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ABSTRACT
DFT-based speech enhancement algorithms typically rely on
a statistical model of the spectral amplitudes of the noise-free
speech signal. It has been shown in the literature recently
that the speech spectral amplitude distributions, conditional
on estimated a priori SNR, may differ significantly from
the traditional Gaussian model and are better described by
super-Gaussian probability density functions. We show that
these conditional distributions can be accurately approxi-
mated by a mixture of Rayleigh distributions. The MMSE
amplitude estimators based on Rayleigh Mixture Models per-
form at least as well as the estimators based on super-
Gaussian models. Furthermore, the proposed Rayleigh Mix-
ture Models allow for derivation of closed-form estimators
minimizing other perceptually relevant distortion measures,
which may be difficult for other models.

1. INTRODUCTION

The traditional assumption for speech enhancement in the
DFT domain is that the distribution of the complex speech
DFT coefficients is Gaussian [1]–[3]. Consequently, the
spectral amplitude distribution is modeled by a Rayleigh dis-
tribution. Recently, super-Gaussian models of the DFT co-
efficients have received quite some attention, because they
lead to estimators with better performance than those based
on a Gaussian model. Martin [4] derived complex-DFT es-
timators for Laplacian and Gamma speech priors, and Lot-
ter and Vary [5] proposed a Maximum A Posteriori (MAP)
amplitude estimator for a generalized Gamma amplitude dis-
tribution. MMSE estimators for the amplitudes, assuming a
one-sided generalized Gamma distribution, were treated in
[6] and [7].

In this paper we propose to model the distributions
of speech DFT amplitudes by Rayleigh Mixture Models
(RMMs). RMMs have some important advantages over ex-
isting speech models. They offer more accurate fits to the
amplitude distributions, and can also adapt better to thea
priori SNR estimator used. Furthermore, analytical deriva-
tion of estimators for relevant distortion measures is rela-
tively simple.

The paper is organized as follows. Section 2 recapitulates
MMSE speech spectral estimation and introduces RMMs.
Section 3 motivates the use of RMMs. Estimators under an
RMM speech prior are derived in Section 4. The amplitude
estimator is evaluated in Section 5 and compared with exist-
ing estimators. Section 6 concludes the paper.

The research is supported by MultimediaN, the Technology Foundation
STW (applied science division of NWO), and the technology programme of
the ministry of Economic Affairs.

2. MMSE SPECTRAL ESTIMATION

2.1 Signal model and assumptions
We consider an additive-noise signal model of the form

X(k,m) = S(k,m)+D(k,m),

whereX(k,m), S(k,m), andD(k,m) are complex-valued ran-
dom variables representing the short-time DFT coefficients
obtained at frequency indexk in signal framem from the
noisy speech, clean speech and noise process, respectively.
Applying the standard assumption thatS(k,m) andD(k,m)
are statistically independent across time and frequency as
well as from each other, leads to expressions for the resulting
estimators that are independent of time and frequency. For
ease of notation we therefore drop the time and/or frequency
index when this does not cause confusion. We use capitals
for random variables and the corresponding lower-case let-
ters for their realizations. The speech amplitude isA = |S|,
and the noisy amplitude isR = |X|. The noise DFT coeffi-
cientsD are assumed to follow a complex Gaussian distribu-
tion with varianceλD.

2.2 p-th Order amplitude estimators
For given noise spectral varianceλD and given speech spec-
tral varianceλS, the MMSE estimator of some powerp of the
speech amplitude is (see, e.g., [1]):

Âp = E{Ap|R} =

∫ ∞
0 apexp(− a2

λD
)I0(

2aR
λD

) fA(a)da
∫ ∞

0 exp(− a2

λD
)I0(

2aR
λD

) fA(a)da
, (1)

where fA(a) is the probability density function ofA, which
depends onλS, andI0(·) is the zeroth order Bessel function
of the fist kind.Âp is called thep-th orderamplitude estima-
tor. In practice, the spectral variancesλS andλD are unknown
and have to be estimated. This will affect the optimality of
the estimators. We will take into account, to some extent,
the influence of the speech spectral variance estimation, by
matching our model offA(a) to measured histograms that
are conditional on a high value of estimatedλS. In the fol-
lowing, we assume that the noise spectral variance can be es-
timated accurately during speech pauses for stationary noise
or by using approaches based on minimum-statistics [8][9],
for example, for non-stationary noise.

2.2.1 Generalized Gamma distribution

Recently, the clean-amplitude distributionfA(a) in (1) has
been modeled using the generalized Gamma distribution [5,
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6, 7]. This distribution is given by

fA(a) =
γβ ν

Γ(ν)
aγν−1exp(−βaγ), a≥ 0, (2)

with the constraints on the parametersγ > 0, ν > 0. We will
consider the casesγ = 1 andγ = 2. BecauseE{A2} equals
λS by definition,β is related toγ, ν andλS. For γ = 1 we
haveβ 2 = ν(ν +1)/λS, andβ = ν/λS for γ = 2. Forγ = 2,
ν = 1, the Rayleigh distribution appears as a special case.

2.2.2 Rayleigh Mixture Model

As an alternative to the generalized Gamma model, we pro-
pose a Rayleigh Mixture Model. If the complex speech DFT
coefficients are modeled by a Gaussian Mixture Model, then
the amplitude distribution is a sum of Rayleigh distributions:

fA(a) =
J

∑
j=1

c j
2a
λ j

exp

{
−a2

λ j

}
, (3)

whereJ is the number of components and thec j are positive
weighting factors that satisfy∑c j = 1. Theλ j are the vari-
ances of the individual components; they satisfy∑c jλ j = λS.

2.3 A priori SNR estimation
Speech amplitude estimators are usually written in terms of
gain functions, e.g.,̂A = G(ξ ,ζ )R. These gain functions de-
pend ona priori SNRξ , defined asξ = λS/λD, anda posteri-
ori SNRζ , defined asζ = R2/λD. We will use the decision-
directed approach [1] to estimatea priori SNR, with a bias
correction [10]:

ξ̂k(m) = max

[
α

Â2
k(m−1)

λD(k,m−1)
+ (1−α)[ζk(m)−1],ξmin

]
.

(4)
Note that in the first term, the second order amplitude estima-
tor is used, instead of the square of the first order amplitude
estimator, which was the original definition [1]. The sec-
ond order amplitude estimator used in (4) will be based on
the generalized Gamma distribution (2), with eitherγ = 1 or
γ = 2. We have observed that this newa priori SNR esti-
mator (4) leads to less musicality than the old definition, for
parameter settings(ν,α) with the same speech quality ver-
sus noise reduction trade-off [11].

3. RAYLEIGH MIXTURE MODELING OF
CONDITIONAL SPEECH AMPLITUDE

DISTRIBUTIONS
It has been shown in several papers [4]–[7] that better noise
suppression performance can be achieved by abandoning the
Gaussian speech model. There may be several reasons for
the suboptimality of the Gaussian model. Often, the normal
distribution of DFT coefficients is motivated by the central
limit theorem. For speech DFT coefficients, the central limit
theorem may not be applicable, because of the long span of
correlation which can be larger than the frame lengths [4][5].
Speech is also non-stationary, causing many time frames
to contain non-identically distributed samples [6]. Further-
more, gain functions are derived forknown a priori SNR.
In practice,a priori SNR has to be estimated. This means
that the optimal statistical model for enhancement may differ
from the true underlying speech distribution, and should be
adapted to thea priori SNR estimator used [10]–[13].
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Figure 1: Normalized histogram of clean spectral amplitudes
from frequency bins with an estimateda priori SNR in the
range 19-21 dB, (a) maximum-likelihood fits of a Rayleigh
distribution and generalized Gamma distributions withγ =
1 andγ = 2, and (b) maximum-likelihood fit of a Rayleigh
Mixture Model with J=7 components.

3.1 Measured amplitude distributions
Following an idea of Martin [4], Lotter and Vary [5] have at-
tempted to measure the distribution of amplitudes of speech
DFT coefficients. For this purpose, a speech database is
processed in a standard DFT-based enhancement algorithm,
and coefficients are collected from those frequency bins
for which the estimateda priori SNR is within a narrow
range of high values. We performed a similar experiment.
Figure 1(a) shows a histogram of one million of such am-
plitudes from TIMIT, normalized such that the second mo-
ment equals one, i.e.,A2 = 1, where the overbar indicates the
sample mean. Also shown are maximum-likelihood fits of a
Rayleigh distribution and generalized Gamma distributions.
Clearly the measured amplitude distribution does not follow
the Rayleigh model, while the generalized Gamma models fit
better. Amplitude estimators based on generalized Gamma
distributions improve speech enhancement performance over
those based on a Gaussian speech model [5]–[7]. Figure 1(b)
shows a maximum-likelihood fit (see section 4.2.1) of the
proposed RMM (3) to the histogram, usingJ = 7 compo-
nents. Clearly, the RMM model offers a much better fit to
the histogram. The experiments of Section 5 show that the
resulting estimators also perform very well in a speech en-
hancement context. However, online adaptation to speech
characteristics would be easier for the generalized Gamma
models, because of the smaller number of parameters.

3.2 Discussion
Ephraim and Cohen [14] have shown that the Gaussian
speech model and other models are not necessarily contra-
dictory. If the spectral varianceλS is treated as a random
variable with pdf f (λS), then the joint distribution of real
and imaginary parts of the corresponding DFT coefficient is
given by

f (sR,sI ) =

∞∫

0

f (sR,sI |λS) f (λS)dλS,

wheresR andsI are the real and imaginary parts of a clean
speech DFT coefficient, respectively. Iff (sR,sI |λS) is a
Gaussian distribution, thenf (sR,sI ) is a continuous mix-
ture of Gaussian distributions, which can take many different
forms depending onf (λS). For example, iff (λS) is assumed
to be exponential, then the pdf of the real and imaginary parts
each follow a Laplace pdf, as it was assumed in [4].
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The distributions faced in practice are conditional ones-
timated a prioriSNR and are given by

f (sR,sI |λ̂S) =

∞∫

0

f (sR,sI |λS, λ̂S) f (λS|λ̂S)dλS,

whereλ̂S is given byξ̂ λD. GivenλS, we expectsR andsI to
be only weakly dependent on̂λS for the following reasons.
Sinceλ̂S is only an estimate of the true spectral varianceλS,
it may contain less information aboutsR andsI thanλS it-
self. The second term in the decision directed estimator (4),
(1−α)[r2(m)/λD −1], depends on the noisy amplitude and
therefore contains some information about the cleansR and
sI . However, the weighting factor(1−α) of this term is gen-
erally small (0.02 is a typical value). We therefore expect the
following approximation to be reasonable:

f (sR,sI |λ̂S) ≈
∞∫

0

f (sR,sI |λS) f (λS|λ̂S)dλS. (5)

Note that any dependency that may exist between the real and
imaginary parts of the current time frame,sR(m) or sI (m),
and the estimated (second order) amplitude estimate of the

previous time frame,̂A2(m−1), is also neglected givenλS, as
is usually done in the derivation of estimators. Iff (sR,sI |λS)

is Gaussian, then (5) expressesf (sR,sI |λ̂S) as a continuous
mixture of Gaussians. The corresponding amplitude distri-
bution is a continuous mixture of Rayleigh distributions. We
propose to model such amplitude distributions by RMMs (3).
That model is used in (1) to obtain estimators that take into
account statistics of the speechand the particulara priori
SNR estimator used. Note that we do not really rely on
(5), because the RMM model can accurately match the his-
tograms with a sufficiently large number of components, re-
gardless of whether (5) is accurate or not. As was illustrated
in Figure 1(b), only a small number of components suffices
in practice.

4. AMPLITUDE ESTIMATORS
4.1 Generalized Gamma distribution
A MAP amplitude estimator for the model (2) forγ = 1 was
derived in [5], while MMSE amplitude estimators for the
classesγ = 1 andγ = 2 have been studied in [6] and [7].
For γ = 2, the expressions are exact, while approximations
have to be made forγ = 1. The maximum achievable perfor-
mance for both classes is about the same. Because of lack
of space, we show only the expressions for the estimators of
theγ = 2 class, which contain the Gaussian speech model as
a special case forν = 1. The MMSE amplitude estimator is
given by

Â(2)
ν =

Γ(ν +0.5)

Γ(ν)

√
ξ

ζ (ν + ξ )

1F1

(
ν +0.5;1; ζξ

ν+ξ

)

1F1

(
ν;1; ζξ

ν+ξ

) R,

where1F1(a;b;x) is a confluent hypergeometric function [15,
13.1.2]. The superscript(2) indicates thatγ = 2. The corre-
sponding second order amplitude estimator is given by

Â2
ν

(2)
=

νξ
ζ (ν + ξ )

1F1

(
ν +1;1; ζξ

ν+ξ

)

1F1

(
ν;1; ζξ

ν+ξ

) R2. (6)

It can be shown that forν → ∞, the first and second order
amplitude estimates approachλ̂ 0.5

S andλ̂S, respectively. The
reason for this behavior is that for a givenλS, (2) tends to
a delta-function centered aroundλ 0.5

S whenν goes to infin-
ity. This is also true for theγ = 1 case. Consequently, the
decision-directeda priori SNR estimator behaves like an or-
dinary exponential smoother forν → ∞.

4.2 Rayleigh Mixture Model
The derivation of the MMSE estimator for the RMM speech
amplitude priors goes much along the lines of the derivations
in [1]. If we defineξ j asλ j/λD, and vj , g j andq j as

v j =
ξ j

1+ ξ j
ζ , g j =

c j

1+ ξ j
ev j , q j =

g j
J
∑

i=1
gi

,

respectively, then the amplitude estimator is

ÂRMM =

√
π

2ζ

J

∑
j=1

q j
√

v j 1F1(−0.5;1;−v j)R. (7)

Existing estimators under a Gaussian speech model that min-
imize other perceptually relevant distortion measures, such
as those in [2][3], may also be generalized to the RMM case.
For example, the estimator that minimizes the log distortion
measureE{(logA− logÂ)2}, calledÂlog

RMM, is given by

Âlog
RMM = exp





J

∑
j=1

q j




logvj − logζ +
1
2

∞∫

v j

e−t

t
dt









 R.

We are unaware of closed-form log-amplitude estimators un-
der the generalized Gamma model.

4.2.1 Parameter estimation and estimator implementation

The parameters of the RMM in (3) are found by fitting to
measured amplitude data from TIMIT, as in Figure 1(b).
First, the amplitude data is normalized such thatA2 = 1.
Next, a least-squares fit of (3) to the histogram is made under
the constraints∑c j = ∑c jλ j and allc j andλ j positive. The
c j thus found are normalized with∑c j , such that the pdf (3)
integrates to 1. Finally, the parameters are used as initialcon-
ditions for the EM-algorithm. It can be shown that, under the
constraint∑c j = 1, the resulting maximum-likelihood esti-
mates of the parameters satisfy∑c jλ j = A2. To apply the
estimators of Section 4.2, the variance parametersλ j have
to be scaled since they are found from normalized data. In
every frequency bin of every time frame, the parameters to
be used in (7) are found by multiplying each of the fittedλ j

by λ̂S(k,m) = ξ̂k(m)λD(k,m). For a priori SNR estimation,
(4) is used with the second order amplitude estimator from a
generalized Gamma model (which forγ = 2 is given by (6)).

To gain speed, we tabulated all gain functions in the ex-
periments, for the range−19 dB< ξ < 40 dB and−30 dB<
ζ < 40 dB, both in steps of 1 dB.

5. EXPERIMENTAL RESULTS
5.1 Experimental set-up
In the enhancement system, we use 50%-overlapping frames
of 32 ms. The data window used was a cosine-squared win-
dow. The smoothing parameterα is set to 0.98 andξmin to
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−19 dB. We use all 30 clean sentences of the NOIZEUS
database [16]. Noisy signals were generated by adding
white and nearly stationary car noise from the Noisex-92
database [17] to the clean signals, at 5 and 15 dB overall
SNR. The noise and speech are limited to telephone band-
width (300-3400 Hz). The noise variance was estimated from
0.64 seconds of noise only preceding speech activity. Objec-
tive quality was measured in two different ways. We measure
mean-square error (MSE), because it is what MMSE estima-
tors should minimize on the average. We computeMSEas

MSE=
1
M

M

∑
m=1

∑
k

{a(k,m)− â(k,m)}2 ,

wherea(k,m) andâ(k,m) are the clean speech spectral am-
plitude and the estimated amplitude of frequency bink and
time framem, respectively, andM is the number of frames
containing speech in a sentence. To exclude silence intervals,
frames with a clean energy more than 40 dB below the max-
imum clean frame energy of a speech sentence are not taken
into account. All results at a given SNR are averages over all
test sentences. Furthermore, to quantify the speech distortion
versus noise reduction trade-off, we also measure separately
segmental Speech Quality (SQ) and Noise Reduction (NR)
as in [5], and plot these quantities against each other while
varyingν. The enhanced speech ˆs(n) can be written as

ŝ(n) = s̃(n)+ d̃(n),

wheres̃(n) andd̃(n) result from applying the gain functions
to the clean speech and noise DFT coefficients separately,
and transforming back to the time domain. We define seg-
mental Speech Quality as

SQ=
1
M

M

∑
m=1

10log10

( ‖sm‖2

‖sm− s̃m‖2

)
,

wheresm ands̃m denote time framemof the signalss(n) and
s̃(n), respectively. The operator‖ ·‖2 computes the energy of
a time frame. Segmental Noise Reduction is defined as

NR=
1
M

M

∑
m=1

10log10

(‖dm‖2

‖d̃m‖2

)
.

Strong suppression leads to lowSQand highNR, while the
opposite happens for weak suppression.

5.2 Performance evaluation
We will compare amplitude estimators for the generalized
Gamma model with those of RMM models, while varying
the parameterν. A priori SNR estimation with (4) was al-
ways based on the generalized Gamma model. The param-
eters of the RMM models are found from the corresponding
histograms, as was outlined in Sections 3.1 and 4.2.1. Figure
2 shows the results for theγ = 1 case. The dash-dotted lines
result for white noise when the generalized-Gamma ampli-
tude estimators are used for reconstruction, while the solid
curves are for RMM amplitude estimators withJ = 7 com-
ponents. The dotted and dashed lines are the corresponding
results for car noise. The value ofν is limited to values larger
than 0.5 forγ = 1, because of an approximation that is used in
the derivation of the estimators [7]. The crosses and pluses
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Figure 2: MSE versusν and SQ versus NR forγ = 1. White
and car noise have been used at overall SNRs of 5 and 15 dB.
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Figure 3: MSE versusν and SQ versus NR forγ = 2. White
and car noise have been used at overall SNRs of 5 and 15 dB.

result for the RMM amplitude estimator, for white and car
noise respectively, when an exponential smoother is used for
a priori SNR estimation (corresponding toν → ∞). The up-
per two panels show that minimum achievableMSE is lower
for the RMM amplitude estimators. Furthermore, the RMM
estimators are much less sensitive to the value ofν. The main
reason for this behavior is that the RMM models have been
adapted to some extent to thea priori SNR estimator used,
because the parameters are found from measured data that
depend on it (see sections 3.1 and 4.2.1). It is clear that using
an exponential smoother fora priori SNR estimation is not
optimal. The lower two panels showSQversusNRwhenν is
varied over the same range as for the upper two panels. The
value of ν increases when going from the right to the left
along the curves. More noise reduction is possible for the
generalized Gamma amplitude estimators, but the maximum
achievable speech quality is higher for the RMM amplitude
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estimators. Similar trends are seen for car noise.
Figure 3 shows the results for theγ = 2 case. The max-

imum achievable performance is about the same as for the
γ = 1 case, although the results are much more sensitive to
the value of theν-parameter. The RMM amplitude estima-
tors perform about the same on thea priori SNR estimators
of both cases.

5.2.1 Informal listening

For increasing values ofν the enhanced speech sounds more
reverberant but the musicality decreases, especially for the
amplitude estimators of theγ = 2 class. For the RMM am-
plitude estimators theν-dependency is the weakest, although
these effects are clearly noticeable forν → ∞. For the lowest
values ofν, all estimators sound very similar.

5.3 Discussion
Amplitude anda priori SNR estimation for the generalized
Gamma models is based on one and the same prior speech
distribution (i.e., (2) with the same values ofγ andν). This
does not necessarily lead to optimal results. To a givena
priori SNR estimator corresponds a certain measured his-
togram of spectral amplitudes. This histogram depends on
the unknown dynamical and statistical properties of this par-
ticular a priori SNR estimator. There is no reason why the
parametric amplitude distribution used in calculating thea
priori SNR estimates should fit accurately to its correspond-
ing measured amplitude histogram. In fact, we have seen that
an RMM model can fit much better to histograms found with
the generalized gammaa priori SNR estimator. We have not
investigated whether using differentγ and/orν values for the
amplitude anda priori SNR estimation tasks leads to signif-
icant improvements for the generalized Gamma models.

Many estimators found in literature that are based on
parametric models of the speech prior distribution, includ-
ing the ones presented here, are implicitly assuming that the
conditional distributionfA(a|λ̂S) has the same shape (except
for a variance scaling) for all values ofλ̂S. This may not be
an accurate assumption for all SNRs, because the properties
of the a priori SNR estimator depend on the SNR. A data-
driven approach has been proposed in [12] to deal with this
problem.

6. SUMMARY AND CONCLUSIONS
In this paper we have proposed Rayleigh Mixture Models to
describe measured speech amplitude distributions in the con-
text of speech enhancement. We have shown that the result-
ing amplitude estimators can compete with state-of-the-art
estimators. Furthermore, analytical derivation of estimators
for meaningful distortion measures is relatively simple.
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