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ABSTRACT
Adaptive frequency tracking is useful in a broad range

of applications, and many schemes have been introduced in
the recent years for that purpose. Starting from the obser-
vation that, in some situations, the sinusoidal component to
be tracked is present in more than one signal, we propose in
this paper to extend frequency tracking to two signals in or-
der to improve convergence properties. We apply this idea
to a specific adaptive frequency tracking algorithm and ob-
tain through theoretical analysis and computer simulations
the performance gain of this new scheme for the tracking al-
gorithm considered.

1. INTRODUCTION

Adaptive tracking of noisy sinusoidal signal components
with time-varying amplitudes and frequencies presents a
great interest in many engineering applications such as com-
munications [1], biomedical engineering [2], and speech
processing [3]. Over the years, several dedicated algorithms
have been proposed in the literature. Some rely on a Kalman-
[4] or an RLS-based [5] prediction algorithm, but many of
them ( [6,7,8,9] for instance) are based on an adaptive notch
filter structure. In a recently published work [10], two algo-
rithms of the latter type have been proposed. They are both
based on the combination of a discrete oscillator model and
a line-enhancement filter.

There are many applications in which the sinusoidal com-
ponent is present in more than one signal. This is for instance
the case in electro-encephalograph signals, where rhythms
may be present in several lead signals [11]. In some circum-
stances, it is of interest to track the sinusoidal component that
is indeed common to the two signals, but, in all cases, using
the additional information provided by the second signal may
improve the tracking performance in terms of convergence
speed and frequency estimation variance. In this paper, we
present how this idea can be implemented in practice using
one of the algorithms of [10]. What makes this algorithm
specifically attractive for our purpose is that it is based on
a constrained criterion of minimal disturbance (i.e. minimal
variation of the updated coefficient), very simply extended
to two signals. But we emphasize that the concept of using
two signals to track a common sinusoidal component may be
implemented in other frequency tracking algorithms. Also,
extension of this scheme to more than two signals should be
possible, and appears to be straightforward in the specific
setting we present here.

The structure of this paper is as follows. First, this al-
gorithm, called the band pass filter (BPF) discrete oscilla-
tor based adaptive notch filter (ANF) is briefly described.
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Figure 1: General structure of the OSC-LM ANF algorithm.

Next, the two-signal version of this algorithm is presented,
and its convergence properties are studied both analytically
and through Monte Carlo simulations. A short discussion
concludes this paper.

2. OSCILLATOR BASED ADAPTIVE NOTCH
FILTER (OSC ANF)

2.1 The algorithm

The algorithm extended in this paper is called, for reasons
made clear below, the OSC-LM (oscillator based Lagrange
multiplier) ANF algorithm. Its structure is displayed in figure
1. The signal under study, u(n), can be represented as

u(n) = d(n)+w(n) (1)

where w(n) is an additive, zero mean, i.i.d. noise, and d(n) is
the sinusoidal component at pulsation ω0. Successive sam-
ples of this component must thus obey the oscillator equation

d(n) = 2cosω0d(n−1)−d(n−2)
≡ 2α0d(n−1)−d(n−2). (2)

The time-varying coefficient α(n) that tracks α0 =
cosω0, defines the recursive part of the BPF. The transfer
function of this BPF is given by :

HBP(z;n) =
1−β

2
1− z−2

1−α(n)[1+ β ]z−1 + β z−2 (3)

where β determines the bandwidth. The reference signal
x(n) is defined as the output of the recursive part of the BPF.

x(n) = α(n)(1+ β )x(n−1)−βx(n−2)+u(n)
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To sum up, a version of the input signal enhanced by the
bandpass filter is used to drive an oscillator. In the OSC-
LM, the objective is to minimize the squared difference be-
tween two successive values of the adaptive parameter, which
is known as the minimal disturbance principle,

min|α(n+1)−α(n)|2 (4)

with the constraint that x(n),x(n−1),x(n−2) satisfy the dis-
crete oscillator model (2) with respect to the updated coeffi-
cient α(n+1)

E{x(n)} = 2α(n+1)E{x(n− 1)}−E{x(n−2)} (5)

This minimization problem under constraint can be
solved using the method of Lagrange multiplier with the cost
function J1 defined as :

J1 = [α(n+1)−α(n)]2

+λE{x(n)−2α(n+1)x(n−1)+ x(n−2)} (6)

Setting ∂J1/∂α(n + 1) = 0, the Lagrange optimal solu-
tion αL(n+1) is obtained as :

αL(n+1) = αL(n)+
E{x(n)−2αL(n)x(n−1)+ x(n−2)}

2E{x(n−1)}
(7)

Replacing the expectations with the instantaneous esti-
mates and multiplying the variation term by a small positive
coefficient μ , we obtain :

α(n+1) = α(n)+μ
[x(n)−2α(n)x(n−1)+ x(n−2)]

2x(n−1)
(8)

The step-size μ controls the convergence rate of the al-
gorithm.

3. EXTENSION TO TWO SIGNALS

Suppose that we have two signals u(n) and v(n),

u(n) =d1(n)+w1(n)
v(n) =d2(n)+w2(n)

(9)

with d1(n) and d2(n) two sinusoids with frequency ω0 and
possibly different phases, and w1(n) and w2(n) two additive
mutually independent i.i.d. noises. Hence, d1(n) and d2(n)
both have to satisfy the discrete oscillator model (2).

d1(n) = 2cosω0d1(n−1)− d1(n−2)
d2(n) = 2cosω0d2(n−1)− d2(n−2)

These two signals are filtered using the same BPF to ob-
tain two ”reference” signals x(n) and y(n) that are correlated
with u(n) and v(n), respectively.

Now, the minimization problem can be defined for two
signals. The minimal disturbance principle

min|α(n+1)−α(n)|2 (10)

is used, subject to two constraints

E{x(n)} = 2α(n+1)E{x(n−1)}−E{x(n−2)}
E{y(n)} = 2α(n+1)E{y(n−1)}−E{y(n−2)} (11)

i.e., both x(n) and y(n) have to satisfy the discrete oscillator
model with the updated coefficient α(n+1).

The minimization problem (10) under the constraints
(11) can be solved using the method of Lagrange multipli-
ers with the cost function J2, which is defined as

J2 = [α(n+1)−α(n)]2

+ λ1E{x(n)−2α(n+1)x(n−1)+ x(n−2)}
+ λ2E{y(n)−2α(n+1)y(n−1)+ y(n−2)}

(12)

Setting ∂J2/∂α(n + 1) = 0, the optimal solution is ob-
tained as :

αL(n+1) = αL(n)+
E{x(n)−2αL(n)x(n−1)+ x(n−2)}

4E{x(n−1)}
+

E{y(n)−2αL(n)y(n−1)+ y(n−2)}
4E{y(n−1)}

(13)

Replacing the expectations by their instantaneous esti-
mates and multiplying the variation terms by small positive
coefficients μ1 and μ2, we obtain the coefficient-updating al-
gorithm.

α(n+1) = α(n)+ μ1
[x(n)−2α(n)x(n−1)+ x(n−2)]

4x(n−1)

+ μ2
[y(n)−2α(n)y(n−1)+ y(n−2)]

4y(n−1)
(14)

The contributions to the parameter update of the two in-
put signals are completely decoupled. The values of the step-
sizes μ1 and μ2 depend on the noise levels in the input sig-
nals.

4. PERFORMANCE ANALYSIS

4.1 Bias analysis

The coefficient-updating algorithm (14) can be rewritten as

α(n+1) =α(n)+ μ1

{
x(n)−2α0x(n−1)+ x(n−2)

4x(n−1)

}

+ μ2

{
y(n)−2α0y(n−1)+ y(n−2)

4y(n−1)

}

+(
μ1 + μ2

2
)[α0 −α(n)]

(15)

with

E{x(n)−2α0x(n−1)+ x(n−2)}= 0
E{y(n)−2α0y(n−1)+ y(n−2)}= 0

(16)

As shown in [10], the intercorrelation between the de-
nominators and numerators in (15) is very small, such that
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the expectations of the ratios can replaced by the ratios of
the expectations. As the contribution of the two signals is
completely decoupled, the bias analysis performed in [10]
can be applied unchanged. Like the original algorithm, the
two-signal extension is unbiased.

4.2 Variance analysis

To analyze the variance of α(n), we assume that α(n) → α0
and rewrite the coefficient-updating algorithm (14) as

α(n+1) = (1− μ1 + μ2

2
)α(n)

+ μ1
x(n)+ x(n−2)

4x(n−1)
(17)

+ μ2
y(n)+ y(n−2)

4y(n−1)

≡ (1− μ1 + μ2

2
)α(n)+

μ1

2
x̃(n)+

μ2

2
ỹ(n)

where x̃(n) = [x(n)+ x(n− 2)]/x(n− 1) and ỹ(n) = [y(n)+
y(n− 2)]/y(n− 1). α0 is subtracted from both sides of the
equation and we have :

αd(n+1) = (1− μ1 + μ2

2
)αd(n)+

μ1

2
x̃d(n)+

μ2

2
ỹd(n)

(18)
where αd(n) ≡ α(n)−α0, x̃d(n) ≡ x̃(n)−α0 and ỹd(n) ≡
ỹ(n) − α0. All three signals are zero mean when the al-
gorithm converges. As in [10], x̃ d(n), ỹd(n) are assumed
to be respectively uncorrelated with αd(n) for small step
sizes μ1 and μ2. Additionally, near convergence, x(n) �
Ax cos(ω0 + φ1) and y(n) � Ay cos(ω0 + φ2), with φ1 and φ2
two phase terms originating from the possible phase shifts of
d1(n) and d2(n) in (9) and the phase response of the BPF. A
simple but tedious computation shows that E[x̃(n)ỹ(n)] = 0
under the hypothesis (already used) that the numerators and
denominators defining x̃(n) and ỹ(n) are uncorrelated. So the
autocorrelation function of αd(n), denoted as Rαd (m), can be
evaluated at m = 0 from (18) as :

Rαd (0) =
1

μ1 + μ2− (μ1+μ2)2

4

(
μ2

1

4
Rx̃d (0)+

μ2
2

4
Rỹd (0)

)

(19)
since all cross-terms are null.

Using for Rx̃d and Rỹd the result obtained in [10], we ob-
tain for Rωd (0) :

Rωd (0) ≈ Rαd (0)
sin2 ω0

≈C(μ1; μ2)
(

μ2
1

4
F(SNRu;β )+

μ2
2

4
F(SNRv;β )

)

where

F(SNR;β ) =
1
6

Δω3
neq

SNR+2Δωneq
)

C(μ1; μ2) =
1

μ1 + μ2− (μ1+μ2)2

4

with Δωneq = π((1−β )/(1+β )) the noise-equivalent band-
width of the BPF (3).

The values of the update coefficients μ1 and μ2 are typi-
cally very small and it is easy to show that the dependence of
the variance upon them becomes approximately linear. If the
SNR difference between input signals is important, it is sim-
ple to adjust the corresponding update coefficient to reduce
the estimation variance.

Note that if the input signals u(n) and v(n) have the same
properties in term of signal to noise ratio, Rx̃d = Rỹd and we
can take μ1 = μ2 = μ , so (19) becomes :

Rαd (0) =
1
2

μ
2− μ

Rx̃d (0) (20)

i.e., the variance of the estimated frequency of the two-signal
extension is reduced by a factor two, compared to the OSC-
LM ANF algorithm [10]. As μ is typically small, the vari-
ances for both algorithms are approximately proportional to
the update coefficient μ . Since they are LMS-type algo-
rithms, their convergence times are proportional to the in-
verse of μ . Thus, for the same value of the variance of the
estimated frequency, the update coefficient μ can be taken
twice as large in the two-signal extension, which results in a
convergence time twice smaller.

5. SIMULATION RESULTS

In the simulations, noise levels are the same in the two input
signals, so we set μ1 = μ2 = μ in formula (14).

The bias and the variance of the estimated frequency have
been evaluated for the algorithm proposed in [10] and for
the two-signal extension of the algorithm. Two sinusoids
(ω0 = 0.2π) embedded in white noise are used as input sig-
nals for the two-signal extension of the OSC-LM ANF. The
first signal is also used as the input signal for the standard
(one signal) OSC-LM ANF. The bias and the variance of
both algorithms are computed over the last 1500 estimated
frequency values and averaged over 1000 runs. The step size
μ = 0.01, and the BPF bandwidth β = 0.9 were the same for
both algorithms.
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Figure 2: Bias comparison between OSC-LM ANF and its
two-signal extension for different SNR values (β = 0.9, μ =
0.01, ω0 = 0.2π).

Problems of numerical ill-conditioning can appear in the
computation of the coefficient update algorithm (14) if the
denominator becomes very small. To avoid this, as done in
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[10], the updating formula (14) is modified to

α(n+1) = α(n)

+
μ
2

[x(n)−2α(n)x(n− 1)+ x(n−2)]
sign[x(n−1)]|Ax(n)|

+
μ
2

[y(n)−2α(n)y(n− 1)+ y(n−2)]
sign[y(n−1)]|Ay(n)|

(21)

with

Ax(n) =ax(n−1)+Ax(n−1)
Ay(n) =ay(n−1)+Ay(n−1)

(22)

where a is a small constant and sign[·] is the sign function.
Multiplying sign[x(n−1)] ensures the correct direction of the
corrections and the recursive estimations (22) prevent prob-
lems due to small values of x(n−1). For the simulations, the
value of the parameter a was the same for both algorithms,
that is, 0.005. It is clear that the value of a has an influence
upon the convergence characteristics of both OSC-LM ANF
and its two-signal extension.

As shown in figure 2, there is no significant difference
between the two algorithms from the viewpoint of bias. It is
very small, which is in agreement with the theoretical analy-
sis and confirms that the algorithms are unbiased.
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Figure 3: Variance comparison between OSC-LM ANF and
its two-signal extension for different SNR values (β = 0.9,
μ = 0.01, ω0 = 0.2π).

Figure 3 shows that the variance of the two-signal ex-
tension of the OSC-LM ANF is significantly smaller. The
twofold reduction obtained in the analytical analysis (19) of
the algorithm is valid for high SNR values. If the SNR is
low, the two-signal extension of the OSC-LM ANF has also
a smaller variance, but the gain is reduced.

Note that the convergence rate of both algorithms is sim-
ilar under the same conditions. The algorithm was initial-
izated with a frequency ω(0) = 0.6π . Figure 4 shows the
first 1000 samples averaged over 1000 runs for an initial con-
dition ω(0) = 0.6π and a SNR = 5 dB.

Figure 5 shows the evolution of the variances with re-
spect to the update coefficient μ . One indeed observes that
the two-signal extension yields a smaller variance (although
with a ratio a bit larger than 0.5). This confirms the analysis
presented in section 4.2. Also, our affirmation concerning the
gain in convergence time is confirmed in figure 6, where the
averaged convergence curves (1000 runs for an initial condi-
tion ω(0) = 0.4π and a SNR = 5 dB) for the OSC-LM ANF
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Figure 4: Convergence comparison between OSC-LM ANF
and its two-signal extension for an SNR value of 5 dB (β =
0.9, μ = 0.01).
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Figure 5: Variance comparison between OSC-LM ANF and
its two-signal extension for different μ values (β = 0.9,
SNR = 5 dB, ω0 = 0.2π).
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Figure 6: Convergence comparison between OSC-LM ANF
and its two-signal extension for an SNR value of 5 dB (β =
0.9).
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algorithm and its two-signal extension for respective values
of μ corresponding to the same variance are plotted.

6. CONCLUSION

On the basis of a recently proposed adaptive frequency es-
timation algorithm, we have developed an algorithm able to
track the frequency of a sinusoidal component common to
two signals. The theoretical analysis of the new algorithm
showed that it is unbiased. Moreover, for the same noise level
and the same convergence speed, the two-signal algorithm
was showed to yield a smaller estimation variance. These
results were confirmed by Monte Carlo simulations for high
SNR values. In the future we intend to implement this two-
signal concept to other frequency tracking schemes.
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