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ABSTRACT This paper presents a novel approach that introduces a peak
This paper proposes the use of a peak tendency estimator (PTEgndency estimator (PTE) based on Dezert-Smarandache Theory
based on Dezert Smarandache Theory (DSmT) and fuzzy inferend@SmT) and fuzzy inference to overcome two inherent limitations
to overcome two inherent limitations of a recently proposed parOf the PHDAF in [2]. To cope with the shift-variant property of
tial Haar dual adaptive filter (PHDAF) for sparse echo cancella- Wavelet transforms, the PTE categorizes a peak's discernibility as
tion. These limitations include the dependence of the PHDAF'€ither increasing or decreasing. If the peak is categorized as de-
result of the lack of shift-invariance of the wavelet transform, andiNPUts is selected from a redundant form of the partial Haar trans-
the PHDAF's difficulty in quickly tracking a new dispersive region form and used to drive the partial Haar adaptive filter. The PTE is
after an abrupt change in bulk delay occurs. The improved PHDARRISO used to improve the tracking performance of the coupled echo
is analyzed in terms of its mean-square error (MSE) curves as weffanceller in situations where an abrupt change in an echo path im-
as its mean time to properly locate a dispersive regions under difPulSe response’s bulk delay occurs. In simulation experiments using
ferent SNRs. The simulations show that enhanced performance cAfrmalized least mean squares (NLMS) adaptation, the proposed

be obtained using the proposed solutions at a minimal increase igMendments to the original PHDAF are shown to yield significant
computational cost. performance gains at a minimal additional computational cost.

1. INTRODUCTION 2. BACKGROUND AND PROBLEM FORMULATION

The presence of line (or network) echo is still commonplace in to2.1 Previous Work

day’s expanding communications infrastructure. Unlike acousticwe structure of the PHDAF proposed in [2] is shown in Fig. 1. The
o 1.

echo, line echo is sparse, i.e.: the echo path impulse response ¢ X h :
tains a small number of non-zero coefficients, referred to as thHPPE branch, consists of a partial Haar transform matrix de_noted
y H, of sizeqx N and a lengtig (< N) partial Haar adaptive fil-

dispersive region. Line echo is usually caused by an impedan -
mismatch, e.g. at the hybrid which converts the twisted-pair suber- The term partial Haar reflects the fact that the transform only

scriber loop into a four-wire connection, where each pair of wirescONSists of a subset of Haar basis vectors of cardinglity2!, cor-
is separately used for transmit and receive signals. As a result §SPonding to scale index These basis vectors span the sample
this mismatch, some of the transmitted signal leaks into the caller’iﬂter"al of lengthN, which is set to match the maximum length of
receive path in the form of a reflection [1]. the unkr_lown_ echc_) path |mpulse response. At tima new sam-
As the distance between two callers increases (delag ms), pleu(n) is shifted into the input data vector of lengthand a new
the reflected signal becomes a distinct echo that can severely iff2nsformed input vectas(n) = Hqu(n) of lengthqis calculated.
pede a conversation. The situation is worst for long distance calls !N this work, the partial Haar adaptive filter(n), of lengthg,
routed via satellites due to the long round-trip echo delay, whicHs updated by means of the NLMS algorithm, i.e.
can reach up to 600 ms. The coding and signal processing func- _
tions of newer digital technologies, designed to provide improved v(n+1) =v(n)+plz(n)||“en (n)z(n) 1
voice quality, in effect introduce extra processing delays into the
echo path which render the echo problem even more predominanthereu and ey (n) denote the step size and error signal, respec-
Recent advancements, such as the deployment of Voice over Intdively. The peak delay estimator tracks the location of the dispersive
net Protocol (VoIP) telephones, highlight the need to develop betteregion by locating the peak magnitudewfn). It is shown in [2]
echo cancellers for sparse line echo. that provided the input samples are uncorrelated, the Wiener solu-
Recently, Bershad and Bist [2] have proposed a novel way ofion of the partial Haar adaptive filter converges to the partial Haar
cancelling sparse echo, using a coupled configuration consisting tifansform of the Wiener filter foa(n), i.e. vo = Hgqwo, which can
two short adaptive filters. Unlike Duttweiler's echo canceller [3], be seen as a compressed version of the true echo path impulse re-
which requires the design of complex bandpass filters, the methagponse. In addition, by independence theory assumptions, it can be
in [2] uses a partial Haar wavelet transform, which is simple andshown that as the number of input samples increases, the updates of
just as amenable to a digital implementation. In this new methodthe partial Haar tap-weights become uncorrelated [2].
referred to here as the Partial Haar dual adaptive filter (PHDAF), the  In the lower branch of the PHDAF, the estimated location of the
first adaptive filter operates on a subset of input Haar coefficientslispersive region is used to offset a short time-domain ftém) of
and is used by a peak delay estimator to determine the location ¢éngthL so that it is properly centred around the dispersive region.
the echo path’s dispersive region. The second adaptive filter is theFhe value oL is set to match the longest expected dispersive region
centred around this location to actually cancel the echo in the tima the echo path. Once the partial Haar adaptive filter's peak loca-
domain. In cases where the bulk delay is very large and a tradtion is properly estimated (initially, jitter in the peak delay estimate
tional echo canceller would require a large number of filter tapscan occur), the short time-domain adaptive filter can converge to the
the PHDAF provides a significant reduction in computational anddispersive region and thus cancel the echo sid(a). It is shown
memory requirements. In addition, by reducing the number of fil-in [2] that the greater the steady-state peak magnitudg o, the
ter taps to an amount necessary to model the dispersive region, tlyaicker the short time-domain filter can be centred, and therefore,
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en(n) dm it only requires calculating a single partial Haar coefficient every
iteration.
o Denoting the vector of RPHT coefficients bgn) at timen,
z(n — +
Hq — V(I’]) .|

s(n) = [hd'(n),s(n—1),...,s(n—N+1)]", )

whereh is a row vector of lengtiN /g containing the non-zero por-

:1(;:;; 4@ tion of any row ofHq andu’(n) = [u(n),u(n—1),...,u(n—N/gq+

1)]". To extract the standard partial Haar transform fecm), con-
sider itsM = N/g-fold polyphase decomposition,

Bulk w(n) (D]
Delay

S2) = Milz*' 3 s(Mr +1)zM", @)
1=0 r

From (3) it is apparent that the transformed input veetor) =
Hgu(n) corresponds to the first & 0) polyphase component of
S(z), while the remaining components represegfri— 1) down to
z(n—N/q+1). In other words, the remaining polyphase compo-
o nents represent the transform vectors of input samples delayled by
2.2 Limitations sample(s). Therefore, driving the partial Haar adaptive filter with a

The simulation results in [2] show that the PHDAF may provide aSPecific polyphase component$(iz), results in the filter's conver-
drastic increase of the echo canceller's convergence speed in ge#fnce to one dfl/qsolutions, each with its unique peak magnitude.
eral, while keeping computational complexity low. However, our !N What follows, the terncontextwill denote the polyphase compo-
own experiments show that in certain specific cases, the PHDAReNt ofS(z) that is being used to drive the partial Haar adaptive filter
can require an extremely large number of input samples to convergt® one of itsN/q solutions.
A related tracking problem may also be observed with the PHDAF, . .
after a sudden cf?aelge in the tr)l/Je echo path impulse response. 3.2 Suboptimal-Context Escape Algorithm

The lack of shift-invariance of wavelet transforms can greatlyThe suboptimal-context escape algorithm (SCE) [4] developed in
affect the time required by the peak delay estimator to properly lothis section consists of two components: a peak tendency esti-
cate the dispersive region. For a wavelet transform whose basis vegrator (PTE) that models and categorizes a peak’s discernibility,
tors have a time-support of lengkhh = N/q, the resulting discrete and a decision-making unit that decides when the current context
wavelet transform is periodically shift-invariant with a period equalshould be changed in the event that a peak’s discernibility is poor.
to M. As aresult, depending on the bulk delay of a given echo path\) peak tendency estimator (PTE):
impulse response, there exlét unique partial Haar transformed The peak discernibility measure proposed here is calculated as
Wiener solutions. Furthermore, the respective peak magnitudes @|lows: a) partition the partial Haar filter coefficients into three
each of these transformed impulse responses can be different, aggntiguous groups of roughly the same size, b) find the maximum
consequently the amount of time it takes the peak delay estimgseak magnitude for each of the three groups. The global maximum
tor to correctly estimate the location of a dispersive region variesis found by selecting the maximum among the three maxima. The

For example, if the steady-state peak magnitude is comparable {gak discernibility measure (or PDM) at times defined as
or smaller than neighbouring coefficient noise, then the peak delay

estimator will be unable to properly locate it. This can significantly PDM(n) = 1 — Cmin(N)/Cmax(N), 4)
affect the overall convergence speed of the coupled echo canceller

One of the goals of this paper is to propose solutions to amend thgherecin(n) is the minimum among the three maxima found at
above situations, and therefore increase the robustness of the caline n, and cmax(n) corresponds to the global maximum around

Figure 1: Coupled echo canceller.

pled echo cachller. _ which the short time-domain filter is centred (PPM = O, if
The promising results in [2] only represent the case when thgy,(n) = 0).
partial Haar adaptive filter has been initialized to zero, w€0) = The PTE uses DSmT and fuzzy inference, similar to [8], to

0, and the echo path is stationary. When an abrupt change in theack and categorize a peak’s discernibility as increasing or decreas-
echo path impulse response occurs, in particular a change in bulkg. The adopted system makes use of two discernibility models as
delay, the mean time to locate the new dispersive region can bshown in Fig. 2. The first model corresponds to a PDM that in-
much longer. Unlike the zero-initialization case, where a peak only:reases over time with a transiti— S— L — L, and eventu-

has to compete with neighbouring coefficient noise, in the case of ally results in the proper detection of a dispersive reg®ar(dL
sudden change in bulk delay, the new peak also has to compete wilznote small and large discernibilities, respectively) . The second

the residual of older peaks. ‘ model corresponds to a decreasing discernibility with a transition
In the next section, we look at ways to circumvent these two. — L — S— S, which can be used to detect filter-tap noise. The
fundamental problems. respective rule-bases and fuzzy graphs for each model arsmshow

Table 1 and Table 2. The fuzzy graphs are constructed using [5]
3. IMPROVING THE COUPLED ECHO CANCELLER

3.1 Redundant Partial Haar Transform Q%X(“A xCj (X)) - Q?}(mm(“/—\i (X)JJQ (X)) (%)

A consequence of the wavelet transform’s lack of shift-invariance
is the requirement of calculating the partial Haar transform of th
input data blocku(n) for every new input sample. The computa-
tional load for this operation can be shown to be on the order of
N — g arithmetic operations per iteration, which can be computa- . . o 6
tionally expensive. Therefore, this paper opts for the use of a re- He(y) = Q%?(miln(u,\/ (X),Haxc (X%Y), ye#. (6)
dundant form of the partial Haar transform which trades arithmetic

operations with memory. Because this redundant partial Haar tran3he power of fuzzy inference lies in the fact that inferences can be

fogn (RFHIVIREA 8 Pmple translational relationship with the i@ made even when rules are ¢~ EUSIPCO, Poznaf 2007

here 2" denotes the permissible PDM values and eq(@l$].
uzzy inferences are made using Zadeh’s max-min compositional
ule [6] (2" = % in this case),
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operators, respectively. Eaght(n+ 1|n) requires normalization
for use in the DSmT combination step.

At time n+ 1, a new vector of fuzzy PDM values is obtained
from Fig. 2, i.e.my;1 = [M(S),m(SUL), m(L), m(SNL))] where

Myy1(L) = w(PDM(n+1)) 9)
My1(S) = Hs(PDM(n+1)) (10)
Myr1(SUL) = 1—my1(S) —mypa(l). (11)

This new input is separately combined with the predictipi‘?ﬁ(n-lr
1|n) and2%€9n+ 1|n) using the DSMT rule of combination
12)

MpdC) = T mi(A)my(B),

ABED®,
ANB=C

to obtain the updated fuzzy state vectpr§¢(n+ 1jn+ 1) and
pn9e(n+1jn+1). Here,D® = {S L,SNL,SUL} denotes the hyper-

Figure 2: Fuzzy interface including small and large membershigpower set.

functions.
Table 1: Fuzzy Rule Bases

Rule No. | Increasing PDM
1 If PDM(n) = Sthen PDM+1) =S
2: If PDM(n) = Sthen PDMQ+1) =L
3: If PDM(n) = L then PDMQ+1) =L

Rule No. | Decreasing PDM
1: If PDM(n) = L then PDMa+1) =L
2: If PDM(n) = L then PDMA+1) =S
3: If PDM(n) = Sthen PDMA+1) =S

B) Decision-making unit:

Making a decision about the peak magnitude’s tendency then
involves converting each set of updated bbms into their Pignistic
probabilitiesPM [7],

PM{s}
PM{L}

Mypd(S) +0.5Mypd(SUL) + 0.5mypg(SNL) (13)
Mypd(L) +0.5mypg(SUL) + 0.5mypg(SNL).(14)

At any time instant, a decision about the correct behavioural model
is based on the model with the smallest entropy given by

Hg{'g(PM) = fAEéL} PM{A}IN(PM{A}), (15)

At time n, the peak magnitude is characterized by the pair OfwherePM {A}In(PM{A}) = 0 for PM{A} — 0.

fuzzy PDM values corresponding to the two model®(n|n) and

19€%(n|n), where M = inc or dec)

V’M (n‘n) = [m(S), m(Su L)7 m(L)7 m(Sn L)}

M, (7)

Escaping a suboptimal context, however, also requires deciding
when to act on the information provided by the PTE. The approach
used here consists of a schedul&gfy non-decreasing trial periods
T={T1,...,Tn/q} (1 < T2 < ... < Ty/q) tO sequentially test each

of theN/q contexts and is based on some prior knowledge about the

The termsm(-) denote the basic belief masses (bbm) used withiramount of time required by the peak delay estimator to correctly lo-
the DSmT framework. Using the matrix form of Zadeh's max-min cate a peak in different contexts. A schedule of non-decreasing trial

rule [6], a state prediction of each model can be o

M (4 1in) = M (nn) o GM,

btained,

®

periods ensures that the number of yet unattempted contexts that can
successfully lead to a correct estimate of the peak delay increases
after each failed attempt. At the same time, beginning the schedule
with shorter waiting times escapes any suboptimal contexts earlier

whereo denotes a form of vector-matrix multiplication where mul- in the peak delay estimation process, while at the same time suc-
tiplication and addition operations are replaced by the min and magessfully staying in optimal contexts.

To summarize, the SCE algorithm begins by monitoring the
peak tendency using the smallest trial period, If the peak ten-
dency is classified as decreasing for a period of time greater than

Table 2: Fuzzy graphs corresponding to two models of peak disthis trial period and jitter occurs in the peak delay estimate, then the

cernibility.
(a) Increasing discernibility"®
n—-n+1 S | SUL | L | sSnL
S 1 0 1 0
SUL 0 0 0 0
L 0.2 0 1 0
SNL 0 0 0 0
(b) Decreasing discernibilityzdec
n—n+1l| S| SUL L SNL
S 1 0 0.2 0
SUL 0 0 0 0
L 1 0 1 0
SNL 0 0 0 0
©2007 EURASIP
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filter is reset to zero and a new context is attempted for the next trial
period. This is repeated until the peak delay is correctly estimated.
If all contexts have been attempted unsuccessfully, then the process
is repeated beginning witty.

3.3 Improved Tracking

Changes in an echo path impulse response can be associated with a
change in the bulk delay, or a phase roll, where the impulse response
coefficients change signs. The tracking of a dispersive region after
an abrupt change in the echo path impulse response can be seen as
a competition between filter coefficient magnitudes.

The proposed improved tracking (IT) algorithm [4] is based on
the following observation about the PHDAF. When the partial Haar
adaptive filter is initialized to zero, a peak’s magnitude only has to
compete with the low-magnitude coefficient noise of the surround-

EUSIPCO, Poznan 2007nt of an
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. . . . . . . 4. COMPUTER SIMULATIONS
Table 3: Number of arithmetic operations per iteration - single dis-

persive region 4.1 Methodology
PTE SCE IT PHDAE The set of hybrid impulse responses used in the following simula-
tions are taken from Annex D of the ITU-T G.168 Recommenda-
Add. 17 18 18 B+2L+N/g+1 tion for digital network echo cancellers [10]. There are eight im-
Mult 18 18 18 2+2L+6 pulse responses(n) (fori = 1,2,...,8) of lengthsL; that range
o from 64 to 128 samples at 8 kHz. It is assumed thgh) = O for
Div. 3 3 3 1 n¢ {0,1,...,Lj — 1} and the echo return loss is 15 dB.
Comp. 11 16 22 0 An input data vector of lengtiN = 1024 with a partial

Haar adaptive filter of lengthg = 256 and a schedule =
{150,250,300,400} is used, unless stated otherwise. At the be-
ginning of each run, the input data vector is initialized with the first
abrupt change in the echo path impulse response, however, a néhinput samples ofi(n), a white zero-mean Gaussian process with
peak might have to compete with the decreasing magnitude of amnit variance. The additive measurement neie) is also a white
old peak. Therefore, although the echo path impulse response h&sussian process, uncorrelated with the input, of zero-mean and
changed, the peak delay estimator will take longer to find the peakariance05 — 10-SNR/10, The SNR is set to 30 dB, unless stated
corresponding to the new impulse response. otherwise. The PHDAF and proposed algorithms will all operate
After an abrupt change in the echo path impulse response ogvith their partial Haar and short time-domain adaptive filters utiliz-
curs, one finds that although the location of the new peak as well @ag the NLMS algorithm with a step-size = 1. In addition, the
its steady-state magnitude is unknown, the new steady-state magpartial Haar NLMS update equation is normalized wjjta(n)||2.
tude of an old peak is approximately zero. Therefore, if a decreasgne initial context is set to 1, which corresponds to no shifting of

in the current peak's magnitude is detected (which usually signalghe partial Haar basis vectors. The NLMS algorithm is used as a
a change in the echo path impulse response), the entire partial Hag#erence for comparison.

filter can be reset te(n) = 0. This is a feasible solution because
the partial Haar filter is not being directly used to cancel echo and.2 Context Escaping
allows the new peak to solely compete with the low-magnitude co-_. . .
efficient noise of its neighbouring taps instead of the decreasinfji9ures 3(2) and (b) show the learning curves corresponding to an
magnitude of the previous peak. As a result, the performance gairficho path impulse response using ITU-T G.168 hybrid moggh)
obtained in [2] in the stationary case can be extended to cases whetBder the best and worst bulk delays (with respect to the initial con-
abrupt changes in the echo path impulse response occur. ]Eext), r(;spectllve_ly. The curves represent an ensemble of 200 runs
In order to prevent the IT algorithm from constantly resetting 0" €ach simulation. .
the partial Haar adaptive filter, the reset operation should only be _FOr the best-case bulk delay (Fig. 3(a)), both the SCE-PHDAF
performed everyirs samples. In addition, a reset is only deemed@nd PHDAF show identical learning curves reaching steady state at
necessary when a decrease in magnitude is detected for a pediPundk =750 compared to the NLMS which converges at around
whose tendency has been in iacreasingstate for an amount of K = 5000. Of course, this is related to the fact that the NLMS
time greater thaffinc. It is usually the case thaks < Tinc. adapts a far larger number of cpefﬁments (1024 compared to 128).
Adaptive filter coefficients are known to display a form of FOr @ worst-case bulk delay (Fig. 3(b)), the PHDAF never seems
Brownian motion around the optimal solution [9] which can cause™ rer?(f:h tsteady-sltate, Wh'llle the y:tJrr]oposte_d SICE'PHDAF. (_:onvebrgets
the IT algorithm to falsely detect a change in the impulse respons 'Eclogg er, nelarytas well as mS e Opllmba cas? requmng a oud
In order to prevent these false alarms, the algorithm also stores tHe— 9 sarr?p es ? c_on\é(_ergg. F_ever% observa 'gnsl ca_nh e r?j"é e
position of the previous peak before resetting the filter, and feedsPNcerning the results in Fig. 3. First, the proposed algorithm adds
this position to the bulk delay unit. Once the new peak tendency/€XiPility to the PHDAF in that it does not get trapped in subop-
has been increasing for an amount of time equai g the algo- umal contexts. At the same time the proposed algorithm remains
rithm begins using the location of the new peak to centre the shofP optimal contexts. This behaviour may significantly increase the

time-domain filter. An advantage of the IT algorithm is that it can €ONvergence speed of the echo canceller, as observed.
also be integrated with the SCE algorithm. In addition to learning curves, the mean time for each echo can-

celler (proposed and PHDAF) to correctly estimate the location of
a dispersive region was compared for different SNRs. Each row in
Table 4 consists of the average and standard deviation over 500 ran-
The bulk of the SCE and IT algorithms’ computational complex-dom runs by randomly selecting one of eight ITU-T G.168 hybrid
ity lies with the PTE. Table 3 shows the number of arithmetic op-impulse response with equal probability, and a uniformly selected
erations per iteration required by the PTE, the SCE, and IT echbulk delay in the interval [0,895]. In all cases, the proposed algo-
canceller (which includes the SCE). Since only the incremental infithm finds the dispersive region faster (the mean time is smaller)
crease in complexity over the PHDAF is of interest here, the comand more consistently (the standard deviation is much smaller). Al-
plexity values of the first three columns of Table 3 (PTESCE-  though both PHDAF and the proposed echo canceller display simi-
PHDAFD IT-PHDAF) do not include the complexity associated lar mean times to convergence at very low SNR, the standard devia-
with the PHDAF, while the values in the second and third columngion of the PHDAF is three times larger. This reveals the robustness
of Table 3 include the values of their left-hand column. of using a fixed schedule together with a PTE for different val-
Arithmetic operations associated with the PTE are drasticallyjues of SNR. Of course, if the SNR does not change much over a
reduced since many bbm terms suchigg (SN L) andmpreq(SU specific channel, then schedules can be constructed specifically for
L), are zero throughout the PTE’s operation. The two logarithmidhose cases.
operations related to calculating the Pignistic entorpies can also be ]
eliminated since only the relative entropy is required. An alternatet.3 Improved Tracking
measure that preserves the relationship between the two Pignistity reasons of brevity, only one case in Fig. 4 will be considered
entropies and requires only a single comparison operation is giveRere. In this scenario, an echo path impulse response’s bulk delay
by Hpfy = min(PV{S},PM{L}). Therefore, as an example, letting abruptly changes from an optimal to a suboptimal delay with respect
N = 1024,q = 256, andL = 128, the percentage increase in com- to the initial context.
plexity when using the IT algorithm is 81548= 3.94%, which is Initially, both echo cancellers converge optimally. However, af-
ATROOPEUFRNSIPL. 206ter the abrupt change in bu™ ~ EUSIPCO, Poznan 2007 much
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Table 4: Comparison of mean times and standard deviation to cor-
rectly estimate the peak delay for different SNRs.

SCE-PHDAF PHDAF
SNR (dB) Mean  Std. Mean Std.
30 915 754 1211  203.0
20 107.7 86.4 2145 664.0
15 167.4 138.3 362.7 1067.7
10 421.4 387.1 531.7 1177.2

28 SCE-PHDAF/PHDAF
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—28 [ T
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Figure 3: ITU-T hybrid respons®s (k) learning curves using a: (a)

best and (b) worst-case bulk delay for the initial context used. (SNR
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Figure 4: Tracking behaviour of the IT-PHDAF compared to the
PHDAF and NLMS algorithm with a best-to-worst case change in
bulk delay with respect to the initial context used (SNR0 dB).
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fewer samples to converge after a sudden change in the bulk de-
lay. This result is supported by the plateau-region of the PHDAF's
learning curve extending for almost 2000 samples in Fig. 4. The
length of this plateau equals the amount of time it takes the new
peak’s magnitude (which is very small since the new bulk delay is
suboptimal) to exceed the decreasing magnitude of the old peak.

5. SUMMARY AND CONCLUSION

The results obtained in this paper have shown that both suboptimal-
context escaping or improved tracking (with suboptimal-context es-
caping) can considerably improve the performance of the PHDAF
proposed by [2] without a significant increase in computational
complexity. In [4], a distributed form of the SCE algorithm is de-
veloped to deal with the case of multiple dispersive regions.
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