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ABSTRACT 

This paper introduces a new speech enhancement method 

using soft thresholding with a Discrete Cosine Transform 

(DCT) and Empirical Mode Decomposition (EMD) based 

hybrid algorithm. Soft thresholding for DCT-enhancement is 

a powerful method for enhancing the noisy speech signal in a 

wide range of signal-to-noise ratios (S�Rs). However, due to 

the thresholding criteria a significant amount of noise is left 

in the enhanced signal.  EMD is applied here to remove the 

remaining noise components. Due to the frequency charac-

teristics of the intrinsic mode functions (IMFs), the noise 

components are mainly centered in the lower order IMFs. 

Therefore, it is possible to successfully identify and remove 

the remaining noise. The experimental results show that the 

proposed hybrid method is significantly more effective in 

removing the noise components from the noisy speech signal; 

thus giving better results in output S�R and quality com-

pared to recently reported techniques.  

 

1. I�TRODUCTIO� 

Speech enhancement aims at suppressing noise and im-

proving the perceptual quality and intelligibility of speech in 

speech-based human-machine interfaces [1]. Due to its sig-

nificant importance in today’s information technology, many 

methods have been developed for this purpose. Since speech 

signals are nonlinear and non-stationary in nature, the per-

formance of related studies is significantly dependent on the 

analysis method. Although Fourier transform and wavelet 

analysis made great contributions, they suffer from many 

shortcomings in the case of nonlinear and non-stationary 

signals [2].  

The empirical mode decomposition (EMD), recently 

been pioneered by Huang et. al. [2] as a new and powerful 

data analysis method for nonlinear and non-stationary signals 

has made a new and effective path for speech enhancement 

studies. Basically, EMD is a data-adaptive decomposition 

method with which any complicated data set can be decom-

posed into zero mean oscillating components, named intrin-

sic mode functions (IMFs). Such functions give sharp and 

meaningful identifications of instantaneous frequencies. Re-

cent studies have shown that with EMD, it is possible to suc-

cessfully remove the noise components from the IMFs of the 

noisy speech. It is mentioned in [3] that, in case of white 

noise, most of the noise components of a noisy speech signal 

are centered on the first three IMFs due to their frequency 

characteristics. Therefore EMD can be used for effectively 

identifying and removing these noise components. 

Soft thresholding is a powerful technique used for re-

moving the noise components by subtracting a constant value 

from the coefficients of the noisy signal obtained by the ana-

lyzing transformation. However, such type of direct subtrac-

tion results in a degradation of the speech components. 

Unlike the conventional constant noise-level subtraction rule 

[4, 5], a new soft thresholding strategy was proposed in [6]. 

The later one is capable to remove the noise components 

while giving significantly less damage to the speech signal.  

This enables even signals with high SNRs to be processed 

effectively. The results suggest that, although the method 

removes the noise components for a wide frequency range, a 

noticeable amount of noise still remains in the enhanced sig-

nal. The remaining noise looks like random tones and results 

in an irritating sound. Hence further denoising should be 

applied to get rid of this artifact. However, it is not an easy 

task to identify and remove these noise components without 

degrading the speech signal. Due to the frequency character-

istics of IMFs, EMD makes it possible to remove these re-

maining noise components effectively.  

In this paper, we illustrate a hybrid method which will 

include a two-stage soft thresholding: (i) soft thresholding 

with DCT coefficients as a pre-process to remove the noise 

components for a wide range of frequencies, (ii) soft thresh-

olding with IMFs to identify and remove the remaining noise 

components in the enhanced signal from the first stage.  

 

2. EMPIRICAL MODE DECOMPOSITIO� 

The principle of EMD technique is to decompose any 

signal s(t) into a set of band-limited functions Cn(t), which 

are the zero mean oscillating components, simply called the 

IMFs. Each IMF satisfies two basic conditions: (i) in the 

whole data set the number of extrema and the number of zero 

crossings must be same or differ at most by one, (ii) at any 

point, the mean value of the envelope defined by the local 

maxima and the envelope defined by the local minima is zero 

[2]. The first condition is similar to the narrow-band re-

quirement for a Gaussian process and the second condition is 

a local requirement induced from the global one, and is nec-

essary to ensure that the instantaneous frequency will not 

have redundant fluctuations as induced by asymmetric wave-
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forms. Although a mathematical model has not been devel-

oped yet, different methods for computing EMD have been 

proposed after its introduction [7, 8]. The very first algo-

rithm, called the sifting process, is adopted here to find the 

IMFs of the data. 

The sifting process is simple and elegant. It includes the 

following steps: 

 

1. Identify the extrema (both maxima and minima of 

s(t)) 

2. Generate the upper and lower envelopes (u(t) and 

l(t)) by connecting the maxima and minima points 

by cubic spline interpolation 

3. Determine the local mean m1(t)=[u(t)+l(t)]/2 

4. Since IMF should have zero local mean, subtract 

out m1(t) from s(t) to get h1(t) 

5. Check whether h1(t) is an IMF or not 

6. If not, use h1(t) as the new data and repeat steps 1 

to 6 until ending up with an IMF 

Once the first IMF h1(t) is derived, it is defined as 

C1(t)=h1(t), which is the smallest temporal scale in s(t). To 

compute the remaining IMFs, C1(t) is subtracted from the 

original data to get the residue signal r1(t):  ����� = ���� −

����. The residue now contains the information about the 
components of longer periods. The sifting process will be 

continued until the final residue is a constant, a monotonic 

function, or a function with only one maxima and one min-

ima from which no more IMF can be derived [7]. The subse-

quent IMFs and the residues are computed as: 

 

   ����� − 
���� = �����, ⋯ , ������� − ���� = �����     �1� 
 

At the end of the decomposition, the data s(t) will be 

represented as a sum of n IMF signals plus a residue signal, 

which is generally a constant or a monotonic trend: 

 

                         ���� = � 
���� +
�

���
 �����                              �2� 

 
 

 

3. SOFT THRESHOLDI�G FOR DCT SPEECH 

E�HA�CEME�T 

Transform domain speech enhancement methods com-

monly use amplitude subtraction based soft thresholding 

defined by [4, 5]: 

 

               ��� = ����������|��| − ���, � |��| < ��
0                  , #�ℎ%�&��% '          (3) 

 

where �� denotes the standard deviation of the noise, ��  is 
the k’th coefficient of the noisy signal obtained by the ana-

lyzing transformation and ���  represents the corresponding 
thresholded coefficient. Since all the coefficients are thresh-

olded by ��, the speech components are also degraded during 
this process. Giving effective results in the case of low SNR, 

this method cannot be applied for high SNR values, where 

components are mostly the speech signals.  

As reported in [6], soft thresholding technique for DCT 

speech enhancement is effective in denoising the noisy 

speech signal for a wide range of SNR values. The main ad-

vantage of the technique comes from the new soft threshold-

ing strategy which enables even signals in high SNR envi-

ronments to be enhanced.  

The noisy signal is segmented into 32 ms frames and a 

512 point DCT is applied to each frame separately. The DCT 

coefficients of each frame are further divided into 8 sub-

frames each containing 64 DCT coefficients. For adaptive 

thresholding, each sub-frame is categorised as either signal-

dominant or noise-dominant. The classification pertains to 

the average noise power associated with that particular sub-

frame. If for the i’th sub-frame: 

 

                                   1
64 �*��� *� ≥

,-

���
���                                   �4� 

 

then this sub-frame is characterized as a signal dominant 

subframe, otherwise a noise dominant one. In case of a signal 

dominant sub-frame, the coefficients are not thresholded, 

since it is highly possible to degrade the speech signal, espe-

cially for high SNRs. In the case of a noise dominant sub-

frame, the absolute values of the DCT coefficients are first 

sorted in ascending order and then a linear thresholding is 

applied: 

 

                  ��� = ��������./0120, �|��| − /3�45        �5� 
                

where the multiplication mj is the linear threshold function 

while j being the sorted index-number of �� . An estimated 
value of m can be obtained by: 

 

                                  / = 7��
1

64 ∑ 9�,-���
                                     �6� 

         

A reasonable value for 7 is between 0.2 and 0.8 [6].  
 

4. PROPOSED HYBRID ALGORITHM 

 

The proposed method is based on applying the soft 

thresholding algorithm in two stages. In the first stage, the 

soft thresholding for DCT enhancement algorithm is used as 

a pre-process. As discussed above, this algorithm is effective 

in removing the noise components for a wide range of SNR 

values. However, since the signal dominant sub-frames are 

not thresholded, the noise signals in these sub-frames are not 

removed. Moreover, a significant amount of the noise signals 

in the noise dominant sub-frames remain within the signal 

due to the subtraction rule. Therefore a significant amount of 

noise still exists in the enhanced signal, which results in an 

irritating sound. It is not an easy task to detect these noise 

components and to remove them without degrading the 

speech signal. The second stage of the proposed hybrid algo-

rithm is effective in removing these remaining noise compo-

nents.  
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In the second stage, we introduce a new method by 

adapting the soft thresholding algorithm to the intrinsic mode 

functions of the signal. Similarly, the recovered noisy signal 

from the first stage is first segmented into 32ms frames and 

each frame is decomposed into its IMFs with empirical mode 

decomposition. Since EMD decomposes the signal depend-

ing on its frequency content, most of the noise components 

are centered on the first three IMFs as reported in [3]. There-

fore with this decomposition, we can have a powerful identi-

fication of the residual noise in the enhanced signal of the 

first stage. By this way, it will be possible to remove even the 

noise components within the signal dominant sub-frames that 

were not removed in DCT enhancement algorithm. However, 

which IMFs to be thresholded should be carefully defined. 

Extra attention should also be paid to the threshold values of 

each IMFs, because the signal has already been thresholded 

once in the first stage and the IMFs differ in terms of noise 

and speech content. In order to determine these points, recent 

studies and our experimental analysis gave us the following 

conclusions: 

 

1) As reported in [3], in case of a noisy speech signal, 

the first IMF mainly consists of the noise compo-

nents. However, this IMF also has a reasonable 

amount of speech signal which should be kept. 

Therefore, this IMF should be thresholded with a 

threshold vector that will keep the signal compo-

nents.    

2) The second IMF is still mainly noise, but has more 

speech signal components compared to the first 

IMF. Thus the threshold vector should be less 

compared to the first one.  

3) A significant amount of the noise components 

have already been removed, but there are still ma-

jor noise components in the third and fourth IMFs. 

Therefore, these IMFs should also be thresholded 

but the threshold values should be less compared 

to the first two IMFs.  

4) Since the DCT speech enhancement has already 

been applied in the first stage and it is known that 

most of the noise signals are within the first three 

IMFs, the lower IMFs are mainly the speech sig-

nal. Further thresholding will mostly degrade the 

speech components. These IMFs should not be 

thresholded. 

 

Similar to the soft thresholding for DCT, each IMF is 

further divided into 8 sub-frames, each having 64 samples. 

Depending on the average noise power as discussed in equa-

tion (4), similar to the DCT case, each sub-frame is charac-

terized as either noise dominant or signal dominant. Signal 

dominant sub-frames are not thresholded. In case of a noise 

dominant sub-frame, the absolute values of the samples are 

sorted in ascending order and the following thresholding 

strategy is followed: 

 

                  ��� = �������� :/01 �0, ;|��| − /3
4� <=>          �7� 

where threshold function mj is same as in equation (5) and i 

is the index of the IMF in concern. Therefore, 
@A
-�  is the 

weighted linear threshold function defined for the IMFs.  

 
5. EXPERIME�TAL RESULTS 

 

To illustrate the effectiveness of the proposed hybrid al-

gorithm, extensive computer simulations were conducted 

with different 10 male and 10 female utterances, which were 

selected randomly from TIMIT database. In order to observe 

the performance for a wide range of SNRs, computer gener-

ated white noise sequences were added to the clean speech 

signal to obtain the noisy signals at different SNRs. The vari-

ance of the noise signal was estimated from the speechless 

parts of the noisy speech signal.  

White noise is considered here, since it has been re-

ported that this type of noise is more difficult to detect and 

remove than any other type [9]. The reported algorithms usu-

ally result in a residual noise. Our proposed method is very 

effective in removing the noise components while signifi-

cantly reducing this residual noise. 

In the first stage, many simulations with DCT speech 

enhancement (7=0.8) were conducted in order to get the re-
covered signal for a wide range of SNR values. As discussed 

before, with DCT speech enhancement, there is the residual 

noise problem which makes an irritating sound. Figure 1(a) 

shows the spectrogram of the female clean speech “she had 

your dark suit in greasy wash water all year” from TIMIT 

database. The corresponding noisy speech signal at 10dB 

SNR can be observed in Figure 1(b). To better understand the 

noise distribution of the enhanced signal in the DCT stage, 

the spectrogram of the recovered signal after the DCT en-

hancement can be seen in Figure 1(c).  

It can be observed that, with the first stage, there is a 

reasonable enhancement in the noisy speech signal. Although 

the noise components are successfully removed for a wide 

range of frequencies, the remaining noise components in the 

enhanced signal can easily be observed. This noise signal is 

randomly distributed in all frequency ranges, thus looks like 

white noise. As illustrated in Figure 1(c), due to the thresh-

olding criteria, the remaining noise components have less 

power compared to the noise signal in the real mixture. This 

explains why careful attention should be paid to the threshold 

values in the second stage. Applying the same linear thresh-

old function as in the first stage, while removing the noise 

signal, will degrade the speech signal dramatically. There-

fore, it is significantly important to define lower threshold 

values which will be enough to remove the noise signals in 

each IMFs. As discussed before, since each IMFs differ in 

terms of noise content, the linear threshold functions should 

also have different weights for each IMFs.  

After extensive simulations, we have defined the thresh-

old functions as in equation (7). The first four IMFs of the 

enhanced signal from the first stage, as in Figure 1(c), were 

thresholded with these defined linear threshold functions. 

With this second stage, we could manage to efficiently re-

move the noise components while successfully keeping the 

speech signals. By this way, we not only have a significant 
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improvement in the SNR but also get rid of the irritating re-

sidual noise. The spectrogram of the overall recovered signal 

in Figure 1(d) illustrates the effectiveness of our proposed 

method. It can be observed that the spectrogram of the recov-

ered signal is very close to that of the clean speech signal. 

The noise signals in the speechless parts are completely re-

moved. The noise components in the speech signal are also 

significantly removed. The speech quality is very close to the 

clean signal, with significantly reduced residual noise. There 

is a significant increase in the SNR. 

 
Figure 1 - Spectrogram of a) clean speech, b) noisy speech at 10dB 

SNR, c) the recovered speech after soft thresholding with DCT, and 

d) the overall recovered speech of the proposed method. 
 

The power of the algorithm is not only limited with 

these results. The algorithm can be applied for a wide range 

of SNR values, basically for any value. Since the signal 

dominant frames are never thresholded, there is still a signifi-

cant improvement even in case of high SNR values where 

most proposed methods even fail to hold on to the input 

SNR. Even for very high SNRs, the algorithm at least keeps 

the input SNR. Therefore, the proposed algorithm prevents 

degradation from the given input SNR, which is another sig-

nificant power of the method. Table 1 shows the effective-

ness of the algorithm compared to previously reported results 

for a wide range of SNRs. 

It can be observed that for all SNR levels, the proposed 

method gives better results. The effectiveness of the method 

can be better observed for high SNR values. The reason why 

we have such a result is simple. In the case of high SNRs, the 

noise power is significantly less compared to the audio sig-

nal. Therefore the variance of individual frames is dependent 

on the speech signal, which means that most of the frames 

are signal dominant and are not thresholded in the first stage. 

 
Table 1 - Comparison of the SNR improvements of different denois-

ing methods for a high range of SNR values. 

 

Input 

SNR 

(dB) 

Output SNR (dB) 

WP[5] DCT[10] Soft DCT[6] 

 �7 = 0.8)  
Proposed 

�7 = 0.8) 
0 4.86 6.24 7.31 8.45 

5 8.86 10.01 10.81 11.82 

10 12.36 13.61 14.42 15.51 

15 15.45 17.38 18.34 19.33 

25 20.82 25.09 26.56 27.59 

30 23.16 29.14 30.56 31.93 

 

By introducing the second stage with EMD, this problem is 

solved very effectively. Since the IMFs depend on the fre-

quency content, the noise components dominate in the first 

few IMFs. Therefore, with this effective separation, these 

IMFs mainly include the noise dominant frames, which will 

be thresholded. By this way, a significant amount of the re-

maining noise components are removed.  

 

 
Figure 2 - Waveform of a) clean speech, b) noisy speech at 0dB 

SNR, c) the recovered speech after soft thresholding with DCT, and 

d) the overall recovered speech of the proposed method. 
 

For very low SNR values, we still can observe the effec-

tiveness of the proposed algorithm in removing the noise 

components. The reason why the results are close to the other 

results is due to the degradation of the speech signal. For 

instance, in case of 0dB, the noise dominant frames are sig-

nificantly high. Therefore during thresholding, we not only 

remove the noise components but also degrade some speech 

signals. The power of the method in removing the noise 

components can be observed in Figure 2.  

Considering that, at 0 dB SNR, it is not an easy task to 

remove the noise components without degrading the speech 
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signal, it can be concluded that the proposed method is very 

promising in terms of noise removal even for such a low 

SNR. The spectrogram of the results for 0 dB SNR can be 

well observed in Figure 3. We can see the similarity between 

the spectral distribution of the clean speech and the recovered 

speech signals. The degradation of the signal is mainly in the 

low energy signal components. Therefore, the proposed 

method not only gives higher SNR but also a reasonably bet-

ter speech due to significantly less noise components.  

 
Figure 3 - Spectrogram of a) clean speech, b) noisy speech at 0dB 

SNR, c) the recovered speech after soft thresholding with DCT, and 

d) the overall recovered speech of the proposed method. 

 

The hybrid algorithm has shown how two different 

methods can be combined in order to make a powerful algo-

rithm that can remove most of the noise components within 

the signal. The results are very promising for further studies. 

Our future work will mainly include the following ideas: 

 

i. The discrete noise left in the speech signals can be 

eliminated with spectral smoothing. 

ii. The SNR can be estimated roughly for the noisy 

speech signal. For low SNR values, we can adjust 

another threshold criterion which will not degrade 

the speech signal. 

iii. For low SNR case, since the third and fourth IMFs 

will have significant signal components, we can 

threshold the first two IMFs instead of the first 

four. 

  

6. CO�CLUSIO� 

In this paper, we presented a new hybrid algorithm to ef-

fectively remove the noise components while paying signifi-

cant attention on the speech signal. We have combined two 

powerful methods, soft thresholding and empirical mode 

decomposition in order to clean the noise signals in two 

stages.  

The results have shown that the proposed method is 

very powerful compared to the recently proposed results for 

all SNR values. The main advantage of the algorithm is the 

effective removal of the noise components for a wide range 

of SNRs. We not only have better SNR but also a better 

speech quality with significantly reduced residual noise.  
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