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ABSTRACT

In this paper, we consider the construction of time-varying,
support-adapted, oversampled filter banks. In particular,
we consider a general class of filter banks, which includes
tight frames and orthogonal filter banks as special cases. We
show that it is possible to construct a set of boundary filters,
which allows the application of the filter bank to one-sided or
finite-length signals, without extension of the signal beyond
its boundaries. The proposed time varying filter bank retains
the properties of the original filter bank, i.e., it implements
a frame with the same bounds of the original frame. In the
case of orthogonal filter banks, the proposed modified struc-
ture implements an orthogonal transform. The construction
inherits the ease of implementation and the computational
robustness of the lattice filter bank structure.

1. INTRODUCTION

Although filter banks are usually designed to process sig-
nals with infinite support, in roapplications (e.g., image cod-
ing), the signal to be processed is defined only on a finite
set S ⊂ Z. The case where we consider finite length signals
requires special treatment, and the most common solution
is to extend the signal by zero padding, periodic repetition
or extension by symmetry. It is well known that every sig-
nal extension strategy has its own drawbacks: zero padding
introduces transitory, periodic repetition introduces artificial
discontinuities, symmetric extension require symmetric fil-
ters and rules out two-channel orthogonal filter banks. More-
over, in the context of oversampled filter banks, periodic rep-
etition introduces “long-distance dependencies” among the
output coefficients and this can make the application of some
reconstruction algorithm very problematic [1].

In this paper we propose a different approach, similar to
the one used by Herley and Vetterli [2]. In [2], the Authors
consider the case of orthogonal filter banks and give a general
procedure to complete at the boundaries an orthogonal basis
built from the filter impulse responses. In this way, the prob-
lem is seen from a perspective that is broader than devising
a convenient extension for the signal. In this paper, we con-
sider a general class of oversampled filter banks, which cor-
respond to tight frames or to orthogonal filter banks as spe-
cial cases, and interpret the original filter bank as a frame of
ℓ2(Z). In Section 5, we show how a generic oversampled fil-
ter bank can be extended so that the result is a filter bank with
the desired special structure. We model the signal with sup-
port S ⊂ Z as a vector of ℓ2(S). In the proposed scheme, we
retain the subset of functions of the filter bank frame whose
support is contained in S and extend such a subset to a frame
of ℓ2(S) by adding some “boundary functions.” Our goal is to
end up with a frame having the same bounds of the original

one. The advantage of the proposed approach is that it can
be applied both to critically sampled and oversampled filter
banks. The proposed structure is based on the lattice real-
ization of the filter bank and lends itself to an efficient and
numerically robust implementation. In the particular case of
orthogonal filter banks, our scheme allows to complete very
conveniently an orthogonal basis built from the filter impulse
responses, and therefore gives a special yet effective solution
for the problem considered in [2].

2. PRELIMINARY REMARKS

2.1 Notation

We will denote with IN the set of the first N non negative inte-

gers {0, . . . ,N−1} and with C
N×M the set of N×M complex

matrices. Operators over Hilbert spaces will be denoted with
uppercase letters (e.g., O), complex vectors with lowercase
bold letters (e.g., u), complex matrices with uppercase bold
letters (e.g., F), polynomial matrices with uppercase bold let-
ters followed by “(z)”, (e.g., H(z)).

If h : Z → C is a discrete-time signal, we will denote
with h†, the signal defined as h†(n) := h∗(−n). If H(z) =
∑n∈Z

h(n)z−n, we define

H†(z) := ∑
n∈Z

h∗(n)zn = H∗((z−1)∗).

If H(z) is an N × M polynomial matrix, we define H†(z)
as the M × N polynomial matrix satisfying (H†(z))r,c =

(H(z)c,r)
†
. A square matrix H(z) such that H†(z)H(z) = I

will be said paraunitary. Finally, if F is a complex matrix,
we will define F† as (F†)r,c = (Fr,c)

∗. Note that this defi-

nition is consistent with the definition of H†(z) when every
entry of H(z) is a constant polynomial.

If X is a (finite or infinite) countable set, we will denote
with ℓ2(X) the Hilbert space of square summable complex
functions defined on X with scalar product

〈 f ,g〉 := ∑
n∈X

f (n)g∗(n).

Let D be a countable set and let V be an Hilbert space. A
D-indexed frame for V is a set Φ := {φk ∈ V}k∈D

indexed by

D
1 such that there exist A > 0 and B < ∞ satisfying

∀x ∈ V A‖x‖2 ≤ ∑
k∈D

|〈x,φk〉|
2 ≤ B‖x‖2 (1)

1One could choose, without loss of generality, D = Z, however, when
considering frames obtained via oversampled filter banks is usually more
convenient to choose other sets for D such as IN ×Z.
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Figure 1: Lattice implementation of an oversampled filter
bank satisfying equation (3).

The frame is said to be tight if one can choose A = B. One can
associate to Φ its analysis operator F : V → ℓ2(D) defined
as

(Fx)k := 〈x,φk〉, k ∈ D (2)

An N/M analysis filter bank with impulse responses

hk ∈ ℓ2(Z), k ∈ IN , maps sequence x ∈ ℓ2(Z) into sequence

y ∈ ℓ2(IN ×Z) defined as

yk,n := x∗hk(Mn) = ∑
m∈Z

x(m)hk(Mn−m) k ∈ IN ,n ∈ Z

(3)
It is not difficult to verify that (3) can be rewritten as

yk,n = 〈x,τMnh†
k
〉 (4)

where τMn : ℓ2(Z) → ℓ2(Z) (the translation operator) is de-
fined as

[τMnx](k) := x(k−Mn).

Comparison between (3) and (4) suggests that one can inter-
pret filter bank (3) as an implementation of the analysis oper-
ator associated with vector set Φ := {τMnh†

k
,k ∈ IN ,n ∈ Z}.

2.2 Problem statement

Suppose we are given an N/M analysis filter bank (3). The
problem of adapting (3) to IL can be formalized as follows.

Problem 1. Let

Φ := {τMnh†
k
,k ∈ IN ,n ∈ Z} (5)

be the set associated with (3) and suppose that Φ is frame
of ℓ2(Z) with bounds A and B. Let ΦL be the subset of Φ
containing the functions in Φ whose support is contained
in IL

2. We want to find a finite set of “boundary functions”

Φ := {φ n, n = 1, . . .} such that Φ∪ΦL is a frame of ℓ2(IL)
with bounds A and B. Note that we do not require that the
functions of Φ belong to Φ (and usually the do not).

In the first part of this paper we are going to solve Prob-
lem 1 for the special class of filter banks whose N × M
polyphase matrix can be written as

H(z) = U(z)F (6)

where F is an N ×M complex matrix and U(z) is an N ×N
paraunitary matrix.

2Clearly, ΦL is a basis for a subspace of ℓ2(IL).

Although the class of filter banks satisfying (6) is not
the most general one, it is general enough to include several
cases of practical interests such as orthogonal filter banks and
tight frames [3]. Moreover, in Section 5 we will show how
any filter bank can be modified in order to satisfy (6).

If the polyphase matrix H(z) satisfies (6), the filter bank
can be implemented as shown in Fig. 1 where the input signal
is processed by a block transform with matrix F followed by
the processing associated with matrix U(z), implemented by
means of a lattice structure [3]. Our approach will consist in
modifying the lattice implementing U(z) in order to adapt it
to the finite support.

3. INFORMAL DESCRIPTION

Although the formal theory can be quite technical, the intu-
itive idea behind the proposed solution is quite simple and
it is worth to introduce informally the proposed scheme by
means of an example. Since our approach does not modify
the first stage of Fig. 1, we will suppose, for the sake of sim-
plicity, F = I, i.e., the case of an orthogonal filter bank.

Suppose we want to adapt to I2K , K ∈ N, a 2/2 orthog-
onal filter bank with 4-taps impulse responses hk, k = 0,1.
Such a filter bank can be implemented by means of the lat-
tice structure shown in Fig. 2 [3]. The first block in Fig. 2 is a
serial-to-parallel converter (or a polyphase transform) which
partitions the input signal into 2-sample blocks and outputs
vectors un := [x(2n),x(2n+1)]t . Note that since x ∈ ℓ2(I2K),
un is defined only for n ∈ IK . The second block of Fig. 2 ap-
plies a rotation of α1 radians (represented by matrix R(α1))
to every un, producing vector sequence vn = R(α1)un. Ob-
serve that sequence vn coincides with the result of applying
a block transform with matrix R(α1) to x.

The next stage applies a shift to the lower channel as
shown in Fig. 2b. Note that now there is no value in the
lower channel corresponding to the first value in the upper
one and, similarly, there is no value in the upper channel cor-
responding to the last value in the lower one. Usually one
replaces the question marks in Fig. 2b with zeros and this
corresponds to extending the input signal by zero padding.
In our scheme, instead, we just extract the two “unpaired”
values (called head and tail in Fig. 2a) and apply rotation
R(α2) to the remaining vector sequence v̂n, n = 0, . . . ,K −2
to obtain wn. An example of the data generated by the struc-
ture of Fig. 2 in the case K = 4 (i.e., with an input signal of
length 8) can be seen in Fig. 3. The output data in Fig. 3 are
shown with a shaded background.

It is easy to see that (i) the processing associated with the
structure of Fig. 2a is invertible, (ii) values w1, . . . ,wK−1 co-
incide with the values one would have obtained by process-
ing x with the original filter bank and (iii) the operator which
maps x ∈ ℓ2(I2K) to sequence v0,0,w1, . . . ,wK−1,v1,K−1 is

unitary.
The three claims above imply that the same sequence

v0,0,w1, . . . ,wK−1,v1,K−1 could have been obtained by an-

alyzing x with an orthonormal basis for ℓ2(I2K) including
Φ2K , the subset of functions of Φ whose support is contained
in I2K , plus some “boundary functions.” The nature of such
boundary functions can be understood with the help of Fig. 4.
Remember that the output of the first rotation stage in Fig. 2a
corresponds to the output of a block transform or, equiva-
lently, to the output of a two-channel filter bank whose filters,
h0,0 and h0,1 have only two non-null taps. Fig. 4a depicts set
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Figure 2: (a) Example of lattice implementation of an orthog-
onal two channel filter bank adapted to a finite support. (b)
Effect of the shift stage.

Φ(0) := {τ2nh†
0,i

, i = 0,1,n ∈ IK} by representing each τ2nh†
0,i

with a box corresponding to its support. Note that the first
stage of Fig. 2a can be seen as an implementation of the anal-

ysis operator associated with Φ(0).
It is easy to recognize that the action of the cascade of

the delay and rotation matrix R(α2) in Fig. 2a can be in-

terpreted as combining function τ2nh†
0,0

in the upper row of

Fig. 4a with function τ2n−2h†
0,1

of the lower row in order to

obtain two new functions τ2n−2h†
1,0

and τ2n−2h†
1,1

. The only

functions which remain unpaired are h†
0,0

and τ2K−2h†
0,1

. The

resulting set of functions is shown in Fig. 4b. By iterating
this reasoning for every stage of the lattice, it is easy to see
that the boundary functions introduced by our scheme are the
impulse responses of the orthogonal filter bank obtained by
removing one or more stages from the lattice structure.

Intuitively, the structure of Fig. 2a can be extended, with
obvious changes, to the case of an N-channel orthogonal fil-
ter bank. By replacing the “Paraunitary processing” block of
Fig. 1 with the structure of Fig. 2a extended to the N-channel
case, one obtains the scheme of Fig. 5. Our goal is to show
that the scheme of Fig. 5 is equivalent to the analysis oper-
ator associated with a suitable frame Ψ of ℓ2(IL) having the
same bounds of the filter bank implemented by the scheme
of Fig. 1.

4. FORMAL DESCRIPTION

According to the discussion of the previous section, for an
input signal of length L = KM, the proposed scheme imple-
ments a finite dimensional linear operator with analysis ma-
trix UF̃, where F̃ is a KN ×KM block diagonal matrix with
diagonal blocks equal to F, and U is a unitary matrix. We
call Φ the frame corresponding to the block-wise application
F̃ of F whose elements φk ∈ Φ are the rows of matrix F̃ [4].
The following general theorem, whose proof is omitted for
the sake of brevity, guarantees that the set Ψ = {ψk} of the

rows of UF̃, is a frame and that Ψ has the same bounds of
Φ. Note that each element ψk of Ψ is obtained as a linear
combination of φk with the complex conjugate elements of
U.
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Figure 3: Example of the data generated by the scheme of
Fig. 2a for an input signal of length 2K = 8.

Theorem 1. Let D and E be two countable sets. Let V be
a Hilbert space and let Φ := {φk}k∈D

a D-indexed frame for

V. Let operator U : ℓ2(D) → ℓ2(E) defined as

(Ux)n := ∑
k∈D

un,kxk, n ∈ E (7)

be a unitary operator. For every n ∈ E define

ψn := ∑
k∈D

u∗n,kφk. (8)

Let Ψ := {ψn,n ∈ E}. The following statements hold

1. If G is the analysis operator associated with Ψ, then G =
UF

2. Set Ψ is a frame for V with the same bounds of Φ
3. If Φ is an orthonormal basis of V, then Ψ is an orthonor-

mal basis of V.

Using Theorem 1, it is also easy to check that for a fil-
ter bank with polyphase matrix of the form given in (6), the
bounds of the associated frame are equal to the bounds of F,
which in turn are equal to the bounds of Φ. Therefore, filter
bank (6) and the frame implemented by Fig. 5 share the same
bounds. Moreover, it is clear that the proposed structure in-
herits the computational robustness of the lattice implemen-
tation.

5. EXTENSION TO GENERAL FILTER BANKS

The goal of this section is to show how a generic filter bank
can be conveniently extended so that its polyphase matrix
satifies (6). First, it is worth to obtain an equivalent condition
for a filter bank satisfying (6).
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Figure 4: (a) Vectors corresponding to the output of the first
rotation stage in Fig. 2a. (b) Vectors corresponding to the
output of whole lattice structure in Fig. 2a. The topmost
and bottommost blocks represent vectors inherited by the
first stage and correspond to the head and tail part. The
other blocks represent the translated version of the impulse
responses of the original filter bank and correspond to the
core part.

Property 1. Let H(z) be an N×M, N ≥ M full rank polyno-
mial matrix. Matrix H(z) can be written as in (6) if and only
if

R(z) := H†(z)H(z) = R ∈ C
M×M. (9)

Proof. One direction is trivial since if H(z) = U(z)F, with

U(z) pseudo-unitary and F ∈ C
N×M , then

H†(z)H(z) = F†U†(z)U(z)F = F†F ∈ C
M×M (10)

In order to prove the other implication, suppose R(z) ∈
C

M×M , and observe that R† = R and that R is positive de-
fined (because H(z) is full-rank). Therefore, one can find

B ∈C
M×M such that R = BtB. Note that B is invertible since

detR = |detB|2 6= 0. Let G(z) = H(z)B−1 and observe that

G†(z)G(z) = B−†H†(z)H(z)B−1 = B−†(B†B)B−1 = I.
(11)

where, of course, B−† := (B†)
−1

= (B−1)
†
. Equation (11)

implies that one can find a paraunitary matrix U(z) and a
complex matrix V such that G(z) = U(z)V [5, 3]. It follows
that H(z) = U(z)VB.

According to Property 1, the class of filter banks which
satisfy (6) is quite a special one (although it contains the very
important cases of orthogonal filter banks and tight frames

U1 U2

un,1

n,M−1u

un,0 vn,0

vn,1

un vn

vn,N−2

vn,N−1 z−1 z−1 z−1

core

S/P
x

head

tail

F

Figure 5: Lattice structure of Fig. 1 in order to adapt it to a
finite support.

[3]). It is nevertheless possible to “convert” any FIR filter
bank H(z) to a filter bank satisfying (6) by adding to H(z) a
suitable set of “dummy” channels. This possibility relies on
the following result.

Theorem 2. Let H(z) be an N ×M, N ≥ M, polynomial ma-
trix. There exists an K ×M, K ≤ M, polynomial matrix A(z)
such that matrix

Q(z) :=

[

H(z)
A(z)

]

,

satisfies

Q†(z)Q(z) ∈ C
M×M (12)

Proof. In the following, we will construct an M ×M matrix
A(z). This does not rule out the possibility to have A(z) with
K < M rows in some cases. Let σ(ω) denote the largest

eigenvalue of H†(e jω)H(e jω) and choose

α > max
ω∈[0,2π]

σ(ω) (13)

We are going to show that one can find a polynomial matrix
A(z) such that Q†(z)Q(z) = αI. Since

Q†(z)Q(z) = H†(z)H(z)+A†(z)A(z) (14)

we need to find A(z) such that

A†(z)A(z) = B(z) := αI−H†(z)H(z) (15)

Since B†(z) = B(z) and B(e jω) is positive definite for ev-
ery ω ∈ [0,2π], one can find A(z) satisfying (15), as demon-
strated in [6].

The claim of Theorem 2 can be interpreted by saying that
by suitably adding a set of K ≤ M “dummy channels” (repre-
sented by A(z)) to the original filter bank one can transform
any filter bank into a filter bank satisfying (6). The extended
filter bank can be implemented using the proposed structure
and the output of the dummy channels discarded. Clearly,
this solution increases the computational complexity; note,
however, that the claim K ≤ M gives an upper bound to the
additional complexity introduced by this scheme. In some
cases of practical interest, an extension with K < M chan-
nels can be easily constructed. For example, if the N/M fil-
ter bank H(z) has been obtained by extending an orthogonal
filter bank by the addition of N −M channels of an auxil-
iary orthogonal filter bank [7], it is easy to see that one can
choose A(z) as the polyphase matrix relative to the remaining
2M−N < M channels of the auxiliary filter bank.
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Figure 6: Comparison between the coding gains obtained by
processing a finite length signal by using periodic extension
and the proposed approach.

6. EXAMPLE

A possible source of interest for boundary-adapted filter
banks is the possibility of using two-channel orthogonal fil-
ter banks without the need of extending the signal by peri-
odicity. In image coding applications, it is well known that
periodic extension can give rise to artificial discontinuities
at the image boundaries, resulting in inefficient coding. It
is interesting to analyze the behavior of the “boundary fil-
ters” introduced by the proposed scheme with respect to sig-
nal compression. In order to analyze the problem, we carried
out few experiments. For every L in {2,4, . . . ,20} we pro-
cessed each line of the Lena image (gray scale, 512× 512)
by using both periodic repetition and the approach proposed
in this paper with a two-channel orthogonal filter bank em-
ploying the L-tap Daubechies filter. In both cases we mea-
sured the variance of the low-pass and the high-pass channel
and determined the corresponding coding gain [8]. The head
and the tail samples were attached to the low-pass channel
output coefficients. The results are shown in Fig. 6 which
shows that the use of support adapted filter banks can be an
interesting option. It is also interesting to show the frequency
responses of the boundary filters generated by the proposed
scheme. Fig. 7 shows the frequency responses of the bound-
ary filters corresponding to the 8-tap Daubechies’ filter. It is
clear that only the two longest filters have a good frequency
response, while the two shortest filters are not good low-pass
filters. Although each filter affects only two samples (one in
the head, the other in the tail), this raises the problem if it is
possible to find orthogonal filters such that all the boundary
filters have good performance.

7. CONCLUSIONS

In this paper, we proposed a simple procedure to extend
the analysis functions of an orthogonal or oversampled filter
bank of special structure so that the resulting frame opera-
tor has the same bounds of the original one. The support of
the corresponding analysis functions is fully contained in the
support of the signal. The extension is based on the lattice
implementation of the filter bank and retains its simplicity
and computational robustness. In the case of orthogonal filter
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1

1.5

|H
(f

)|
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len=2
len=4
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Figure 7: Frequency responses of the intermediate filters cor-
responding to an 8-taps Daubechies filter.

banks, the proposed procedure provides an effective solution
to the general problem considered in [2]. We have also shown
that we can extend a generic oversampled filter bank so that
the procedure proposed in this paper can be used. Experi-
mental results show that some coding gain can be obtained
with the proposed modified filter bank with respect to peri-
odic extension.
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