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ABSTRACT
This paper proposes the use of a peak tendency estimator (PTE)
based on Dezert Smarandache Theory (DSmT) and fuzzy inference
to overcome two inherent limitations of a recently proposed par-
tial Haar dual adaptive filter (PHDAF) for sparse echo cancella-
tion. These limitations include the dependence of the PHDAF’s
performance on the echo path impulse response’s bulk delay as a
result of the lack of shift-invariance of the wavelet transform, and
the PHDAF’s difficulty in quickly tracking a new dispersive region
after an abrupt change in bulk delay occurs. The improved PHDAF
is analyzed in terms of its mean-square error (MSE) curves as well
as its mean time to properly locate a dispersive regions under dif-
ferent SNRs. The simulations show that enhanced performance can
be obtained using the proposed solutions at a minimal increase in
computational cost.

1. INTRODUCTION

The presence of line (or network) echo is still commonplace in to-
day’s expanding communications infrastructure. Unlike acoustic
echo, line echo is sparse, i.e.: the echo path impulse response con-
tains a small number of non-zero coefficients, referred to as the
dispersive region. Line echo is usually caused by an impedance
mismatch, e.g. at the hybrid which converts the twisted-pair sub-
scriber loop into a four-wire connection, where each pair of wires
is separately used for transmit and receive signals. As a result of
this mismatch, some of the transmitted signal leaks into the caller’s
receive path in the form of a reflection [1].

As the distance between two callers increases (delay> 16 ms),
the reflected signal becomes a distinct echo that can severely im-
pede a conversation. The situation is worst for long distance calls
routed via satellites due to the long round-trip echo delay, which
can reach up to 600 ms. The coding and signal processing func-
tions of newer digital technologies, designed to provide improved
voice quality, in effect introduce extra processing delays into the
echo path which render the echo problem even more predominant.
Recent advancements, such as the deployment of Voice over Inter-
net Protocol (VoIP) telephones, highlight the need to develop better
echo cancellers for sparse line echo.

Recently, Bershad and Bist [2] have proposed a novel way of
cancelling sparse echo, using a coupled configuration consisting of
two short adaptive filters. Unlike Duttweiler’s echo canceller [3],
which requires the design of complex bandpass filters, the method
in [2] uses a partial Haar wavelet transform, which is simple and
just as amenable to a digital implementation. In this new method,
referred to here as the Partial Haar dual adaptive filter (PHDAF), the
first adaptive filter operates on a subset of input Haar coefficients,
and is used by a peak delay estimator to determine the location of
the echo path’s dispersive region. The second adaptive filter is then
centred around this location to actually cancel the echo in the time
domain. In cases where the bulk delay is very large and a tradi-
tional echo canceller would require a large number of filter taps,
the PHDAF provides a significant reduction in computational and
memory requirements. In addition, by reducing the number of fil-
ter taps to an amount necessary to model the dispersive region, the
convergence speed of the echo canceller is increased.

This paper presents a novel approach that introduces a peak
tendency estimator (PTE) based on Dezert-Smarandache Theory
(DSmT) and fuzzy inference to overcome two inherent limitations
of the PHDAF in [2]. To cope with the shift-variant property of
wavelet transforms, the PTE categorizes a peak’s discernibility as
either increasing or decreasing. If the peak is categorized as de-
creasing during a certain time interval, then a new set of transformed
inputs is selected from a redundant form of the partial Haar trans-
form and used to drive the partial Haar adaptive filter. The PTE is
also used to improve the tracking performance of the coupled echo
canceller in situations where an abrupt change in an echo path im-
pulse response’s bulk delay occurs. In simulation experiments using
normalized least mean squares (NLMS) adaptation, the proposed
amendments to the original PHDAF are shown to yield significant
performance gains at a minimal additional computational cost.

2. BACKGROUND AND PROBLEM FORMULATION

2.1 Previous Work

The structure of the PHDAF proposed in [2] is shown in Fig. 1. The
upper branch, consists of a partial Haar transform matrix denoted
by Hq of sizeq×N and a length-q (≤ N) partial Haar adaptive fil-
ter. The term partial Haar reflects the fact that the transform only
consists of a subset of Haar basis vectors of cardinalityq = 2 j , cor-
responding to scale indexj. These basis vectors span the sample
interval of lengthN, which is set to match the maximum length of
the unknown echo path impulse response. At timen, a new sam-
ple u(n) is shifted into the input data vector of lengthN and a new
transformed input vectorz(n) = Hqu(n) of lengthq is calculated.

In this work, the partial Haar adaptive filterv(n), of lengthq,
is updated by means of the NLMS algorithm, i.e.

v(n+1) = v(n)+ µ‖z(n)‖−2eH(n)z(n) (1)

whereµ andeH(n) denote the step size and error signal, respec-
tively. The peak delay estimator tracks the location of the dispersive
region by locating the peak magnitude ofv(n). It is shown in [2]
that provided the input samples are uncorrelated, the Wiener solu-
tion of the partial Haar adaptive filter converges to the partial Haar
transform of the Wiener filter foru(n), i.e. vo = Hqwo, which can
be seen as a compressed version of the true echo path impulse re-
sponse. In addition, by independence theory assumptions, it can be
shown that as the number of input samples increases, the updates of
the partial Haar tap-weights become uncorrelated [2].

In the lower branch of the PHDAF, the estimated location of the
dispersive region is used to offset a short time-domain filterw(n) of
lengthL so that it is properly centred around the dispersive region.
The value ofL is set to match the longest expected dispersive region
in the echo path. Once the partial Haar adaptive filter’s peak loca-
tion is properly estimated (initially, jitter in the peak delay estimate
can occur), the short time-domain adaptive filter can converge to the
dispersive region and thus cancel the echo signald(n). It is shown
in [2] that the greater the steady-state peak magnitude ofv(n), the
quicker the short time-domain filter can be centred, and therefore,
the faster the PHDAF can cancel echo.©2007 EURASIP 203
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Figure 1: Coupled echo canceller.

2.2 Limitations

The simulation results in [2] show that the PHDAF may provide a
drastic increase of the echo canceller’s convergence speed in gen-
eral, while keeping computational complexity low. However, our
own experiments show that in certain specific cases, the PHDAF
can require an extremely large number of input samples to converge.
A related tracking problem may also be observed with the PHDAF
after a sudden change in the true echo path impulse response.

The lack of shift-invariance of wavelet transforms can greatly
affect the time required by the peak delay estimator to properly lo-
cate the dispersive region. For a wavelet transform whose basis vec-
tors have a time-support of lengthM = N/q, the resulting discrete
wavelet transform is periodically shift-invariant with a period equal
to M. As a result, depending on the bulk delay of a given echo path
impulse response, there existM uniquepartial Haar transformed
Wiener solutions. Furthermore, the respective peak magnitudes of
each of these transformed impulse responses can be different, and
consequently the amount of time it takes the peak delay estima-
tor to correctly estimate the location of a dispersive region varies.
For example, if the steady-state peak magnitude is comparable to
or smaller than neighbouring coefficient noise, then the peak delay
estimator will be unable to properly locate it. This can significantly
affect the overall convergence speed of the coupled echo canceller.
One of the goals of this paper is to propose solutions to amend the
above situations, and therefore increase the robustness of the cou-
pled echo canceller.

The promising results in [2] only represent the case when the
partial Haar adaptive filter has been initialized to zero, i.e.v(0) =
0, and the echo path is stationary. When an abrupt change in the
echo path impulse response occurs, in particular a change in bulk
delay, the mean time to locate the new dispersive region can be
much longer. Unlike the zero-initialization case, where a peak only
has to compete with neighbouring coefficient noise, in the case of a
sudden change in bulk delay, the new peak also has to compete with
the residual of older peaks.

In the next section, we look at ways to circumvent these two
fundamental problems.

3. IMPROVING THE COUPLED ECHO CANCELLER

3.1 Redundant Partial Haar Transform

A consequence of the wavelet transform’s lack of shift-invariance
is the requirement of calculating the partial Haar transform of the
input data blocku(n) for every new input sample. The computa-
tional load for this operation can be shown to be on the order of
N− q arithmetic operations per iteration, which can be computa-
tionally expensive. Therefore, this paper opts for the use of a re-
dundant form of the partial Haar transform which trades arithmetic
operations with memory. Because this redundant partial Haar trans-
form (RPHT) has a simple translational relationship with the input,

it only requires calculating a single partial Haar coefficient every
iteration.

Denoting the vector of RPHT coefficients bys(n) at timen,

s(n) = [hu
′(n),s(n−1), . . . ,s(n−N+1)]T , (2)

whereh is a row vector of lengthN/q containing the non-zero por-
tion of any row ofHq andu

′(n) = [u(n),u(n−1), . . . ,u(n−N/q+

1)]T . To extract the standard partial Haar transform froms(n), con-
sider itsM = N/q-fold polyphase decomposition,

S(z) =
M−1

∑
l=0

z−l ∑
r

s(Mr + l)z−Mr . (3)

From (3) it is apparent that the transformed input vectorz(n) =
Hqu(n) corresponds to the first (l = 0) polyphase component of
S(z), while the remaining components representz(n−1) down to
z(n−N/q+ 1). In other words, the remaining polyphase compo-
nents represent the transform vectors of input samples delayed byl
sample(s). Therefore, driving the partial Haar adaptive filter with a
specific polyphase component ofS(z), results in the filter’s conver-
gence to one ofN/q solutions, each with its unique peak magnitude.
In what follows, the termcontextwill denote the polyphase compo-
nent ofS(z) that is being used to drive the partial Haar adaptive filter
to one of itsN/q solutions.

3.2 Suboptimal-Context Escape Algorithm

The suboptimal-context escape algorithm (SCE) [4] developed in
this section consists of two components: a peak tendency esti-
mator (PTE) that models and categorizes a peak’s discernibility,
and a decision-making unit that decides when the current context
should be changed in the event that a peak’s discernibility is poor.
A) Peak tendency estimator (PTE):

The peak discernibility measure proposed here is calculated as
follows: a) partition the partial Haar filter coefficients into three
contiguous groups of roughly the same size, b) find the maximum
peak magnitude for each of the three groups. The global maximum
is found by selecting the maximum among the three maxima. The
peak discernibility measure (or PDM) at timen is defined as

PDM(n) = 1−cmin(n)/cmax(n), (4)

wherecmin(n) is the minimum among the three maxima found at
time n, and cmax(n) corresponds to the global maximum around
which the short time-domain filter is centred (PDM(n) = 0, if
cmax(n) = 0).

The PTE uses DSmT and fuzzy inference, similar to [8], to
track and categorize a peak’s discernibility as increasing or decreas-
ing. The adopted system makes use of two discernibility models as
shown in Fig. 2. The first model corresponds to a PDM that in-
creases over time with a transitionS→ S→ L → L, and eventu-
ally results in the proper detection of a dispersive region (S andL
denote small and large discernibilities, respectively) . The second
model corresponds to a decreasing discernibility with a transition
L → L → S→ S, which can be used to detect filter-tap noise. The
respective rule-bases and fuzzy graphs for each model are shown in
Table 1 and Table 2. The fuzzy graphs are constructed using [5]

max
x∈X

(µAi×Ci (x)) = max
x∈X

min(µAi (x),µCi (x)). (5)

whereX denotes the permissible PDM values and equals[0,1].
Fuzzy inferences are made using Zadeh’s max-min compositional
rule [6] (X = Y in this case),

µC′(y) = max
x∈X

min
i

(µA′(x),µAi×Ci (x,y)), y∈ Y . (6)

The power of fuzzy inference lies in the fact that inferences can be
made even when rules are only partially satisfied [5, 6].©2007 EURASIP 204
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Figure 2: Fuzzy interface including small and large membership
functions.

Table 1: Fuzzy Rule Bases
Rule No. Increasing PDM

1: If PDM(n) = S then PDM(n+1) = S
2: If PDM(n) = S then PDM(n+1) = L
3: If PDM(n) = L then PDM(n+1) = L

Rule No. Decreasing PDM

1: If PDM(n) = L then PDM(n+1) = L
2: If PDM(n) = L then PDM(n+1) = S
3: If PDM(n) = S then PDM(n+1) = S

At time n, the peak magnitude is characterized by the pair of
fuzzy PDM values corresponding to the two modelsµ

inc(n|n) and
µ

dec(n|n), where (M = inc or dec)

µ
M(n|n) = [m(S),m(S∪L),m(L),m(S∩L)]M. (7)

The termsm(·) denote the basic belief masses (bbm) used within
the DSmT framework. Using the matrix form of Zadeh’s max-min
rule [6], a state prediction of each model can be obtained,

µ
M(n+1|n) = µ

M(n|n)◦G
M , (8)

where◦ denotes a form of vector-matrix multiplication where mul-
tiplication and addition operations are replaced by the min and max

Table 2: Fuzzy graphs corresponding to two models of peak dis-
cernibility.

(a) Increasing discernibility,Ginc

n→ n+1 S S∪L L S∩L
S 1 0 1 0

S∪L 0 0 0 0
L 0.2 0 1 0

S∩L 0 0 0 0

(b) Decreasing discernibility,Gdec

n→ n+1 S S∪L L S∩L
S 1 0 0.2 0

S∪L 0 0 0 0
L 1 0 1 0

S∩L 0 0 0 0

operators, respectively. EachµM(n+ 1|n) requires normalization
for use in the DSmT combination step.

At time n+ 1, a new vector of fuzzy PDM values is obtained
from Fig. 2, i.e.mn+1 = [m(S),m(S∪L),m(L),m(S∩L))] where

mn+1(L) = µL(PDM(n+1)) (9)

mn+1(S) = µS(PDM(n+1)) (10)

mn+1(S∪L) = 1−mn+1(S)−mn+1(L). (11)

This new input is separately combined with the predictionsµ
inc(n+

1|n) andµ
dec(n+1|n) using the DSmT rule of combination

mupd(C) = ∑
A,B∈DΘ,
A∩B=C

m1(A)m2(B), (12)

to obtain the updated fuzzy state vectorsµ
inc(n + 1|n + 1) and

µ
dec(n+1|n+1). Here,DΘ = {S,L,S∩L,S∪L} denotes the hyper-

power set.
B) Decision-making unit:

Making a decision about the peak magnitude’s tendency then
involves converting each set of updated bbms into their Pignistic
probabilitiesPM [7],

PM{S} = mupd(S)+0.5mupd(S∪L)+0.5mupd(S∩L) (13)

PM{L} = mupd(L)+0.5mupd(S∪L)+0.5mupd(S∩L).(14)

At any time instant, a decision about the correct behavioural model
is based on the model with the smallest entropy given by

HM
pig(P

M) = − ∑
A∈{S,L}

PM{A} ln(PM{A}), (15)

wherePM{A} ln(PM{A}) = 0 for PM{A} = 0.
Escaping a suboptimal context, however, also requires deciding

when to act on the information provided by the PTE. The approach
used here consists of a schedule ofN/q non-decreasing trial periods
τ = {τ1, . . . ,τN/q} (τ1 ≤ τ2 ≤ . . . ≤ τN/q) to sequentially test each
of theN/q contexts and is based on some prior knowledge about the
amount of time required by the peak delay estimator to correctly lo-
cate a peak in different contexts. A schedule of non-decreasing trial
periods ensures that the number of yet unattempted contexts that can
successfully lead to a correct estimate of the peak delay increases
after each failed attempt. At the same time, beginning the schedule
with shorter waiting times escapes any suboptimal contexts earlier
in the peak delay estimation process, while at the same time suc-
cessfully staying in optimal contexts.

To summarize, the SCE algorithm begins by monitoring the
peak tendency using the smallest trial period,τ1. If the peak ten-
dency is classified as decreasing for a period of time greater than
this trial period and jitter occurs in the peak delay estimate, then the
filter is reset to zero and a new context is attempted for the next trial
period. This is repeated until the peak delay is correctly estimated.
If all contexts have been attempted unsuccessfully, then the process
is repeated beginning withτ2.

3.3 Improved Tracking

Changes in an echo path impulse response can be associated with a
change in the bulk delay, or a phase roll, where the impulse response
coefficients change signs. The tracking of a dispersive region after
an abrupt change in the echo path impulse response can be seen as
a competition between filter coefficient magnitudes.

The proposed improved tracking (IT) algorithm [4] is based on
the following observation about the PHDAF. When the partial Haar
adaptive filter is initialized to zero, a peak’s magnitude only has to
compete with the low-magnitude coefficient noise of the surround-
ing taps, which makes its detection easy and fast. In the event of an©2007 EURASIP 205
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Table 3: Number of arithmetic operations per iteration - single dis-
persive region

PTE SCE IT PHDAF

Add. 17 18 18 2q+2L+N/q+1
Mult. 18 18 18 2q+2L+6
Div. 3 3 3 1
Comp. 11 16 22 0

abrupt change in the echo path impulse response, however, a new
peak might have to compete with the decreasing magnitude of an
old peak. Therefore, although the echo path impulse response has
changed, the peak delay estimator will take longer to find the peak
corresponding to the new impulse response.

After an abrupt change in the echo path impulse response oc-
curs, one finds that although the location of the new peak as well as
its steady-state magnitude is unknown, the new steady-state magni-
tude of an old peak is approximately zero. Therefore, if a decrease
in the current peak’s magnitude is detected (which usually signals
a change in the echo path impulse response), the entire partial Haar
filter can be reset tov(n) = 0. This is a feasible solution because
the partial Haar filter is not being directly used to cancel echo and
allows the new peak to solely compete with the low-magnitude co-
efficient noise of its neighbouring taps instead of the decreasing
magnitude of the previous peak. As a result, the performance gains
obtained in [2] in the stationary case can be extended to cases where
abrupt changes in the echo path impulse response occur.

In order to prevent the IT algorithm from constantly resetting
the partial Haar adaptive filter, the reset operation should only be
performed everyTRS samples. In addition, a reset is only deemed
necessary when a decrease in magnitude is detected for a peak
whose tendency has been in anincreasingstate for an amount of
time greater thanTinc. It is usually the case thatTRS< Tinc.

Adaptive filter coefficients are known to display a form of
Brownian motion around the optimal solution [9] which can cause
the IT algorithm to falsely detect a change in the impulse response.
In order to prevent these false alarms, the algorithm also stores the
position of the previous peak before resetting the filter, and feeds
this position to the bulk delay unit. Once the new peak tendency
has been increasing for an amount of time equal toTinc, the algo-
rithm begins using the location of the new peak to centre the short
time-domain filter. An advantage of the IT algorithm is that it can
also be integrated with the SCE algorithm.

3.4 Computational Complexity

The bulk of the SCE and IT algorithms’ computational complex-
ity lies with the PTE. Table 3 shows the number of arithmetic op-
erations per iteration required by the PTE, the SCE, and IT echo
canceller (which includes the SCE). Since only the incremental in-
crease in complexity over the PHDAF is of interest here, the com-
plexity values of the first three columns of Table 3 (PTE⊃ SCE-
PHDAF⊃ IT-PHDAF) do not include the complexity associated
with the PHDAF, while the values in the second and third columns
of Table 3 include the values of their left-hand column.

Arithmetic operations associated with the PTE are drastically
reduced since many bbm terms such asmn+1(S∩L) andmpred(S∪
L), are zero throughout the PTE’s operation. The two logarithmic
operations related to calculating the Pignistic entorpies can also be
eliminated since only the relative entropy is required. An alternate
measure that preserves the relationship between the two Pignistic
entropies and requires only a single comparison operation is given
by H̃M

pig = min(PM{S},PM{L}). Therefore, as an example, letting
N = 1024,q = 256, andL = 128, the percentage increase in com-
plexity when using the IT algorithm is 61/1548= 3.94%, which is
an acceptable amount.

4. COMPUTER SIMULATIONS

4.1 Methodology

The set of hybrid impulse responses used in the following simula-
tions are taken from Annex D of the ITU-T G.168 Recommenda-
tion for digital network echo cancellers [10]. There are eight im-
pulse responsesmi(n) (for i = 1,2, . . . ,8) of lengthsLi that range
from 64 to 128 samples at 8 kHz. It is assumed thatmi(n) = 0 for
n /∈ {0,1, . . . ,Li −1} and the echo return loss is 15 dB.

An input data vector of lengthN = 1024 with a partial
Haar adaptive filter of lengthq = 256 and a scheduleτ =
{150,250,300,400} is used, unless stated otherwise. At the be-
ginning of each run, the input data vector is initialized with the first
N input samples ofu(n), a white zero-mean Gaussian process with
unit variance. The additive measurement noiseν(n) is also a white
Gaussian process, uncorrelated with the input, of zero-mean and
varianceσ2

ν = 10−SNR/10. The SNR is set to 30 dB, unless stated
otherwise. The PHDAF and proposed algorithms will all operate
with their partial Haar and short time-domain adaptive filters utiliz-
ing the NLMS algorithm with a step-sizeµ = 1. In addition, the
partial Haar NLMS update equation is normalized with‖u(n)‖2.
The initial context is set to 1, which corresponds to no shifting of
the partial Haar basis vectors. The NLMS algorithm is used as a
reference for comparison.

4.2 Context Escaping

Figures 3(a) and (b) show the learning curves corresponding to an
echo path impulse response using ITU-T G.168 hybrid modelm5(n)
under the best and worst bulk delays (with respect to the initial con-
text), respectively. The curves represent an ensemble of 200 runs
for each simulation.

For the best-case bulk delay (Fig. 3(a)), both the SCE-PHDAF
and PHDAF show identical learning curves reaching steady state at
aroundk = 750 compared to the NLMS which converges at around
k = 5000. Of course, this is related to the fact that the NLMS
adapts a far larger number of coefficients (1024 compared to 128).
For a worst-case bulk delay (Fig. 3(b)), the PHDAF never seems
to reach steady-state, while the proposed SCE-PHDAF converges
much faster, nearly as well as in the optimal case, requiring about
k = 1000 samples to converge. Several observations can be made
concerning the results in Fig. 3. First, the proposed algorithm adds
flexibility to the PHDAF in that it does not get trapped in subop-
timal contexts. At the same time the proposed algorithm remains
in optimal contexts. This behaviour may significantly increase the
convergence speed of the echo canceller, as observed.

In addition to learning curves, the mean time for each echo can-
celler (proposed and PHDAF) to correctly estimate the location of
a dispersive region was compared for different SNRs. Each row in
Table 4 consists of the average and standard deviation over 500 ran-
dom runs by randomly selecting one of eight ITU-T G.168 hybrid
impulse response with equal probability, and a uniformly selected
bulk delay in the interval [0,895]. In all cases, the proposed algo-
rithm finds the dispersive region faster (the mean time is smaller)
and more consistently (the standard deviation is much smaller). Al-
though both PHDAF and the proposed echo canceller display simi-
lar mean times to convergence at very low SNR, the standard devia-
tion of the PHDAF is three times larger. This reveals the robustness
of using a fixed scheduleτ together with a PTE for different val-
ues of SNR. Of course, if the SNR does not change much over a
specific channel, then schedules can be constructed specifically for
those cases.

4.3 Improved Tracking

For reasons of brevity, only one case in Fig. 4 will be considered
here. In this scenario, an echo path impulse response’s bulk delay
abruptly changes from an optimal to a suboptimal delay with respect
to the initial context.

Initially, both echo cancellers converge optimally. However, af-
ter the abrupt change in bulk delay, the IT-PHDAF requires much©2007 EURASIP 206
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Figure 3: ITU-T hybrid responsem5(k) learning curves using a: (a)
best and (b) worst-case bulk delay for the initial context used. (SNR
= 30 dB)
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Figure 4: Tracking behaviour of the IT-PHDAF compared to the
PHDAF and NLMS algorithm with a best-to-worst case change in
bulk delay with respect to the initial context used (SNR= 30 dB).

Table 4: Comparison of mean times and standard deviation to cor-
rectly estimate the peak delay for different SNRs.

SCE-PHDAF PHDAF

SNR (dB) Mean Std. Mean Std.

30 91.5 75.4 121.1 203.0
20 107.7 86.4 214.5 664.0
15 167.4 138.3 362.7 1067.7
10 421.4 387.1 531.7 1177.2

fewer samples to converge after a sudden change in the bulk de-
lay. This result is supported by the plateau-region of the PHDAF’s
learning curve extending for almost 2000 samples in Fig. 4. The
length of this plateau equals the amount of time it takes the new
peak’s magnitude (which is very small since the new bulk delay is
suboptimal) to exceed the decreasing magnitude of the old peak.

5. SUMMARY AND CONCLUSION

The results obtained in this paper have shown that both suboptimal-
context escaping or improved tracking (with suboptimal-context es-
caping) can considerably improve the performance of the PHDAF
proposed by [2] without a significant increase in computational
complexity. In [4], a distributed form of the SCE algorithm is de-
veloped to deal with the case of multiple dispersive regions.
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