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ABSTRACT

The human ear has a great ability to isolate speech in a noisy
environment and, therefore, constitutes a great source of in-
spiration for speech enhancement algorithms. In this work,
we propose a Bayesian estimator for speech enhancement
that integrates the cochlea’s compressive nonlinearity in its
cost function. When compared to existing Bayesian speech
enhancement estimators, the proposed estimator can achieve
a better compromise between speech distortion and noise re-
duction by favoring less speech distortion at lower frequen-
cies, where the main formants are located, while increasing
the noise reduction at higher frequencies. The proposed esti-
mator also yields better results both in terms of objective and
subjective performance measures.

1. INTRODUCTION

In speech enhancement, the general objective is to remove
a certain amount of noise from a noisy speech signal while
keeping the speech component as undistorted as possible.
Many approaches have been proposed to achieve that goal,
such as the spectral subtraction, Bayesian or subspace ap-
proaches [1]. In Bayesian approaches, an estimate of the
clean speech is derived by minimizing the expectation of a
defined cost function.

One possible avenue for choosing an appropriate cost
function is to consider the human hearing mechanism. The
ear is most sensitive to small signals and grows progressively
less responsive as stimulations become stronger. This per-
mits us to interpret sounds over a wider range of amplitudes
and is also thought to play a role in the noise suppression
capabilities of the auditory system [2]. This ability is due in
part to the signal processing performed by the cochlea and
more precisely by its basilar membrane. The basilar mem-
brane performs a spectrum analysis and can be assimilated
to an active bank of filters with non-linear gains [3]. One of
the properties of the cochlea that produces nonlinearities in
the gains is the cochlear amplification. In cochlear ampli-
fication, each spectral component is amplified by the active
mechanism of the outer hair cells. However, as the spec-
tral amplitude increases, the amplification saturates and, in
relative terms, the higher spectral amplitudes become com-
pressed. This behavior has been referred to as the cochlea’s
compressive nonlinearity [4].

In this paper we propose a Bayesian speech enhancement
algorithm motivated by the cochlea’s compressive nonlinear-
ity. Results show an improvement in terms of noise reduc-
tion, Perceptual Evaluation of Speech Quality (PESQ) and
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informal Mean Opinion Score (MOS) when the proposed al-
gorithm is compared to existing Bayesian algorithms such as
the MMSE STSA [5] and MMSE log-STSA (LSA) [6].

This paper is organized as follows. In Section 2 we first
present relevant Bayesian speech enhancement algorithms
while in Section 3, we further discuss the cochlea’s com-
pressive nonlinearity. In Section 4 we derive the proposed
estimator. In Section 5, we present comparative results of
the proposed estimator while Section 6 concludes this work.

2. BAYESIAN STSA SPEECH ENHANCEMENT

Let the observed noisy speech be

y(t) = x(t)+n(t) 0 ≤ t ≤ T (1)

where x(t) is the clean speech, n(t) is an additive noise and
[0,T ] is the observation interval. Let Yk, Xk and Nk denote the

kth complex spectral components of the noisy speech, clean
speech and noise respectively obtained through a Fourier
analysis.

In Bayesian Short Time Spectral Amplitude (STSA) esti-
mation for speech enhancement, the goal is to obtain the esti-

mator χ̂k of χk , |Xk| which minimizes E{C(χk, χ̂k)}, where
C(χk, χ̂k) is a chosen cost function and E denotes statistical
expectation. This estimator is then combined with the phase
of the noisy speech, ∡Yk, to yield the estimator of the com-

plex spectral component of the clean speech X̂k = χ̂ke j∡Yk

[5]. In MMSE STSA, C(χk, χ̂k) = (χk − χ̂k)
2 while in LSA,

C(χk, χ̂k) = (log(χk)− log(χ̂k))
2.

The MMSE STSA estimator was generalized under the
β -order STSA MMSE (β -SA) estimator in [7] by modifying

the cost function as C(χk, χ̂k;β ) = (χ
β
k − χ̂

β
k )2 where the ex-

ponent β is a real positive parameter. The β -SA estimator is
expressible as:

χ̂β -SA,k = Gβ -SA,k |Yk| (2)

Gβ -SA,k =

√
υk

γk

[

Γ

(

β

2
+1

)

M

(

−β

2
,1;−υk

)]1/β

(3)

with:

υk ,
ξk

1+ξk

γk, ξk ,
E{χk

2}
E{|Nk|2}

, γk ,
|Yk|2

E{|Nk|2}

and where Γ(x) is the gamma function and M(a,b;z) is the
confluent hypergeometric function.

When β = 1, the β -SA estimator is identical to the
MMSE STSA estimator. Furthermore, You et al. suggested
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in [7] that when β → 0+, the β -SA estimator is equivalent
to the LSA estimator. Therefore, the MMSE STSA and LSA
estimators are both special cases of the more general β -SA
estimator.

The case β > 0 was analyzed in [7] while the analysis
was extended to the case β < 0 in [8]. In the later, it was
shown that the β -SA estimator introduces more speech dis-
tortion but also achieves better noise reduction as β is de-
creased from 1 to −2; however, serious speech distortions
were reported for β < −1.5.

Some variants of the β -SA estimator with β > 0 were
also proposed. In [7], You et al. proposed to adapt the
value of β differently for each analysis frame according to
the frame’s Signal-to-Noise Ratio (SNR). Furthermore, they
also proposed to modify β according to the masking thresh-
old for each frequency component [9].

3. COMPRESSIVE NONLINEARITY OF THE
COCHLEA

As mentioned in the introduction, the cochlea has a nonlinear
compressive behavior. This so-called compressive nonlinear-
ity has been noticed when measuring basilar membrane re-
sponses to input tones at several sound pressure levels [4]. It
is thought to be caused by the active mechanism of the outer
hair cells which at lower input amplitudes exhibit an ampli-
fication of the basilar membrane vibration, termed cochlear
amplification. As the amplitude increases, however, this am-
plification saturates and, in relative terms, the larger input
spectral amplitudes become compressed.

Compression rates of 0.2 dB/dB were measured at the
base (i.e. for high frequencies) of the mammalian cochlea
for intensities between 40 and 90 dB SPL [4]; conversational
speech is at 60 dB SPL. The compression rates tended to 1
dB/dB for lower intensities, i.e. where the amplification did
not saturate.

While the cochlea’s compressive nonlinearities are well
documented and accepted for high frequency components,
there is no real consensus on the degree of compressive non-
linearity at lower frequencies (i.e. at the apex of the cochlea).
In fact, some results from chinchilla show a smaller rate
of compression (0.5 - 0.8 dB/dB) than at higher frequen-
cies, when several other results from guinea pigs and squir-
rel monkeys fail to show any compressive nonlinearity (i.e.
rate of compression of 1 dB/dB) or even show an expansion
(i.e. rate of compression greater than 1 dB/dB) [4]. On the
other hand, psychoacoustic experiments in humans report ei-
ther a comparable rate of compression at low and high fre-
quencies [10] or a smaller but still existent rate of compres-
sion at lower frequencies [11]. However, since those results
are from psychoacoustic experiments and not from a specific
physiological experiment, one cannot be sure where in the
auditory processing path this compression originates and it
may not occur in the cochlea but rather along the auditory
neural pathway [10]. Therefore, the cochlear rate of com-
pression at low frequencies is still an active debate [4]. For
the purpose of this research, and based on the above discus-
sion, we will assume there is no compressive nonlinearity at
low frequencies.

4. INTEGRATING THE COMPRESSIVE
NONLINEARITY IN THE BAYESIAN COST

FUNCTION

In this section we will show how the cochlea’s compressive
nonlinearities can be incorporated in the cost function of a
Bayesian STSA estimator for speech enhancement.

4.1 β as the compression rate

We wish to modify the STSA to integrate the cochlear com-
pressive nonlinearity. One way to achieve our goal is to ap-
ply a relevant exponent to the STSA. In fact, consider two
different input spectral amplitudes say |Wk| < |Vk| to which
we apply an exponent β . We can compute the compression
rate m in dB/dB as:

m =

20log

(

|Vk|β
|Wk|β

)

20log
(

|Vk|
|Wk|

) = β

Therefore, β can be directly interpreted as the compression
rate of the input spectral amplitudes and thus set to physio-
logical values identified in the previous section. Note how-
ever that by doing so, we will apply the compression rate on
the entire range of possible input intensities rather than on
the 40 to 90 dB SPL range.

It is interesting to note that power laws have been used
in the past to model cochlear nonlinearities [12] as well as in
speech processing to perform an intensity-to-loudness con-
version (e.g. in Perceptual Linear Predictive (PLP) analysis
[13]).

4.2 The proposed cost function and estimator

As mentioned in Section 3, we will assume there is no com-
pressive nonlinearity in the cochlea at low frequencies. Since
a high rate of compression is known to occur at high frequen-
cies, β will therefore become frequency dependent. The pro-
posed cost function is thus:

C(χk, χ̂k;βk) = (χ
βk

k − χ̂
βk

k )2 (4)

where βk accounts for the compression rate at frequency k.
The corresponding estimator is:

χ̂CNSA,k = GCNSA,k |Yk| (5)

GCNSA,k =

√
υk

γk

[

Γ

(

βk

2
+1

)

M

(

−βk

2
,1;−υk

)]1/βk

(6)

which will be identified as the CNSA (Compressive Nonlin-
ear transformation of the Spectral Amplitude) estimator.

This estimator is closely related to the β -SA estimator,
however, βk is now interpreted as a physiological parame-
ter accounting for the rate of compression and varying as a
function of the frequency.

4.3 Deriving the appropriate βk values

We need to adequately define the cochlea’s rate of compres-
sion, βk, for every frequency k. To do so, we will choose
relevant values of βk for low and high frequencies as well as
means of interpolation between those two values to obtain
intermediate rate of compressions.
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Since for low frequency we consider the absence of com-
pressive nonlinearity, we will therefore choose βlow = 1. As
indicated in Section 3, the compressive nonlinearity at high
frequencies is thought to have a rate of compression of ap-
proximately 0.2 dB/dB. For high frequencies, it therefore
seems plausible to set βhigh = 0.2 as an initial value.

As shown in [8], when β is decreased, more noise reduc-
tion is achieved by the β -SA estimator while more speech
distortion is simultaneously introduced. Choosing the previ-
ous values for βhigh and βlow will therefore imply less speech
distortion at lower frequencies, where the main speech for-
mants are present and may mask the noise, and more noise re-
duction at higher frequencies. While the value of βhigh = 0.2
is based on physiological observations, it would be relevant
to include another value of βhigh to our study that may not
be based on such observations but that would imply further
noise reduction at higher frequencies, while keeping βlow = 1
to limit speech distortion at lower frequencies. We will there-
fore consider also the value βhigh = −1.5.

Physiological experiments on the cochlear rate of com-
pression at intermediate frequencies (i.e. between the apex
and the base of the cochlea) are extremely scarce. Therefore
to interpolate βk for intermediate frequencies we propose two
approaches.

First we propose to interpolate the βk values linearly with
respect to the frequency therefore implying a linear relation
between the rate of compression and its associated frequency.
We will refer to this approach as the frequency interpolation
approach.

In the second approach, we consider the fact that each
frequency corresponds to a position on the basilar membrane
following the so-called tonotopic mapping [4]. One such
tonotopic mapping, proposed in [14], is given by:

p =
1

α
log10

(

f (k)

A
+ l

)

(7)

where p is the position on the basilar membrane in mm,
α = 0.06 mm−1, A = 165.4 Hz, l = 1 are parameters set
as per [14] and f (k) is the frequency in Hz corresponding
to spectral component k. In this approach, we will therefore
consider the compression rate to vary linearly not with re-
spect to the frequency but to the position on the basilar mem-
brane corresponding to that frequency following the given
tonotopic mapping. In fact, the compressive nonlinearity
is thought to be caused by the active process of the outer
hair cells and it is known that the hair cells follow a tono-
topic organization where they are optimally sensitive to a
particular frequency according to their position on the basi-
lar membrane [15]. Interestingly, some of the outer hair cell
properties, such as their lengths, have been shown to have
a linear relation with respect to their position on the basilar
membrane [16]. For this second approach, the values of βk

are thus derived by linearly interpolating between βlow and
βhigh according to the position on the basilar membrane cor-
responding to a given intermediate frequency as given by the
tonotopic mapping. Therefore:

βk =
1

α
log10

(

f (k)

A
+ l

)

(

βhigh −βlow

)

(

1
α log10

(

Fs
2A

+ l
)) +βlow (8)

where Fs is the sampling frequency set to 8 kHz in this study.
We will denote this second approach as the tonotopic in-

terpolation approach. Figure 1 represents the different val-
ues of βk as a function of the frequency for βhigh = 0.2 and
βhigh =−1.5 using the frequency and tonotopic interpolation
approaches.
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Figure 1: βk versus frequency [Hz] for βhigh = 0.2 and
βhigh = −1.5 (Legend: – – – frequency interpolation; ——
tonotopic interpolation).

In summary, the new estimator will therefore be given
by (5) and (6) where βk will be frequency dependent and
chosen to reflect the cochlear rate of compression for every
frequency k as shown in Figure 1. The estimators will be
referred to as CNSA-f and CNSA-t to indicate a frequency
or tonotopic interpolation respectively.

5. RESULTS

In this section, we will present a speech distortion and noise
reduction analysis of the new estimator which will be fol-
lowed by PESQ and MOS results.

5.1 Speech distortion versus noise reduction

In order to study the speech distortion and noise reduction
properties of the estimator, we used the following speech dis-
tortion and noise reduction metrics in the frequency domain:

ϒ(Gk) , E{[χk −Gkχk]
2} (9)

Ψ(Gk) ,
1

E{[Gk |Nk|]2}
(10)

In (9), ϒ(Gk) reflects the clean speech distortion energy and,
therefore, its value increases for increasing speech distor-
tions. In (10), Ψ(Gk) reflects the inverse of the noise energy
remaining in the enhanced speech and increases for increas-
ing noise reduction.

Figure 2 plots ϒ(Gk) and Ψ(Gk) versus the frequency for
different gains Gk as given by the MMSE STSA (β -SA with
β = 1), LSA (β -SA with β → 0) and CNSA-t algorithms
(average of 30 sentences, white noise, SNR = 0 dB). The
frequency interpolation approach, CNSA-f, has been left out
in Figure 2 for clarity purposes, however, the observations
made for CNSA-t would also apply to CNSA-f.

As can be observed, the speech distortion is greater for
LSA than for MMSE STSA however LSA produces more

©2007 EURASIP 72

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6
(a)

Frequency [Hz]

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000
(b)

Frequency [Hz]

MMSE STSA (β=1)

LSA (β → 0)

CNSA-t (βhigh=0.2)

CNSA-t (βhigh=-1.5)

N
o
is

e
re

d
u
ct

io
n

Ψ

S
p
ee

ch
d
is

to
rt

io
n

ϒ

Figure 2: (a) Speech distortion metric versus frequency (0 - 1000 Hz) (b) Noise reduction metric versus frequency (0 - 4000
Hz) (average of 30 sentences, white noise, SNR = 0 dB).

noise reduction. The results obtained by the CNSA-t with
βhigh = 0.2 are in between MMSE STSA and LSA for both
speech distortion and noise reduction. This could be ex-
pected since the β values of that estimator are interpolated
from 1 to 0.2 while MMSE STSA corresponds to β = 1 and
LSA corresponds to β → 0. The CNSA-t estimator with
βhigh =−1.5, on the other hand, achieves increasing noise re-
duction while limiting the speech distortion. In fact, it keeps
the speech distortion close to the LSA level for lower fre-
quencies (≈ 0-1000 Hz) where the main formants are located
and may mask the noise. However, it maximizes the noise
reduction at higher frequencies (≈ 1000-4000 Hz) where the
speech distortion energies are lower.

5.2 PESQ and MOS results

We present comparative PESQ results for MMSE STSA,
LSA and CNSA-f,t with βhigh = 0.2 and βhigh =−1.5. Thirty
sentences from the TIMIT database, each sampled at 8 kHz,
were used where 3 men and 3 women each spoke 5 sen-
tences. Three types of noise were used from the NOISEX
database (white, pink and f16 which is mainly composed of
low frequency noise along with a peak around 2700 Hz) [17].
The observation frames were of 32ms and a 50% overlap was
used between all frames in the overlap-add method for the re-
construction of the enhanced speech. All algorithms used the
decision-directed approach for the estimation of ξk [5] and a
voice activity detector proposed in [18] was used to evaluate
the noise spectral amplitude variance.

Table 1 presents the PESQ results on a scale from 1 to
4.5. First we observe that the CNSA-t estimator outperforms
the CNSA-f estimator for all cases. Secondly, the CNSA-f,t
estimators with βhigh = 0.2 both show inferior results when
compared to LSA. Therefore, the CNSA-f,t estimators with
βhigh = 0.2, while they perform better than MMSE STSA, do
not show advantages over LSA. Considering the CNSA esti-
mator with βhigh = −1.5, we observe that the CNSA-f esti-
mator performs better than the LSA for almost all cases (ex-
cept pink and f16 noises at 10dB) while the CNSA-t yields
better results for all cases. The improvements in both CNSA-
f and CNSA-t are, however, more important for the white
noise case than for pink and f16 noises. This is mainly due
to the fact that the CNSA-f,t estimators with βhigh = −1.5
produce more noise reduction for higher frequencies and are
therefore more advantageous when the noise has more high
frequency components.

In order to support the results obtained with PESQ, we
performed informal MOS subjective listening tests on 6 sub-
jects using a subset of 4 sentences (2 men, 2 women) from
the initial 30 considering white noise. The listening test in-
volved the MMSE STSA, LSA and CNSA-t estimator with
βhigh = −1.5. As suggested by ITU-T P.835 [19], MOS tests

Table 2: MOS results for MMSE STSA, LSA and CNSA-t
(βhigh = −1.5) estimators (white noise, SNR = 0 dB).

Noisy MMSE LSA CNSA-t

speech STSA (βhigh = −1.5)

Speech 3.9 2.4 2.9 3.0
Noise 1.2 2.2 2.5 2.9

Overall 1.7 2.1 2.5 2.7

included an assessment of the speech distortion where the
subjects concentrated only on the speech (5 = Not distorted, 1
= Very distorted), background noise where the subjects con-
centrated only on the noise (5 = Not noticeable, 1 = Very in-
trusive) and overall speech quality (5 = Excellent, 1 = Bad).
Tests were performed in an isolated acoustic room using bey-
erdynamic DT880 headphones.

As can be observed in Table 2, the CNSA-t estimator
with βhigh = −1.5 performs better than MMSE STSA and
LSA in terms of the speech distortion, background noise re-
duction and overall appreciation for the white noise case.

Comparing speech distortion and background noise re-
duction MOS results with those of Figure 2, we notice that
the big advantage in noise reduction of the CNSA-t estima-
tor with βhigh = −1.5 observed in Figure 2 is confirmed by
the MOS results. On the other hand, although the speech dis-
tortions of LSA and CNSA-t should have been greater than
those of MMSE STSA, it was not perceived as such in the
MOS tests. In fact this may be due to a small perceivable
echo produced by MMSE STSA with a 50% overlap which
is greatly reduced in LSA and CNSA-t and does not seem to
be well taken into account by (9).

6. CONCLUSION

In this paper, we presented a speech enhancement algorithm
motivated by cochlear compressive nonlinearity accompa-
nied by some speech distortion and noise reduction analysis
as well as PESQ and MOS test results. The CNSA-f,t estima-

©2007 EURASIP 73

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



Table 1: PESQ results for MMSE STSA, LSA and CNSA estimators.

Noisy MMSE LSA CNSA-f CNSA-t

speech STSA βhigh = 0.2 βhigh = −1.5 βhigh = 0.2 βhigh = −1.5

white

0 dB 1.29 1.39 1.44 1.43 1.53 1.44 1.55
5 dB 1.37 1.60 1.70 1.67 1.79 1.69 1.82

10 dB 1.58 1.83 1.95 1.91 2.03 1.93 2.05

pink

0 dB 1.35 1.54 1.64 1.60 1.70 1.63 1.74
5 dB 1.50 1.78 1.91 1.85 1.95 1.88 1.99

10 dB 1.79 2.00 2.14 2.06 2.12 2.09 2.16

f16

0 dB 1.35 1.54 1.64 1.59 1.69 1.62 1.73
5 dB 1.54 1.78 1.90 1.84 1.94 1.88 1.97

10 dB 1.83 2.00 2.13 2.06 2.11 2.08 2.14

tors when βhigh = 0.2 were not found to yield better results
than LSA, however, when βhigh was set to −1.5, CNSA-f,t
yielded an advantage over both MMSE STSA and LSA by
favoring less speech distortion in lower frequency regions
where the speech energy is usually greater and may there-
fore mask the noise and, at the same time, performing more
noise reduction at higher frequencies.

REFERENCES

[1] J. Benesty, S. Makino, and J. Chen, Eds., Speech En-
hancement, Springer, 2005.

[2] X. Yang, K. Wang, and S. A. Shamma, “Auditory repre-
sentations of acoustic signals,” IEEE Trans. Inf. Theory,
vol. 38, no. 2, pp. 824–839, March 1992.

[3] R. Nobili, F. Mammano, and J. Ashmore, “How well do
we understand the cochlea?,” Trends in Neurosciences
(TINS), vol. 21, no. 4, pp. 159–167, 1998.

[4] L. Robles and M. A. Ruggero, “Mechanics of the mam-
malian cochlea,” Physiological Reviews, vol. 81, no. 3,
pp. 1305–1352, July 2001.

[5] Y. Ephraim and D. Malah, “Speech enhancement using
a minimum mean-square error short-time spectral am-
plitude estimator,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-32, no. 6, pp. 1109–1121, Dec.
1984.

[6] Y. Ephraim and D. Malah, “Speech enhancement using
a minimum mean-square error log-spectral amplitude
estimator,” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-33, no. 2, pp. 443–445, April 1985.

[7] C. H. You, S. N. Koh, and S. Rahardja, “β -order
MMSE spectral amplitude estimation for speech en-
hancement,” IEEE Trans. Speech Audio Processing,
vol. 13, no. 4, pp. 475–486, July 2005.

[8] E. Plourde and B. Champagne, “Further analysis of the
β -order MMSE STSA estimator for speech enhance-
ment,” in Proc. 20th IEEE Canadian Conf. on Electri-
cal and Computer Engineering (CCECE), Vancouver,
Canada, April 2007.

[9] C. H. You, S. N. Koh, and S. Rahardja, “An MMSE

speech enhancement approach incorporating masking
properties,” in Proc. ICASSP ’04, May 17-21 2004,
vol. 1, pp. 725–728.

[10] E. A. Lopez-Poveda, C. J. Plack, and R. Meddis,
“Cochlear nonlinearity between 500 and 8000 Hz in lis-
teners with normal hearing,” J. Acoust. Soc. Am., vol.
113, no. 2, pp. 951–960, Feb. 2003.

[11] P. S. Rosengard, A. J. Oxenham, and L. D. Braida,
“Comparing different estimates of cochlear compres-
sion in listeners with normal and impaired hearing,” J.
Acoust. Soc. Am., vol. 117, pp. 3028–3041, May 2005.

[12] R. Meddis and L. P. O’Mard, “A computational algo-
rithm for computing nonlinear auditory frequency se-
lectivity,” J. Acoust. Soc. Am., vol. 109, no. 6, pp. 2852–
2861, June 2001.

[13] H. Hermansky, “Perceptual linear predictive (PLP)
analysis of speech,” J. Acoust. Soc. Am., vol. 87, no.
4, pp. 1738–1752, 1990.

[14] D. D. Greenwood, “A cochlear frequency-position
function for several species - 29 years later,” J. Acoust.
Soc. Am., vol. 87, no. 6, pp. 2592–2605, June 1990.

[15] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Princi-
ples of Neural Science, chapter Hearing, pp. 591–613,
McGraw-Hill, Fourth edition, 2000.

[16] L. Brundin, A. Flock, and B. Canlon, “Sound-
induced motility of isolated cochlear outer hair cells
is frequency-specific,” Nature, vol. 342, pp. 814–816,
1989.

[17] Rice University, “Signal processing informa-
tion base: Noise data,” [Online] Available
http://spib.rice.edu/spib/select noise.html, Accessed
December 20, 2006.

[18] J. Sohn and N. S. Kim, “A statistical model-based voice
activity detection,” IEEE Signal Processing Lett., vol.
6, no. 1, pp. 1–3, Jan. 1999.

[19] “ITU-T P.835: Subjective test methodology for evalu-
ating speech communication systems that include noise
suppression algorithm,” 2003.

©2007 EURASIP 74

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

