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ABSTRACT

The issue of resolving manifold ambiguities in subspace—
based Direction Finding (DF) systems is investigated in this
paper. The cause of manifold ambiguities is due to linear
dependence amongst manifold vectors. When an ambiguous
situation occurs, subspace—based DF techniques fail to cor-
rectly identify a unique set of Directions—of—Arrival (DOA).
This causes a performance degradation due to unreliable es-
timates of the parameters. In spite of the fact that there are
infinitely many ambiguous scenarios in an array system, the
problem in resolving manifold ambiguities has received very
little attention. In this paper, two novel techniques are pro-
posed, aiming at improving the DOA identification capabil-
ity, while maintaining a minimum computational complexity.
The proposed techniques adopt a beamforming class based
on the Minimum Variance Distortionless Response (MVDR)
criterion to estimate signal power, which is a measure for
identifying the presence of a signal. Simulation results show
the improved performance in terms of the identification ca-
pability over the previously proposed model fitting method.

1. INTRODUCTION

When estimating Directions—of—Arrival (DOA) in subspace—
based Direction Finding (DF) systems, it is important that a
unique and consistent set of solutions is obtained. In general,
signals from different sets of DOA give different responses
to a sensor array (i.e. different manifold vectors.) However,
when this mapping is not one—to—one, a confusion is caused
to decide which directions the signals were actually impinged
from. This undesirable behavior is known as “manifold am-
biguity.”

By definition, manifold ambiguity is the inability of an
array to distinguish a set of directions from at least one of
its subsets (or one subset from another) due to linear de-
pendence amongst manifold vectors [1]. Ambiguity is of-
ten categorized based on the rank of the manifold matrix.
Rank—1 ambiguity (also known as trivial, ambiguity) occurs
when there exists a manifold vector that is a scalar multiple
of another [2]. Meanwhile, rank—k ambiguity (or non—trivial
ambiguity) occurs when there exist / manifold vectors that
are linearly dependent and no lower rank ambiguity existed
amongst them.

Previously most researches in the area mainly focus on
the performance analysis of specific arrays, or on the design
of an array free of ambiguities up to a certain rank. In [3],
Baygun and Tanik showed that the probability of having triv-
ial ambiguities in a circular array is increased when enlarg-
ing the array’s aperture. In [4], Godara and Cantoni derived
a condition for an array to be free of rank—1 ambiguity. Tan
et al. [5] extended the work of [4] and proposed a condition
for an array to be free of rank—2 ambiguity. In [6], Tan et al.
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constructed a class of cross arrays that are free up to a certain
rank.

On the other hand, Proukakis and Manikas analyzed the
ambiguity problem from a different perspective based on the
differential geometry of the array manifold. A crucial find-
ing was that, in practice, there are infinitely many ambiguous
scenarios in array systems, which can be represented in the
form of an Ambiguous Generator Set (AGS). This concept
was extended to planar arrays in [7].

Although it has been shown that manifold ambiguities are
unavoidable in practice, the issue of resolving ambiguities
has received very little attention.

In this paper, two novel techniques are proposed aiming
to improve the DOA identification capability. The organiza-
tion for the rest of the paper is as follows. In Section 2, the
problem formulation is introduced, followed by a review of
existing ambiguity resolving techniques. In Section 3, two
novel techniques based on a beamforming approach are pro-
posed. Simulation results are presented in Section 4 to ex-
amine the identification capability. Finally, the paper is con-
cluded in Section 5.

2. PROBLEM FORMULATION

Consider an array system of N elements, located at
[r,ry 1] € RNV*3 (where r,. I, and r are column vectors con-
taining the position of the elements respectively) receiving
M co—channel signals from narrowband point sources. The

basedband received signal vector x(¢) = [x;(¢),...,xy(t)] €
V1 can be expressed as
x(t) =Sm(t) +n(t) e))

where m(z) is the vector of M message signals, n(z) is the
additive noise with covariance matrix 0'2]IN, and S is the
(N x M) manifold matrix (also known as the array response
matrix) with columns the manifold vectors, i.e.

SE£[5(61,01),5(62,02),...,5(6m,9m) |
Note that each (N x 1) manifold vector S(6;,¢;) represents

the complex array response to a unit amplitude plane wave
impinging from the direction (6;, ¢;), expressed as

§(9i7 (PI) = exp(—j [Kxaﬁy,ﬁz] ]_<(6i7 (Pl))

2

3

where k(6;,9;) = 2z [cos 6; cos ¢, sin B; cos ¢r, sin @] € M3*!
is the wavenumber vector pointing toward the emitter at az-
imuth 6; and elevation ¢;, with 6; measured anticlockwise
from the positive x—axis, and ¢; measured anticlockwise from
the x—y plane.
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Based on the model in (1), the second order statistics of the
received signal vector x(r) can be expressed as

Ryx 2 &{x(1)x" (1)} = SRunS" + 0*Ly “)
where R,y = &{m(t)m" (¢)} represents the source covari-
ance matrix, Iy is the identity matrix, (-) is the Hermitian
(complex conjugate transpose), and &{-} is the expectation
operator. In this work, it is assumed that N > M and the
sensors are isotropic of unity gain.

When Equation (4) is employed the main assumption is
that the manifold vectors forming the matrix S are linearly
independent. Otherwise an ambiguous situation is said to
occur.

Majority of the work regarding resolving manifold ambi-
guities was extensively studied by Abramovich, Spencer, and
Gorokhov through a list of their publications in [8],[9],[10].
Two techniques were proposed based on a matrix—valued
transform of the intersensor covariance matrix R,,, namely
by association and by model fitting techniques.

In the first technique, ambiguity is resolved through an
association of the two sets of MUSIC estimates. The first set
corresponds to the MUSIC spectrum based on the covariance
matrix R,,, that is ambiguous but highly accurate. The sec-
ond set is obtained from the MUSIC spectrum using another
matrix Ty, which is a transformed matrix of R,,. It was
proven that the DOA estimates from this set are asymptoti-
cally Gaussian unbiased, but not very accurate. By associat-
ing these two sets of estimates, the identification capability
is improved [9], [10]. A major drawback of this approach is
due to the computational complexity in obtaining the matrix
T\,,. For instance for a non—integer array the process may in-
volve a non-linear programming routine. The complexity is
increased even further for planar and 3—dimensional arrays.

The second technique, called resolving manifold ambi-
guity by model fitting, is more effective. The approach es-
sentially estimates source powers associated with each of the
estimated directions, including the ambiguous ones. A linear
programming routine is adopted to find the best fit amongst
the set of estimated spatial covariance lags and the source
powers. The powers corresponding to the ambiguous DOA’s
tend to be equal to zero; meanwhile the DOA’s associated
with the M largest powers converge to the true DOA’s. The
disadvantage of this technique is based on the use of linear
programming routines which can be computationally com-
plex for a number of applications.

The objective for this work is to develop novel ambiguity
resolving techniques that satisfy three preconditions. First,
the new techniques should improve the ambiguity resolving
ability in order to increase the correct identification rate. Sec-
ond, the techniques should require a minimum computational
complexity, so that they are feasible to be implemented in
a practical array system. Third, the techniques should be
suitable for any arbitrary array configuration including pla-
nar and 3—dimensional arrays. The proposed techniques are
presented in the following Section.

3. RESOLVING MANIFOLD AMBIGUITIES BY
MVDR BEAMFORMING TECHNIQUE

Similar to the model fitting approach [8], a key parameter to
identify the presence of signals is the signal power. A beam-
former class based on the Minimum Variance Distortionless
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Response (MVDR) criterion is adopted to estimate the signal
powers in this work.

Beamforming is an array processing technique that uses
an array to control the directionality of the radiation pattern.
It aims to separate a desired signal from the co—channel in-
terference and noise. The output of a beamformer is a linear
combination of the received signal x(¢), which can be ex-
pressed as

y(1) = wx(1) (5)

where w = [w1,wa,...,wy]” is a complex weight vector.

MVDR is a class of adaptive beamforming technique
widely used in array processing, where the criterion is to
choose w such that the total output power is minimized.
However, this minimization should be achieved under the
condition that a distortionless array response along the de-
sired direction (6, ¢;) is maintained. That is,

min&{|y(t)]*} subjectto [w”S(6,,04) =1 (6)

The solution of this constraint optimization is found [11] (us-
ing the Lagrange multiplier) and can be expressed as follows

]R;\'l §( eda ¢d)
5" (64, 9a)Rici' S(64, 9a)
Using the weight vector in the Equation (7), the array re-

sponse corresponding to a single signal from the direction
(6:,¢;) is given as

gmvor(6:,9;) = Wity prS(6;, ¢1) (3

It is important to point out that Equation (8) evaluated for
every (6;,¢;) is known as the array pattern.
Two approaches are proposed to resolve ambiguities:

e by observing the array pattern, and

e by estimating the signal powers.

(N

A
Wivpr = Wavpr(64, 9a)

3.1 Array Pattern Observation

The directions of pseudo sources can be identified intuitively
by observing the array pattern. Due to the nature of the
MVDR beamformer, which attempts to minimize the total
output power, nulls are placed to all the directions outside the
“look—direction” that are associated with non—zero energy.
However, the directions corresponding to the ambiguous sig-
nals do not have any energy attached, therefore the MVDR
does not suppress any energy from these directions. In a
manifold ambiguous scenario where a set of (M + M_,,;,) di-
rections are ambiguously identified, the technique intuitively
searches the gain responses amongst the (M + M) points
to identify the pseudo sources. The procedure is summarized
as follows.

1. Form a weight—vector and the corresponding array pat-
tern with mainlobe steered toward direction (6,,¢,),
whered € {1,...,M+ M_,; }, and M, denotes the total
number of the pseudo peaks.

Record the absolute values of the beam responses

gmvpr(6:, ;) fori=1,2,....M + Mypp.

. Select M, directions, which have maximum gain re-

sponses as pseudo source candidates. Note that this set

must exclude the response from the direction (6, ;).

Repeat steps 1-3 for all (M + M,,,;,) directions.

. Based on the sets of candidates selected in each iteration,
do a majority vote to decide the M,,,;, pseudo sources.
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3.2 Power Estimation

Let us now compute a signal power, which is defined as

P=&[[y(0)P] = w" Elx(t)x" (0)lw = wRuw  (9)
Substituting the weight vector given by Equation (7) into
Equation (9) gives,

1
(84, 94) R S(64, 9

The second proposed approach is to use Equation (10) for
estimating the signal power for each of the (M + My,;)
directions. If all the power—estimates outside the look—
directions are completely suppressed, then the M largest
“peaks” will represent the true sources, while the remaining
M_mp lowest powers will be identified as pseudo sources.

Pyyvor(0a,$a) = 7 (10)

It is important to note that the proposed techniques
should not cause any increase in terms of complexity due to
the fact that beamforming process is already well established
in an array system. Even in the case where a different class
of beamformer is employed, the proposed techniques can still
be implemented with a low computational cost. Furthermore,
these techniques are applicable to an arbitrary array configu-
ration.

4. SIMULATION

In this Section, the concept of resolving manifold ambigui-
ties by MVDR beamforming techniques is demonstrated us-
ing a planar array of 5 elements located at

—0.88 —0.59 0.18 059 0.69\"
[reoryr)=| =097 129 -125 —0.69 1.62
i 0 0 0 0 0

an
measured in half wavelengths. Suppose that the array
is operated in the presence of 3 signals with directions
(75°,16.42°),(75°,81.06°), and (255°,61.66°). From the
MUSIC spectrum shown in Figure 1 it is clear that the
number of estimated directions is 4 and not 3. Indeed using
the approach presented in [12] this ambiguity is repre-
sented by the following ambiguous generator set of (8,¢) =

{(75°,16.42°),(75°,81.06°), (255°,61.66°), (255°,10.41°) }

To resolve this ambiguous situation, the proposed tech-
niques are applied. First, four array patterns according
to four different weight vectors are observed. Figure 2
shows the array pattern corresponding to a weight vector
when the look—direction is at (75°,16.42°). The response
gains from the directions (75°,81.06°), (255°,61.66°) and
(255°,10.41°) are 3.526 x 1074, 7.18 x 1073, and 1.3032
respectively. Repeat the same procedure for other weight
vectors. Table 1 summarizes array response gains for each
direction. Based on a majority vote result, it indicates that
the fourth signal from the direction (255°,10.41°) does not
represent a real source and thus can be removed.

The result is confirmed in Figure 3 which shows signal
powers at the output of the beamformer as a function of direc-
tions. The three highest peaks correspond to the true sources.
Meanwhile the lowest estimated power at (255°,10.41°) is
identified as a pseudo source. It is interesting to observe
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Figure 1: A manifoldly ambiguous situation for the planar
array in (11). A pseudo peak at (255°,10.41°) (with a cross)
does not correspond to a real source.

w 18(61,00)[ | [8(6>,02)] [ [8(65,03)[ | [8(6s,04)]
w(01, ) 1.0000 0.0004 0.0001 1.3032
w(6, ) 0.0004 1.0000 0.0003 1.5387
w(63,¢3) 0.0001 0.0003 1.0000 0.8984
w(0Oy,Ps) 0.2673 0.3156 0.1843 1.0000

Table 1: Array patterns according to 4 different weights vec-
tors

that the estimated power at (255°,10.41°) is small, but non—
zero. This is due to a linear dependence amongst a response
from this direction and those from the other three directions.
The values in the last row of Table 1 shows that the gain
responses for the true directions cannot get completely sup-
pressed when the look—direction is at (255°,10.41°). The
presence of power at (255°,10.41°) is, therefore, a result
of power leakage from other directions. Nonetheless, this
power is very small and always less than the powers from the
true directions, so it does not affect the identification.

It must be emphasized that plots of array patterns and
signal powers shown in this paper are for illustrative purpose
only. In practice, only samplings of the responses and powers
according to the (M + M,,,;,) points of directions are to be
evaluated.

The capability of the proposed techniques is now
assessed in a situation where an ambiguous direction is
significantly close to one of the true sources, under a finite
number of snapshots (time samples of the received signal).
The performance is to be compared with the model fitting
method in [8]. In this simulation, sources are assumed to
be uncorrelated, and the number of sources is determined
prior to the estimation. Only a conventional scenario where
a number of sources is less than the number of sensors is
considered in this paper. Thus, consider again the planar ar-
ray described by Equation (11), operating in the presence of
four incoming signals with equal unit powers from (8,¢) =
{(75°,16.42°),(75°,81.06°),(255°,61.66°), (258°,7.00°) }.
This generates an ambiguous peak at the direction
(255°,10.41°), which is approximately 4.5° away from
(258°,7.00°), shown in Figure 4. The noise power G2 is
set to 30 dB below the signal power, and different sizes of
observation intervals L = {30,50, 100} are examined. Using
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Figure 2: Illustration of the array patterns for a weight vector
corresponding to the direction (75°,16.42°).
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Figure 3: A plot of estimated signal powers from the output
of a MVDR beamformer.

the practical covariance matrix

1

7 x(t)x" (1),

M=

Ry =

12)

=1

a set of data is collected over a number of trials, where
(M + M,,,,) highest peaks in MUSIC spectrum correspond
to the specified directions, and no main peaks were merged.
The number of regular trials was set to 5000. Notice a prac-
tical issue on how to determine M,,,;,. For example, there are
several more peaks in Figure 4 that could be considered as
candidate DOA’s. In practice, My, is decided based on a
magnitude threshold on the MUSIC spectrum. The threshold
is set at 60 dB or above for the spectrum in Figure 4. It can
be seen that the lower the threshold is, the larger the M, is
expected.

The criterion examined here is the capability for the pro-
posed techniques to correctly identify and remove the set of
pseudo sources. The probability of correct identification is
defined as the ratio of the number of trials that successfully
resolve the ambiguities over a total number of trials. The
probability of correct identification is shown in Table 2. As
expected, the probability of correct identification is increased
when snapshot size is larger. The proposed MVDR beam-
forming techniques show an excellent ambiguity resolving
capability even when the snapshot size is very small. In fact,
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Figure 4: MUSIC spectrum for the array with 4 sources are
present. The peak at (255°,10.41°) (with a cross) does not
represent a real signal.

no case has been detected where the MVDR power estima-
tion failed to resolve ambiguities.

Table 3 illustrates the average powers and standard devi-
ations for each direction based on the model fitting and the
MVDR beamforming techniques. Notice the output power
from the pseudo source at (255°,10.41°) in the last column
of the Table. The average power found by the beamformer
is slightly larger than that by the model fitting technique,
however it has a significantly small standard deviation. Fig-
ures 5 and 6 show the distributions of powers at the direction
(255°,10.41°) when L = 30 for the model fitting and MVDR
beamformer accordingly. Although, in most trials, the power
estimated by model fitting technique converges to zero (3129
trials out of 5000), the distribution spreads in a wide range.
This is because there were cases where the linear program-
ming failed to converge, and resulted in a large value of pow-
ers. As a result, the estimated power of the pseudo source
was higher than that from one of the true sources, so the tech-
nique fails to identify the correct pseudo source. On the other
hand, the average power by MVDR beamformer is very con-
cise around the mean. The maximum power is found to be
less than 0.5.

Snapshot size (L) 30 50 100
Model Fitting 0.8380 | 0.9050 | 0.9742
MVDR- Pattern | 0.9924 | 0.9996 | 1.0000
MVDR- Power 1.000 | 1.000 | 1.000

Table 2: Probability of correct identification

5. CONCLUSIONS

In this paper, two novel ambiguity resolving techniques
based on the MVDR beamformer were proposed. The first
approach is based on an observation of the array pattern
where pseudo sources are intuitively identified by search-
ing for directions where the gain responses do not get sup-
pressed. The second approach is via an estimation of the
signal power. Simulation results showed the improved per-
formance in terms of identification capability over the previ-
ously proposed model fitting method [8]. The computational
complexity is also kept at minimum as the methods involve a
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(75°,16.42°) | (75°,81.06°) | (255°,61.66°) | (258°,7.00°) | (255°,10.41°)
sample size (L) | avg std avg std avg std avg std avg std
Model Fitting

L=100 0.971 | 0.228 | 0.937 | 0.202 | 0.891 | 0.182 | 1.074 | 0.253 | 0.140 | 0.213
L=50 0.999 | 0.302 | 0.914 | 0.268 | 0.846 | 0.264 | 1.099 | 0.334 | 0.169 | 0.294
L=30 1.031 | 0.358 | 0.912 | 0.322 | 0.784 | 0.327 | 1.091 | 0.452 | 0.204 | 0.374

MYVDR Power

L=100 1.062 | 0.142 | 1.101 | 0.143 | 1.018 | 0.136 | 1.016 | 0.145 | 0.258 | 0.024
L=50 1.041 | 0.196 | 1.087 | 0.201 | 0.995 | 0.197 | 0.992 | 0.190 | 0.256 | 0.036
L=30 1.013 | 0.250 | 1.055 | 0.259 | 0.960 | 0.240 | 0.950 | 0.240 | 0.250 | 0.046

Table 3: Mean (avg.) and standard deviation (std.) of powers estimated by model fitting, and MVDR beam forming techniques.

this goes up to 3129

number of trials

o0 {
m—-— - ‘

power

Figure 5: Histogram of the power distribution at
(255°,10.41°) estimated by the model fitting method, L = 30

one-step calculation, rather than a linear programming rou-
tine.
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