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ABSTRACT research problem, there exist some methods such as Matching Pur-
uit [5], which offer a suboptimal solution with a tractable complex-

y. One of the important characteristics of the Matching Pursuit is

t it captures the most prominent signal features in only few itera-

that relates sparse components in different views with local geome lons. Hence it provides very good image compression performance
P P 9 t low rates, while producing a progressive and scalable representa-

ricgl transforms, under epipolar constraints. By combining sele(;te on. In the same time, the components present in the sparse signal
pairs of features represented by sparse components, we estimaleyresentation carry important information for the estimation of the

the disparity map between images, evaluate coarse depth informgze o' geometry. In particular, we show that correspondences can be
tion, and recover the relative camera pose. The proposed framgs, ..« : o :

work allows to estimate the geometry of the scene, hence dIS'p"’mt@pipolar geometry constraints. Such correspondences allow to con-

_between_llwages, using tolnly cc|>tar(sje appr?m{namo?s olf mlfjlt"v'evgtruct a disparity map between images and to estimate coarse depth
'”;ﬁgeﬁfs' ar:seuxfﬁgirgr?tetrc]) aesrt’ianswl;t: themd(?ns rl?tema Orr‘]é’f‘h ew (;T?"ihformation. Interestingly, since the main scene features are cap-
p = ) e € disparity map al € Came{graq with only few basis vectors, the disparity map can be obtained
pose. This is certainly beneficial for predictive multi-view Compres-¢ .,y very coarse descriptions of the multi-view images. Moreover,
sion schemes, where the scene reconstruction relies on the disparjfy, o osed correlation model inherently matches the correspond-
mapping from low-resolution images in order to progressively dej teatures between views giving enough information for the re-
code the higher image resolutions. covery of the relative camera pose. The experimental results show
that very coarse image approximations can lead to quite precise
1. INTRODUCTION disparity maps between multiple views, which can be further ef-

. N . iciently exploited for the depth estimation, camera pose estimation
One of the main objectives of 3DTV is to compactly represent a 3Ij;;md compression of the light field. Such benefits are quite interest-

scene with a set of multi-view images and transmit it in an efﬂuen{jpg in the design of efficient multi-view coding strategies, and the

way to the final user, offering thus a real three-dimensional perce S > .
tion of the received information. The 3D experience generally relie ovel framework presented in this paper certainly opens interest-

on depth estimation algorithms, which identify and match series o g perspectives for the joint design of coding and rendering of 3D
! scenes.

features points in multi-view images in order to offer a pleasant per- . . . .
ception of depth [1]. Depth estimation in 3DTV generally requires_ 'N€ paper is structured as follows. We introduce in Section 2
decoding of high-resolution multi-view images, where dense deptﬁhe view correlation model based on sparse image approximations.

fields can be estimated by hybrid recursive matching algorithmd? Section 3, we define the transform model for the case of omnidi-
for example, as proposed in [2]. 3D rendering of scene informa—reCt'On?‘l images, whlle in Section 4, we explain how th}a trqnsform
tion is typically performed independently from coding and trans-Mmodel is used for disparity map and camera pose estimation. Ex-
mission, while design problems in 3DTV framework should ratherP€rimental results are presented in the Section 5.
be approached from an inter-disciplinary perspective. In particu-
lar, image-based rendering and scene geometry estimation should 2 CORRELATION IN SPARSE DECOMPOSITIONS
be considered jointly with image coding for increased overall per-
formances. Modeling the correlation between multi-view images in camera net-
We propose a flexible framework for the representation of vi-works is one of the most important problems in both multi-view
sual information, which allows for coarse estimation of scene geomrendering and coding. A good correlation model should relate cor-
etry and opens interesting perspectives for efficient coding of multiresponding features in different views and hence lead to an efficient
view images. We introduce a correlation model between omnidirecscene geometry estimation. In camera sensor networks, the corre-
tional images that captures local geometrical transformations in thiation between images is mainly driven by the 3D motion of the
3D scene. Omnidirectional images are particularly interesting foobjects in the scene, which results in local changes of image com-
3D scene representation, since they can be appropriately mappedgonents that represent these objects. If we decompose each image
spherical images which capture the light field in the radial form [3].into sparse components that capture the objects in the scene, we can
It allows to avoid discrepancies that exist in planar images, anéssume with high probability that the most prominent components
leads to effective algorithms for camera pose estimation [4] or depthre present in all images, possibly with some local transformations.
estimation from multiple views. Since these local transforms capture the motion due to changes of
In order to provide a rich representation of the visual informa-viewpoint, they carry the disparity information that can be advanta-
tion, we propose to approximate multi-view omnidirectional imagesgeously used for depth estimation. We therefore propose to model
by sparse expansions with geometrical basis functions. Althougkhe correlation between views by local geometrical transformations,
finding the sparsest representation of a signal is still an ongoinghich are estimated by pairing components in sparse image decom-

This paper presents a framework for coarse scene geometry e
mation, based on sparse representations of omnidirectional imag
with geometrical basis functions. We introduce a correlation mod

positions.
This work has been supported by the Swiss National Science Founda- More formally, given a certain basis, or a possibly redundant
tion under grant 20001-107970/1. dictionary of atoms7 = {@},k=1,...,N, in the Hilbert spacé,
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every imagey can be represented as: (6,9,y) represents Euler angles that respectively describe the mo-
tion of the atom on the sphere by ang@sand ¢, and the rota-
N tion of the atom around its axis with an anglg anda, 3 repre-

y=®x= z Xy @k, Q) sent anisotropic scaling factors. In such a structured dictionary, the

k=1 transform of one atom to another interestingly reduces to a trans-

o form of its parameterg, i.e.,gy, = F(gy) =U(Y)gy =U (Y o %)g.
where the matrix® is composed of atomg as columns. When  Note finally that the size and redundancy of the dictionary is directly
the dictionary is over-completa,is not unique. In order to find a driven by the number of distinct atom transformations.
compact image representation one has to search for a sparse vector In order to relate the corresponding features in different camera
X. We say thay has asparserepresentation i if the number of  views, we need to find the local transforms between sparse com-
non-zero components iis much smaller than the dimensionxof  ponents that describe these features. In other words, we are inter-

Therefore, the sparse representatioty ist ested in finding correspondences between atoms that respectively
represent the imageg andy,, generated by two spherical cam-
y=®1c= Z Xk ks (2)  eras that capture the same scene. Consider angjtoyne J; from
ke the sparse decomposition of image The subset of transforms

_ VARS {Ylgy, = F(gy) =U(Y)gy} allows to relateyy to the atoms
wherec is the vector of non-zero elementsxfi labels the set of g, in the expansion of». However, not all these transforms are
atoms{ ¢ }kel participating to the representation, afid is a sub-  feasible under epipolar constraints. These constraints represent one

matrix of & with respect td. _ of the fundamental relations in multi-view analysis, and define the
In the case of two correlated imaggs = ®1,¢1 andy> = relation between 3D point projections;(z, € R3) on two cameras,

P71, Co, there exists a subset of atoms indexed respectively byl1 as:

andJ; € |, that represent image projections of the same 3D features z;f Rzq =0, 4

in the scene. We assume that these atoms are correlated, possiblx ] ] )

under some local geometric transformation. Derfttt@) the trans- W ereR and'l_' are the rotation and translgt!on matrices of one cam-
form of an atom in the image decomposition that results from the&ra frame with respect to the other, aidis obtained by repre-
motion of an object in the 3D space, or equivalently, the transforsenting the cross product df with Rz; as matrix multiplication,
mation imposed to atonp in different views due to camera dis- i.€., TRa1 = T x Rzy. The set of possible transforms is there-
placement. Therefore, the correlation between the images can Bere reduced to the transforms that respect epipolar constraints be-
modeled as a set of transforsbetween corresponding atoms in tween the atongy in y; and the candidates atorgg in yo. We

sets indexed by, andJ,. The approximation of the image can  evaluate the constraints given in Eqg. (4) on atom centers denoted
be rewritten as the sum of the contributions of transformed atomsyy = [sinfcosp, singsing, cosh]T with | € {i, j}, and define the

and remaining atoms it : setV,E C V0 of possible transforms of atogy, as:

Vo= 3 uR(@)+ 3 e ® VE = {Ylgy, =U(Y)gy.m] TRm =0}. ®)
i€y kelz\Jz

Equivalently, the set of atongg, in y, that are possible transformed
This work addresses the disparity map estimation and camera posersions of the atorgy, is denoted as thepipolar candidates sett
recovery inferred from the proposed correlation model, but thiss defined by the set of atoms inde)('(fs with
model could also be used for joint or distributed coding of multi-
view images. The depth estimation and encoding process are tightly rE—fvig, =U VE r 6
interlaced since geometry is key to effective representation of 3D = {vloy (V)gy.V eMT} T ©)
scenes.

3. TRANSFORMS IN OMNIDIRECTIONAL MULTI-VIEW
IMAGES

In this section we apply the generalized correlation model intro-
duced in section 2 to the case of omnidirectional camera net-
work. More precisely, we define the local transform model among
sparse components in omnidirectional images that are appropriately
mapped to spherical images.

Motions of objects in the 3D space introduce various types of
transforms in the image projective space. Most of these transformsigyre 1: Selection of positions of atoms that satisfy the epipolar
can be represented by the 2-D similarity group elements, Wh'daonstraint
include 2-D translation, rotation and isotropic scaling of the im- '
age features. We also consider anisotropic scaling to further ex- A graphical interpretation of the epipolar constraint for spheri-
pand the space of possible transforms among image features. #3| images is shown on the Figure 1, where we deno asdS,
order to efficiently capture transforms between sparse image confhe two unit spheres corresponding to camera projection surfaces.
ponents, we propose to use a structured redundant dictionary e centem; of the atomg,, lies on the part of a great circlé
atoms for image representation. Atoms in the structured dictiopptained by projecting the }3;4 on the spher&,. This ray origi-
nary are derived from a single waveform that undergoes rotatiomates from the center of camera 1 and passes through the center of
translation and scaling. Hence, transform of an atom by any of thﬁtomgy on the sphers,.

2-D similarity group elements or anisotropic scaling, results in an-  Recall that corresponding atoms represent the same object in
other atom in the same dictionary: the dictionary is invariant withthe 3D scene. Hence, we assume that the 3D motion of an object re-
respect to any transform action. In particular, we use a dictionargyts in a limited difference between shapes of corresponding atoms,
of atoms on the 2-D unit sphere. Given a generating funaon and we further restrict the set of possible transforms by constraints
defined in the space of square-integrable functions on a unit twagn the similarity of candidate atoms. We measure the similarity
spheres?, g(6,¢) € L*(S°), the dictionary = {@} = {gy}yer s or coherence of atoms by the inner prodyt, ) = [(gy,gy,)],
constructed by changing the atom indexes (6,¢,y,a,B) €T, and we impose a minimal coherence between candidate atoms, i.e.,
i.e., by applying a unitary operatbt(y): gy =U(y)g. The triplet  pu(i,j) >s.

rayL‘
Ci : projection ofL ;

all atoms positions
*  possible atoms positions
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This defines a set of possible transfomfifég \/i0 with respect  to the North pole, and it is formally given withx+ jy = pel? =

to atom shape, as: 2tan(8/2)el?. Under this projection, the transform of the point
(8,¢) on the grid4; to the point(6’,¢’) on the grid%, due to
\/i“ = {)/|gyj =U ()/)gyl Ju(i,j) > s}, ©) anisotropic scaling can be obtained by scaling the stereographic pro-

jection of (6, ¢) with 1/a, and1/,, in the following way:
and a set of candidate atomsyip, denoted theshape candidates

set whose indexes belong t‘q“ c I, with: X =p’cosp’ = ixz ﬂp cosp (10)
az az
M ={viloy =U()ay.v €W} ®) y:p’simp’zﬁi :%psinrp,
2

Finally, we combine the epipolar and shape similarity con-
straints to define the set of possible transforms for atgmas  wherep’ = 2tand’ /2 andp = 2tanf/2. By solving the system (10)

Vi =VEE NVH. Similarly, we denote the set of possible parametergor 6’ and¢’, we get:

of the transformed atom iy, aslhj = I'iE N Fi“. Therefore, given aoBysing

an atomgy, in yi, finding its corresponding atom iy» reduces to ¢ =up(p)= arctan<217)

a search for @, such that:y; € I> andy; € I';. Since the image a1p2cosp

decomposition off, is sparse, the coherence between two distinct 0 [aZco@¢ + B2si¢

atoms inly is very small, whereas the coherence between two atoms 6’ = (8, ¢, ¢’) = 2arctan tan\/ 2 = )

in [ is high due to its definition. Hence, if the corresponding fea- 2\ aZco ¢’ + pIsirt ¢’

ture is present i, the intersection of the two constraint sgt< I,

andy; € I'j contains only the correct corresponding atom with veryFinally, we can define the functiar-) as a pair of transforms, (¢ )

high probability. In the case where the correspondence does not eandu; (8, ¢,up(¢)) followed by the transform of spherical coordi-

ist, this intersection is empty. Correspondences allow to define a sehites(6’, ¢’) to Euclidean coordinates.

of pairs of atoms from two viewsg; andy,, which can be exploited Each row in the matriX@, therefore results in a poir, that

for estimating the geometry of the scene, as explained in the nex¢ a disparity mapping of the poim given by the corresponding

section. row in P;. Finally, the disparity maps obtained from the correspon-

dences in all views are combined into a single disparity map by

4. SCENE GEOMETRY ESTIMATION FROM ATOM selecting the most confident mapping for each pojrfrom differ-

TRANSFORMS ent mappingsz<1i>,i =1,...,n, defined byn correspondences. The

In comparison to feature points matching, the pairing of atomdinal mapping point; is selected as:
with local transforms also offers a geometrical description of the

(11)

local neighborhood of the observed features. Therefore, pairing Z; =arg max WM(Zj(I_I))7 (13)
two atoms in different views provides an estimation of the dispar- 2V i=Tn

ity map in the local neighborhoods where the corresponding atoms

have high energy. where the confidencey, is a normalized weighting function that

Disparity map relates a poizg on the imagey; with a point  prioritizes the points with highest response of the correspondence
Z on yp, such that the epipolar constraint from Eq. (4) is satis-gy. The goal of this function is to put more importance onto the
fied. Consider now a pair of corresponding atofgg,gy,) intwo  disparity mapping of points that lie closer to the geometrical com-
images. We want to find a mapping of each poiniggrio its cor-  ponent captured by the atom (typically edges). One example could
responding point ogy,. Whengy, is defined in the discrete space, be a 2-dimensional Gaussian weight function, anisotropically scaled
i.e., on the spherical gri¢;, disparity mapping translates to the grid and oriented, which fits the atogy .
distortion induced by the local transform betwegpandg,, . Let The disparity map can be further used for recovering the relative
us denote withP; the matrix of sizeg x 3 that consists of Euclidean pose between cameras and for depth estimation.
coordinates of) points on#;. Let furthery, = (6, ¢i, Y4, ai, ) and
y; = (6j,9j,¥j,a;,Bj). The transform of the grig/, given with 4.1 Camera pose recovery
P1, to a grid%2, given with a matrix®,, includes two transforms:  Einding the corresponding atoms in two multi-view images opens
1. transform of rotation of the atorgy, given by Euler angles the door to an efficient and robust method for estimation of the rela-
(6, ¢i, ), into the rotation of the atorgy;, given by Euler an-  tive pose between two cameras, denoteR,dsfor the rotation and
gles(6,¢j, yj) translation. .Relylng only on the shape similarity constraint between
2. transform of anisotropic scaling of the atagy, given by the ~ corresponding atoms, we can find for the atgpe Iy its corre-
pair of scalega, 1), into the anisotropic scaling of the atom sponding atongy, such thay; € I> andy; € Fi“. Moreover, since the

gy;» given by the pair of scale@, 7). coefficients of corresponding atoms are correlated, they also help in
By combining these two transformi3; can be evaluated as: the pairing process. The pairs of atoms can be used to estimate the
disparity map and identify the matching feature points on the whole
P, — R;l “U(Ry - Py) ©) atoms. Each pair of atoms therefore defines a set of feature points
i ' ’

that describe the constraints given by the local transform. Using the
here R dR . . . by Eul | eight point algorithm [7] we can recover the camera pese from
where Ry and Ry, are rotation matrices given by Euler angles , gor of corresponding feature poi(m%,z'é),kz 1,...,n(n > 8) ob-

(61, i, 4n) and (6;, ¢, ), respectively, andi(-) defines the grid  (ained by gathering feature points from all pairs of atoms. The eight
transform due to anisotropic scaling. Since the anisotropic Sca“nHBoint algorithm consists of three basic steps:

of atoms on the sphere is performed on the plane tangent to t

North pole by projecting the atom with stereographic projection, ) " .

the grid%; is first rotated such that the North pole is aligned with C(l)mgute trt‘? smg;lar valuek decgmpgs't'on of the magrix

the center of atongy, then deformed with respect to anisotropic ~ [&,@",..,a"]" € R¥, wherea® = z1 © z; (® denotes the Kro-

scaling, and finally rotated back with the rotation matrix of atom ~ necker product). From the singular value decomposijor

ay,- UxZxVy takeES to be the ninth column o¥,, and form the
The stereographic projection [6] at the North pole projects a approximation of the essential matrix by unstacking nine ele-

point (8,¢) on the sphere to a poir{i,y) on the plane tangent ments ofES into a squaré x 3 matrixE.

T. Find an approximation of the essential matrixE = TR
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2. Project onto the essential space between 0 andr. The scales are distributed in a logarithmic scale
Compute the singular value decomposition of the approximatedrom 1 toN, /8 for the Gaussian atoms and from 2Ng/2 for edge-
matrix E to be: E = Udiag{0o1, 02,03}V, wherea; > g, > like atoms, with 3 scales per octave.

o3 > 0andU,V € SQ(3). In general, the matri€ is not in the For a simple and comprehensive illustration of the proposed

essential spac@y # 0, andos # 0), so the final approximation ~scene geometry estimation method based on sparse image decom-
of the essential matrix is the projection of matfixonto the  position, we have constructed a simple synthetic scene that consists

normalized essential space, evaluateH asUdiag{1,1,0}VT. of three objects: a sphere, a cube and a cone. The scene is captured
3. RecoverR, T from E with two spherical cameras, and the original images are shown on
RandT are extracted from the essential matrix as: Figure 2a) and b) (unwrapped). These images have been decom-
posed using the MP on the sphere. Three pairs of atoms in two de-
el Tyt & e T compositions have been recognized as correspondences, where each
R=URz(£5)V', T =URe(+ 2 J2U°, (14) of the atoms corresponds to one of the objects. Using the transforms
of only these three atoms, the disparity map has been estimated and
where 0 41 0 applied to the imagg to reconstruct an approximation of the image
RT(iE) (1 0 o Y2, as shown on the Figure 3a). Disparity maps from different atom
Z\=9/ ™ 0 0o 1 pairs have been combined by taking a weighted average of the map
at each pixel, where the weights have been assigned proportionally
and to the atom value taken on that particular pixel. This simple exam-
. 0 -T(3) T(2 ple shows that we can obtain a very good estimate of the disparity
T=| T 0 -T(1) |. between two images of the same scene, in using only very coarse
-T(2) T( 0 approximations of the original images (shown in Figure 2c) and d)).

This algorithm gives four solutions fd® T, but three of them can |t makes this method suitable in the context of low bitrate compres-
be eliminated by imposing the positive depth constraint. sion of light fields. Figure 3b) displays the difference between the
The advantage of matching the whole atoms is that we have §'0 Original images, while the Figure 3c) shows the difference be-
much bigger number of epipolar constraints coming from the loca}Véen the original and reconstructed imageThe range of values
neighborhood covered by the matching atoms. This makes the pr&2" Poth images is [-1,1]. ‘We can observe that many high valued

: - rrors (white and black pixels) are removed or reduced by applying
Bgisnetg :;(t)imarpeast-chlng method very robust to low precision featurﬁw disparity map as shown in Figure 3a). Therefore, the disparity

map efficiently captures the transforms of the three objects.
4.2 Depth estimation

When the relative camera poBeT is known, pairing atoms from
two images can be done by using both the epipolar and shape con-
straints. In other words, for the atogy € I; we can find its corre-
sponding atongy, such thaty; € I andy; € T'j. From atom pairs,
the disparity map betwed?, andP; is estimated as described in 4.
CY (b) (© (d)

jl'herefore, the depth of the 3D pointwhose projectiqns to two spher-
ical images are given withy andzy, related by the disparity map, Figure 2: Original synthetic images: ), b) y». Approximated

can be evaluated as: IT x Rzy| synthetic images: dj;, with 3 atoms, d)j, with 6 atoms.
= (15)

~ |za xRz’

wherex denotes the cross product. WHRJT is given as a relative
pose of camera 2 with respect to camera 1, the dppithevalu-
ated also with respect to camera 1. By compuginfpr each pair
of points inP, andP, we get a depth field for the observed atom
correspondence pair.

5. EXPERIMENTAL RESULTS (@) (b) ©)

The performance of the proposed scene geometry estimatiof re 3: a) Estimation from ing the disparity maoi:
method is evaluated on a simple synthetic scene and on the moEé%%Z 7y2'. c)) y:l v ion ofz y1, using Isparity mapyz;

complex natural scene captured with omnidirectional cameras. Th
sparse image decomposition has been obtained using the Match-
ing Pursuit (MP) algorithm [5] on the sphere with two dictionar-

ies, based on generating functions that respectively consist in a 2903
Gaussian function:

In order to show that we can also extract object depths for the
erved scene only from the three obtained transforms, we have
evaluated the mean distance to each of the objects to camera 1 based
0/ , 5 . on the obtained disparity map, when the relative camera Boke
96(6.9) = exp(—tar? > (0’ cog ¢ + Bsir? 4’)) , (16)  isknown. The results are shown in the Table 1, where the estimated
distances are compared with the original distances of objects mea-
and a 2D function built on a Gaussian and the second derivative giUréd at pixels on the spherical image that correspond to centers of

a 2D Gaussian in the orthogonal direction (i.e., edge-like atoms): the three MP atoms. We can see that the depths are well estimated
using only the obtained coarse image descriptions.

1 0 The natural scene images shown on the Figure 4 have been de-
9eL(6.0) = — (1602tar‘250052¢ —2) composed with the MP algorithm. The omnidirectional cameras
2 0 have been placed in a line (no rotation, same altitude) where suc-
2 2. cessive images are denotgd y3 andy,. The proposed method is
' exp(—tanzi (a cos’-d) +B S|n2¢)) - @n used to recover camera pose from edge camera imagasdys,.

The threshold on the coherence is se$ 9 0.4 to capture as many
The position parameter@ and ¢ can take 128 different values correspondences as possible and thus get more accurate results. For
(Nt = Np = 128), while the rotation parameter uses 16 orientations,each atom, the correspondences are sought in the neighborhood of
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Table 1: Comparison of estimated depths with the ground truth for
the simple scene

Object | Ground truth distance Mean measured distande
Sphere 1.0 154
Cube 2.0 2.29
Cone 1.7 1.82

the solid anglert/4. The camera posB, T is recovered from 18
correspondences, as described in the Sec. 4. Due to the camera
placement in a line, the rotation matrix between them should be
equal to the identity matrix and the translation vectoflto0 J, in

the ideal case. With the proposed method, we obtain the following
result for the rotation matrix:

( 1.0000 Q0000 —0.0015)
R—

(a)
(b)
8 |

—0.0002 09914 -0.1307
0.0015 01307 Q9914
Figure 5: Unwrapped natural images (128x128)y5ab) y»; €) y3

Figure 6:y3: reconstructegs using the disparity map froryy and

Y1 Y3 Yo 2.
| s
f :

and translation vectofT = [0.9909 —0.1322 —0.0253. There-
fore,RandT have been correctly recovered with a high precision.

Figure 4: Natural images

Figure 5 represents the unwrapped original natural images. Fig- -
ure 6 shows the reconstructed imageobtained by pixel mapping
from imagesy1 andys,, using the combined disparity map obtained
fromy; andy; (as explained in the Sec. 4). For the disparity map-
ping, we have usesl= 0.9 to have a consistent and smooth disparity @)
map. The differences between the imaggand reference images
y1 andy, are shown on the Figure 7 a) and b) respectively, with the = |'
range of [0, 1], where 1 (white) means no error. Figure 7c) illus-
trates the difference between the original imageand its recon-
struction with the proposed disparity mapping. For a quantitative
comparison of the three residual images, we evaluated their ener- (b)
gies. The first residual; — y3 carries the highest energy 86€.2, F
followed by they, — y3 with the energy77, while the residue after
disparity mapping with the proposed scheme resulted in the lowest i 1 4
energy 0f49.7, confirming the benefits of our method. Once again,
we can see that the obtained disparity map succeeds to compensate

the movements and transforms of objects in the scene, which can (c)
be advantageously used for the depth estimation and the predictive o _ _ )
coding within light-field streaming applications. Figure 7: Differences between: yj andys, energy: 89.2; by

andys, energy: 77.0; cy3 andys, energy: 49.7.
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