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ABSTRACT

Real-world deployment of unimodal and multimodal biometric
systems often have to contend with degraded signal quality and er-
ratic behaviour of the biometric data being modelled. We review
approaches that have been used to extract additional information
about the biometric data that can then be used to improve perfor-
mance in degraded conditions, with a special emphasis on speech
(where we present new approaches for signal quality estimation in
biometric verification), face, fingerprint, and signature modalities.
We also present approaches that do not depend on specific modal-
ities, including new user-model based quality measure. We show
how this information can be used in a unimodal and multimodal
context, and we perform objective evaluation of quality measures
on multimodal benchmarking databases.

1. INTRODUCTION

The scale of deployment of biometric identity verification systems
has recently increased dramatically, with the progressive introduc-
tion of biometric passports and the burgeoning of the biometric in-
dustry. Biometric technology has been moving out of the laborato-
ries into the real world, where a new set of constraints raises difficult
technical issues. One of the main problems facing biometric recog-
nition systems in large-scale deployments is error rates, since even
low error rates will incommode an objectively large fraction of the
population. One key route of addressing errors is the use of qual-
ity measures, which we define asinformation that helps assess the
probability that a biometric verification decision is correct.

The importance of quality measures in biometric verification
is now being increasingly recognized, with specialized workshops
organized (e.g. NIST Biometric Quality Workshop) and standard-
ization under way (for instance ANSI/INCITS 379 and ISO/IEC
19794-6 for the iris modality).

To be useful in automated biometric authentication systems,
quality measures should be statistically correlated with the classi-
fier output scores and classifier decisions [19, 26]. They constitute
additional information about the classification process that can be
modeled appropriately. From a machine learning perspective, these
quality measures are features, that can be for instance be fed to a
second-level classifier or be concatenated to the base feature vector.

We provide a classification of the different types of errors in
biometric verification (Section 2) and propose a taxonomy of qual-
ity measures (Section 3). In Section 4 we review existing modality-
independent quality measures and propose two new user model-
based quality measures that can be used with statistical models in-
dependently of the modality. Section 5 reviews modality-dependent
quality measures and proposes three quality measures that can
be used in speaker verification. Section 7 provides a systematic
overview of the issues associated with the use of quality measures
in biometric verification. We perform experiments on the presented
quality measures in Section 8, and conclude in Section 9.

2. WHY DO BIOMETRIC VERIFICATION CLASSIFIERS
MAKE MISTAKES?

We distinguish three types of classification errors in biometric
identity verification:systematic, presentation-dependent, anduser-
dependent.

Systematic errorsare those caused by design problems inherent
to the pattern recognition system engineering task. These include
wrong assumptions about the form or family of the distributions
of features under consideration, poor choice of features leading to
excessive overlap between classes, insufficient amount of training
data, poor estimation of model parameters (for example insufficient
number of iterations, or aggressive variance flooring), or inadequate
decision threshold setting.

Presentation-dependent errorsare those caused by unforeseen
variability in the signal source. These can be caused by degraded
environmental conditions (e.g. ligthing variation for face, specu-
lar reflection for iris, additive noise or channel noise for speech,
residual fingerprints traces), or by extra variability in a signal (e.g.
elastic skin distortion for fingerprints, expression of the face, badly
executed signature)

User-dependent errorshappen only with certain users that do
not fit the otherwise correct assumptions about the user population.
This is a well-known problem in biometrics, and one of its incar-
nations in speaker recognition tasks is called the “Doddington Zoo
effect” [8].

The goal of developing quality measures is to find quantities
that are indicative of these three types of errors.

3. A SHORT TAXONOMY OF QUALITY MEASURES

Quality measures can bemodality-dependentand modality-
independent. Modality-dependentmeasures (such as “frontalness”
in face recognition) are not applicable to other modalities, as they
exploit specific domain knowledge that can not be transferred to
other signals.Modality-independentquality measures (such as dis-
tance to decision threshold) are more generic and can be exploited
across different modalities.

Quality measures can beabsoluteor relative. Relativequality
measures need reference biometric data, and output a comparison
to this reference data taken as a “gold standard” of quality. For in-
stance, correlation with average face is a relative measure of quality.
Absolutemeasures do not need reference data, except for initial de-
velopment of the algorithm. A hybrid approach can also be used,
whereby an absolute quality measure is extracted and further nor-
malized by some function of the quality of enrollment data [10]).

Lastly, quality measures can be extractedautomatically, or
hand-labeled(as in [10]). In this paper we consider only automati-
cally extracted quality measures.

4. MODALITY-INDEPENDENT QUALITY MEASURES

Keeping in mind that the goal of quality measures is to help pre-
dict verification errors, we can use some information that does not
directly depend on the underlying signal properties. Here we re-
view three approaches that are generic enough to be used with many
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modalities and classifiers, though each approach may need to be
adapted to fit different classifier families.

4.1 Score-based measures

Many classifiers provide a continuous-valued output (measurement-
level) indicating how close a particular sample is to a particular
class, a quantity calledscorein biometrics. The probability of clas-
sification error increases as the distance gets closer to the decision
boundary between classes. This “soft” classifier output, and its dis-
tribution (which can be modeled in several ways, see Section 7.1),
constitute valuable data for error prediction, and are applicable to
any biometric modality whose classifier produces a non-discrete
yield output. The use of the score as a quality measure forms the
basis of many confidence models [11, 23, 3, 25].

Quantities derived from the score are also used, for instance
variance of the score (provided by human expert knowledge of the
problem domain) and distance from normalized score to “hard”
(decision-level) classifier output (assuming the classifier decisions
are the integer extremal points in the score interval, which is typi-
cally [0,1]) [4]. Indeed, the distance from the score to the decision
threshold constitutes a quality measure: it is more probable that
the classifier will make a mistake if a score is close to the deci-
sion boundary, as noise alone could have moved that score over the
threshold. This is the idea behind the method of margins [25].

The distance from user-specific to user-independent decision
threshold can be used as a quality measure. In a verification sys-
tem with a user-independent threshold1, some users will be more
systematically subjected to false rejects, respectively false accepts,
than others. Combining this quality measure with the score qual-
ity measure simplifies the subsequent classification or regression
task [26].

4.2 User model-based quality measures

Information about the user models can be used to detect systematic
errors.

First, the closer (in feature space) the user models are to the
impostor models, the more likely it is that the classifier will make an
error. Thus, an estimate of the “amount of overlap” between the user
models and the impostor models in feature space can be used as a
quality measure. A method of estimating the amount of overlap for
Vector Quantization and Gaussian Mixture Models (GMM) is used
for speaker recognition in [14]. In [16] a sum of log-likelihoods for
client model and the world model is used as a quality measure of
face images. This measure encodes the divergence of the test image
quality from the reference quality of the images from the training
gallery.

Second, parameter estimation errors can be taken into account.
In the case of statistical models such as GMMs, the distance (like-
lihood) computation rests upon the Mahalanobis distance between
the user’s model (mean vectors, covariance matrices, and mixing
coefficients) and the biometric pattern. The Mahalanobis distance
is expressed as follows:

dMahal = (o−µ)′Σ−1(o−µ) (1)

As can be seen from Eq. (1), this distance requires an inver-
sion of the covariance matrixΣ. Because this covariance matrix
is typically estimated from a limited amount of data using a maxi-
mum likelihood procedure, it may be ill-conditioned, meaning that
the quality of inversion will be low, which in turn entails errors in
the Mahalanobis distance computation. We can therefore use the
logarithm of the determinant of the covariance matrix of a Gaussian
mixture component as a quality measureQMldet. If the determinant
for a covariance matrix is close to zero, the matrix may be badly
conditioned. Another quality measure to use is the logarithm of the
condition number, which is the ratio of the largest singular value in
a matrix to the smallest singular value. A large condition number
indicates an ill-conditioned matrix. We denote this quality measure

1For instance because it has recently been deployed and thereis not
enough data for each user to reliably set a personalised threshold.

asQMlcond. For both quality measures, we take a weighted sum of
the quality measures over all Gaussian mixture components, where
the weights are provided by the mixing coefficients of each mixture
component.

5. MODALITY-DEPENDENT (SIGNAL-DOMAIN)
QUALITY MEASURES

5.1 Speech quality measures

5.1.1 Measures based on voice activity detection

Voice activity detection (VAD), also called speech/pause segmenta-
tion, can be used to obtain an estimate of the signal-to-noise ratio.
This is done by assuming the average energy in pauses represents
the noise energy, and the energy in speech represents the signal en-
ergy. The formulation for this family of speech-based quality mea-
suresQMVAD is:

QMVAD = 10log10
∑N

i=1 Is(i)s2(i)

∑N
i=1 In(i)s2(i)

, (2)

where{s(i)}, i = 1, . . . ,N is the acquired speech signal containing
N samples,Is(i) andIn(i) are the indicator functions of the current
samples(i) being speech or noise during pauses (e.g.Is(i)=1 if
s(i) is a speech sample,Is(i)=0 otherwise) as reported by the voice
activity detector.

In [29] an energy-based VAD and a spectral entropy-based VAD
are used, but any robust VAD algorithm can be used for that purpose
(e.g. [22]).

5.1.2 Measures using higher-order statistics

Since the amplitude of clean speech has a very distinctive distribu-
tion (sharp peak at sample value 0 - a large amount of speech is
actually silence if no VAD preprocessing is applied), we can exploit
this knowledge to infer when the signal is noisy. The energy of the
additive noise we are concerned about contributes to modifying the
time-domain distribution of amplitudes.

Higher order statistics can be used to summarize the shape
of unimodal distributions in a meaningful way. The skewness (or
Fisher skewness) measures the asymmetry of a distribution with re-
spect to its mode. Any symmetrical distribution (such as Laplace,
Gaussian, or uniform) has a skewness of 0. Negative skewness in-
dicates that the distribution has a longer tail on the left of the mode,
while positive skewness indicates the opposite.

QMskew=
E[s−µs]

3

E[s2]
3/2

=
E[s−µs]

3

σ3
s

(3)

Kurtosis (or Fisher kurtosis), defined in Eq. (4), corresponds
to the “peakiness” of the distribution. By definition, a Gaussian
distribution has a kurtosis of 32. A leptokurtic (or supergaussian)
distribution has a kurtosis higher than 3 and is “peakier”, while a
platykurtic (or subgaussian) distribution has a kurtosis lower than 3
and is “flatter”, that is its probability density is spread over a larger
dynamic input range.

QMkurt =
E[s−µs]

4

E[s2]
2 =

E[s−µs]
4

σ4
s

(4)

Unfortunately, kurtosis estimation is very sensitive to outliers.
We therefore introduce a third related measure, called the center bin
measure, to approximate kurtosis and estimate the peakiness of the
distribution. First, the signal sample amplitudes are binned in 100
equally-spaced bins, then the measure is defined as the ratio of the
number of samples in the bin containing the most samples to the
total number of samples in the other bins.

QMbin =
Nmax(s)

(

∑B Nb(s)
)

−Nmax(s)
, (5)

2Or 0, as some definitions of kurtosis subtract 3 to have kurtosis of 0 for
the normal distribution
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whereNb(s) represents the number of samples in binb, andNmax(s)
represents the number of samples in the bin that contains the most
samples.

5.1.3 Measures based on an explicit noise model

A statistical model of noise can be built during enrollment and then
compared to the deployment conditions [31], thus forming a relative
quality measure.

5.2 Face quality measures

In comparison with other modalities, relatively few works on auto-
matic face quality measures are present. In [17] adversely illumi-
nated face images are segmented using statistical methods, and the
face image area left after segmentation is used as a quality measure
that helps find an optimal decision threshold. A more systematic
approach towards the use of quality measures for face verification
has been reported in [18], where two face quality measures are used
as evidence in the process of reliability estimation. Those quality
measures are image contrast (QMf 2), and normalized 2D correla-
tion with an average face template (QMf 1).

5.3 Fingerprint quality measures

The fingerprint modality is the biometric modality for which most
signal quality estimation algorithms have been developed. A recent
review of the state-of-the art fingerprint quality measures is given in
[1]. The authors divide the automatic fingerprint quality measures
into local, global, and ’based on classifiers’ groups. Actually, it
must be noted that the quality measures baptized as ’based on clas-
sifiers’ are measuring the separation between the match and non-
match fingerprint feature distributions and as such are not strictly
modality-specific, falling into the category described in Section 4.
This method has been used in the publicly available quality measure
estimation module NFIQ of the NIST/NFIS2 fingerprint verification
package [32].

5.4 Signature quality measures

For signature, no signal degradation is present and the modality-
independent quality measures described in Section 4 can be used.

6. EVALUATING QUALITY MEASURES

Since one aim of using quality measures is to predict verification
errors, one important way of looking at quality measures is to plot
their distributions with respect to two classes: the class of correct
classification decisions, and the class of incorrect classifications,
which we denoteDR= 1 (Decision Reliable) andDR= 0 respec-
tively.

In [15] Koval et al. have proven that dependent features allow
for better class separation than independent features. Therefore,
quality measures that are statistically dependent on the features or
scores are expected to allow for better class separation than features
or scores alone [19]. The intuitive graphical interpretation of this
fact can be seen in Figure 1. Consequently, quality measures can be
evaluated by measuring their statistical dependence on the scores.
Under the assumption of linearity this dependence can be estimated
by computing the correlation coefficient between the quality mea-
sures and scores. Additionally, the linear correlation coefficient be-
tween theDRvariable and the value of the quality measure gives an
indication of the ability of the quality measure to predict errors.

It is also possible to use the mean squared Mahalanobis distance
between the distributions of each quality measure for the correct
classifier decision and erroneous classifier decision cases. Higher
Mahalanobis distance between the distributions for correct and er-
roneous decisions distributions indicates the quality measure is a
good predictor of classifier errors, but sports an implicit Gaussian
assumption about the distributions.

Another objective measure of goodness for quality measures is
normalized cross-entropy [24] (normalized mutual information). It
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Figure 1: Relationship between scores and quality measures and
the impact of their statistical dependence on class separation. El-
lipses symbolize two dimensional class-conditional distributions in
a space defined by quality measures and scores: a. for independent
quality measures and scores and b. for linearly correlated quality
measures and scores.

can be phrased as the “relative decrease in uncertainty about the
classifier’s decision provided by the quality measure”.

An important point is that the ultimate evaluation for a quality
measure is to apply it to a biometric verification task dataset and
see if it leads to improvements in terms of final error rate or rejec-
tion rate. While a quality measure may seem to poorly separate the
error-conditional distributions, as pointed out by a low Mahalanobis
distance, there may still exist a classifier which can make good use
of the quality data.

7. USING QUALITY MEASURES IN BIOMETRIC
VERIFICATION

7.1 Modeling quality measures

Quality measures can be modeled using generative or discriminative
training paradigms, with parametric or non-parametric models. The
aim in this case is to build a second-level classifier that can provide
additional information on the reliability of the biometric verification
result, or to improve classification accuracy directly. We give here
a short overview of model families that have been used.

A second-order regression model is used for speech in [14]. A
single Gaussian distribution has been used in [11, 23] for speech
and [3] for speech and face. A Bayesian network with Gaussian
distributions has been used in [28, 20] respectively for speech, and
speech and face and in [29] with mixtures of Gaussian distributions
for speech data. A multi-layer perceptron is used in [6] on a speaker
recognition task. A kernel-based modeling approach is taken for
the margins confidence estimation method [25]. Non-parametric
modeling of scores has been used in [3], where a histogram-based
method for speech and face is presented.

Ensemble classifiers are also used to model quality measures,
for instance random forests have been used in [26] to improve clas-
sification accuracies of speaker verification and signature classi-
fiers, and to perform multiple classifier fusion on signature data.

7.2 Single classifier systems with quality measures

In the unimodal context, the output of a model including quality
information can be used for either automatic processing (such a
matching algorithm choice [12]) or human consideration (such as
forensic expertise [6]). Quality measures have been shown to pro-
vide evidence for computing the reliability of classification deci-
sions which can in turn be used to discard unreliable decisions [18]
and request a repeated acquisition [28]. Quality measures can also
play an integral role in the classification process and can be used
directly as a classification feature for a stacked classifier ensemble,
like in theQ-stackapproach [19]. The latter approach is taken for
the evaluation of quality measures presented in Table 1.

©2007 EURASIP 181

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



7.3 Multiple classifier systems with quality measures

In recent years, the essential contribution of quality information to
the fusion of multiple classifiers has been increasingly acknowl-
edged. For multiple classifier systems the use of quality measures
can be divided intoheuristicandstatisticalmethods.

The heuristicmethods embody an intuitive notion that if two
classifiers arrive at a decision at unequal confidence levels, the
more confident classifier should be trusted more. For multimodal
biometrics this rule translates into trusting a modality for which
a higher-quality signal is available. Examples of heuristic fusion
schemes with quality measures include quality-based decision and
score weighting approaches [20] The performance of the heuristic
methods depends on how accurate the heuristics is in each particular
case, but they can be applied to unseen data.

Thestatisticalmethods learn the impact of the quality measures
on classification errors from available training data with associated
quality labels. Examples of classifier fusion schemes in biometrics
include [10, 25], as well as [30] for classifier selection in face recog-
nition. For multiple classifier systems, the quality information can
also be employed in theQ-stackscenario [19], and in therigged
majority votingapproach [26]. The applicability of the statistical
methods hinges on the availability of the relevant data. Namely,
sufficient training data of quality compatible with that encountered
during testing must be available in order to accurately model the de-
pendencies between quality measures and scores. In general, given
sufficient and relevant training data the statistical methods outper-
form the heuristic methods [19].

Fusion of speech and fingerprint using (hand-labeled) signal
quality measures is shown in [4], resulting in classification improve-
ment if the fingerprint signal quality is taken into account. A speech
quality measure based on an explicit noise model is used to weight
the contribution of a speech expert to a speech and face multimodal
system, achieving good results in degraded acoustic conditions [31].
Fusion of fingerprint and speech making use of fingerprint quality
measures with polynomial regression models achieved about 2% re-
duction in error rates compared to the baseline fusion method with-
out quality measure [33].

7.4 Using several quality measures

To obtain better modeling of error conditions, quality measures can
be combined. For example, the score quality measure by itself may
not lead to very high accuracy in recognizing errors, but combining
it with the distance to a decision threshold yields much better re-
sults [26]. Likewise, adding an entropy-based quality measure for
speech helps compensate the deficiencies of energy-based quality
measures in high noise situations [29]. In face verification, combin-
ing several signal quality measures also improves the estimation of
reliability [18].

Lastly, some quality measures are themselves an arithmetic ag-
gregate of other quality measures, that each take into account a dif-
ferent aspect of the signal [13, 21].

8. EXPERIMENTS

We compute quality measures for all modalities on various refer-
ence databases and report on their intrinsic performance. We then
train second-level stacking classifiers (Gaussian mixture models,
instance-based classifiers, or decision-tree based classifiers) on two-
dimensional feature vectors comprising of the score and the quality
measures, and report on the decrease in error rate compared to the
baseline. When no fusion protocol is specified with the database,
we perform 10-fold cross validation.

8.1 Databases and systems

The database used for speech experiments is BANCA [2]. The clas-
sifier used for speaker verification is a GMM based on the ALIZE
toolkit [5], trained following BANCA protocol P.

Face results are given for the BioSec database [9], a PCA/LDA-
based classifier, and quality measures described in detail in [18].

QMf 1 is the correlation coefficient with an average face template,
andQMf 2 is an image contrast measure.

Fingerprint results are computed for the BioSec database [9],
optical sensor. Scores computed using the NFIS2 system [32], qual-
ity measures:QMf p1 andQMf p2 as described in [7],QMNFIQ com-
puted by theNFIQ quality measure routine, native to the NFIS2
package.

Signature results are given using a 2-components Gaussian mix-
ture model classifier with diagonal covariance matrices. 12 global
features are used [27] (for space reasons, results for a classifier
based on local features are not shown here). The database used
for signature experiments is the MCYT-100 database.

8.2 Results

Quality measure ρD ρSc dMahal ∆HTER[%]
Speech (baseline HTER: 8.4 %)

QMVADE 0.141 0.149 0.98 27.7
QMkurt 0.081 0.151 6.80 11.0
QMskew -0.074 0.026 2.25 34.2
QMbin 0.08 0.132 1.22 26.0

QMVADH 0.1273 0.125 0.83 34.2
Face (baseline HTER: 25.6 %)

QMf 1 0.303 0.363 899.58 18.7
QMf 2 -0.203 -0.110 325.42 3.1

Fingerprint (baseline HTER: 0.6 %)
QMf p1 0.017 0.132 7.07 22.2
QMf p2 0.117 0.188 14.73 21.2

QMNFIQ -0.031 -0.082 7.912 23.6
Signature (baseline HTER: 19.0 %)

QMldet 0.053 -0.033 1.14 21.0
QMlcond -0.041 0.076 1.082 27.4

Table 1: Linear correlation coefficient between the decision correct-
ness indicator (DR) and the quality measure (ρD) and between the
quality measure and the score (ρSc), mean squared Mahalanobis dis-
tance (dMahal) between theDR-conditional distributions of quality
measures, and relative reduction in HTER∆HTER, in percentage.
Here, the error rates of baseline systems are compared to results
obtained using theQ− stackmethod. The modalities are speech
(BANCA G2 data), face (BioSec data), fingerprints (BioSec data),
and signature (MCYT100 data)

9. CONCLUSION

We have presented a systematic classification of the types of qual-
ity measures currently used in biometric identity verification, and
evaluated modality-independent quality measures. The results high-
light the importance of performing experimental evaluation of qual-
ity measures in the context of their use: while indicators of per-
formance such as those presented in Section 6 provide an use-
ful overview into the inherent usefulness of the quality measures,
the decision boundaries of a feature space including quality mea-
sures are often too complex to be accounted for by simple mea-
sures such as correlation coefficients. We have introduced new
modality-dependent quality measures that can be used in speaker
verification, as well as new modality-independent quality measures
accounting for some deficiencies of the parameter estimation pro-
cess in statistical models. These constitute valuable information for
second-level classifiers to improve upon the baseline results, as was
demonstrated by an application to signature models. Using both
modality-dependent and modality-independent quality measures is
likely to improve classification accuracy even further, as the infor-
mation contained in these two types of measures is weakly interde-
pendent.
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