in the NMCFLMS case. The eigenvalue in position
31 takes the minimum position. As a result, the NMCFLMS
algorithm will misconverge completely which can be verified
from the adaptive solution in the simulation section.

4. THE CONVERGENCE ANALYSIS OF THE
VSS-MCFLMS ALGORITHM

We now perform the convergence analysis of VSS-MCFLMS
algorithm reported in [6] in order to justify the noise ro-
bustness of the VSS-MCFLMS algorithm as compared to
the NMCFLMS algorithm observed in the adaptive solution.
Along with this we provide theoretical justification of the
optimal performance of the algorithm in terms of conver-
gence speed and stability. The update equation of the VSS-
MCFLMS algorithm is given by

ĥ(m+1) = ĥ(m)−µ f (m)∇J f (m). (14)

The gradient vector ∇J f (m) is defined as

∇J f (m) = [∇JT
1 (m) · · · ∇JT

k (m) · · · ∇JT
M(m)]T .
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Figure 2: (a) Eigenvalue profile of the data correlation matrix
where the minimum eigenvalue is located at position 29. (b)
The profile of the scaling factor Λp that modulates the orig-
inal eigenvalues in the NMCFLMS algorithm. (c) Resultant
eigenvalue profile of the NMCFLMS algorithm. The mini-
mum eigenvalue is now located at position 31 which leads
the algorithm to complete misconvergence.

∇Jk(m) can be obtained as

∇Jk(m) =
∂J f (m)

∂ ĥ
∗
k(m)

= W 10
L×2L

M

∑
i=1

D∗
xi
(m)W 01

2L×Leik(m).

In [6], the step size µ f (m) is adapted so that the distance
between ĥ(m + 1) and h is minimum at each iteration. The
optimal step size for noise-free case is expressed as

µ f (m) =
ĥ

H
(m)

||∇J f (m)||2 ∇J f (m). (15)

In this work, we investigate the effectiveness of the
MCFLMS algorithm using the µ f (m) of (15) both in noise-
free and noisy conditions.

Using autocorrelation matrix R̃(m) defined in [4], (14)
can be written as

ĥ(m+1) = ĥ(m)−µ f (m)R̃(m)ĥ(m). (16)

Taking the statistical expectation of (16), we obtain [7]

¯̂h(m+1) = ¯̂h(m)− µ̄ f R
¯̂h(m) (17)

where, µ̄ f = E{µ f (m)}, assuming statistical independence
among µ f (m),R̃(m) and ĥ(m). Substituting (9) into (17),
we obtain

¯̂h
o
(m+1) = (I− µ̄ f Λ) ¯̂h

o
(m). (18)
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Figure 3: NPM Vs SNR profile for the NMCFLMS and the
VSS-MCFLMS algorithms for a M = 5 channel L = 128 co-
efficients acoustic system.

Comparing (18) with (12) we find that no scaling matrix
like Λp appears in the convergence equation of the VSS-
MCFLMS algorithm. As a result, the algorithm will con-
verge to the eigenvector corresponding to the minimum
eigenvalue of the data correlation matrix both in the noise-
free and noisy conditions. As a result, we find a more
noise robust solution from the adaptive implementation of the
VSS-MCFLMS algorithm as compared to the NMCFLMS
algorithm.

5. SIMULATION RESULTS

In this section, we investigate the performance of the pro-
posed VSS-MCFLMS algorithm and present comparative re-
sults with the NMCFLMS algorithm [4] for both acoustic and
random multichannel systems. The performance index used
for measurement of improvement and comparison is the nor-
malized projection misalignment [8] defined as

NPM(m) = 20log10
||Υ(m)||
||h|| dB

Υ(m) = h− hT ĥ(m)
||ĥ(m)||2

where || · || is the l2 norm.

5.1 Acoustic Multichannel System
The dimension of the room was taken to be (5×4×3) m. A
linear array consisting of M = 5 microphones with uniform
separation of =. 0.2 m was used in the experiment. The first
microphone and source were positioned at (1.0,1.5,1.6) m
and (2.0,1.2,1.6) m, respectively. The positions of the
other microphones can be obtained by successively adding
d = 0.2 m to the y-coordinate of the first microphone. The
impulse responses were generated using the image model re-
ported in [9] for reverberation time T60 = 0.1 s and then trun-
cated so as to make the length 128. The sampling frequency
was 8 kHz. The source signal used is Gaussian white noise.

Fig. 3 shows NPM vs SNR for both the algorithms. It
is seen that up to 25 dB, the NMCFLMS algorithm com-
pletely fails to give an estimate of the channel impulse re-
sponse. This happens because the scaling matrix Λp mis-
converges the algorithm to a spurious solution. At any SNR,
VSS-MCFLMS algorithm gives better estimate as compared
to the NMCFLMS algorithm as revealed from this figure.
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system at SNR = 20 dB.

We now provide the NPM profile of the estimated channel
for both the algorithms at SNR 25 dB in Fig. 4. In case
of the NMCFLMS algorithm we see a rapid convergence at
initial iterations but with increased iterations the NPM de-
teriorates until complete misconvergence. But the proposed
VSS-MCFLMS algorithm shows more robustness to noise as
it maintains a reasonable NPM level in the steady state solu-
tion.

5.2 Random Multichannel System
We now present blind identification results for a M = 3 chan-
nel random coefficient impulse response system. The im-
pulse responses were generated using the ‘randn’ function of
MATLAB. The length of each channel impulse response is
L = 32. The source signal was Gaussian white noise.

We compare performances of the proposed VSS-
MCFLMS and NMCFLMS algorithms for random chan-
nel estimation in a moderate signal-to-noise environment.
Fig. 5 shows the results for both the algorithms at SNR =
20 dB. The proposed VSS-MCFLMS algorithm shows lower
final misalignment as compared to the NMCFLMS algorithm
without sacrificing the the speed of convergence. The NPM
of NMCFLMS algorithm reaches at −20 dB in the initial
stage of iterations which is indeed a good estimate of the
channel coefficients at this noise level. But after this rapid
convergence, it gradually diverges and finally settles between
−10 to −12 dB. To the contrary, the VSS-MCFLMS algo-
rithm reaches at−20 dB with the same speed of convergence

but it shows no sign of divergence from initial convergence.

6. CONCLUSION

In this paper, we have analyzed the effect of additive noise
on the convergence of the VSS-MCFLMS and NMCFLMS
algorithms. The analysis has revealed that the NMCFLMS
algorithm, in presence of noise, is very likely to miscon-
verge to a solution other than the eigenvector correspond-
ing to the minimum eigenvalue of the data correlation ma-
trix. We have also performed the convergence analysis of the
VSS-MCFLMS algorithm which shows that the algorithm
converges to the eigenvector corresponding to the minimum
eigenvalue both in noise-free and noisy conditions and hence
it is more noise robust as compared to the NMCFLMS algo-
rithm.
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