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ABSTRACT

This paper presents a framework for coarse scene geometry esti-
mation, based on sparse representations of omnidirectional images
with geometrical basis functions. We introduce a correlation model
that relates sparse components in different views with local geomet-
rical transforms, under epipolar constraints. By combining selected
pairs of features represented by sparse components, we estimate
the disparity map between images, evaluate coarse depth informa-
tion, and recover the relative camera pose. The proposed frame-
work allows to estimate the geometry of the scene, hence disparity
between images, using only coarse approximations of multi-view
images. The experimental results demonstrate that only a few com-
ponents are sufficient to estimate the disparity map and the camera
pose. This is certainly beneficial for predictive multi-view compres-
sion schemes, where the scene reconstruction relies on the disparity
mapping from low-resolution images in order to progressively de-
code the higher image resolutions.

1. INTRODUCTION

One of the main objectives of 3DTV is to compactly represent a 3D
scene with a set of multi-view images and transmit it in an efficient
way to the final user, offering thus a real three-dimensional percep-
tion of the received information. The 3D experience generally relies
on depth estimation algorithms, which identify and match series of
features points in multi-view images in order to offer a pleasant per-
ception of depth [1]. Depth estimation in 3DTV generally requires
decoding of high-resolution multi-view images, where dense depth
fields can be estimated by hybrid recursive matching algorithms
for example, as proposed in [2]. 3D rendering of scene informa-
tion is typically performed independently from coding and trans-
mission, while design problems in 3DTV framework should rather
be approached from an inter-disciplinary perspective. In particu-
lar, image-based rendering and scene geometry estimation should
be considered jointly with image coding for increased overall per-
formances.

We propose a flexible framework for the representation of vi-
sual information, which allows for coarse estimation of scene geom-
etry and opens interesting perspectives for efficient coding of multi-
view images. We introduce a correlation model between omnidirec-
tional images that captures local geometrical transformations in the
3D scene. Omnidirectional images are particularly interesting for
3D scene representation, since they can be appropriately mapped to
spherical images which capture the light field in the radial form [3].
It allows to avoid discrepancies that exist in planar images, and
leads to effective algorithms for camera pose estimation [4] or depth
estimation from multiple views.

In order to provide a rich representation of the visual informa-
tion, we propose to approximate multi-view omnidirectional images
by sparse expansions with geometrical basis functions. Although
finding the sparsest representation of a signal is still an ongoing
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research problem, there exist some methods such as Matching Pur-
suit [5], which offer a suboptimal solution with a tractable complex-
ity. One of the important characteristics of the Matching Pursuit is
that it captures the most prominent signal features in only few itera-
tions. Hence it provides very good image compression performance
at low rates, while producing a progressive and scalable representa-
tion. In the same time, the components present in the sparse signal
representation carry important information for the estimation of the
scene geometry. In particular, we show that correspondences can be
identified between geometrical features in different images, under
epipolar geometry constraints. Such correspondences allow to con-
struct a disparity map between images and to estimate coarse depth
information. Interestingly, since the main scene features are cap-
tured with only few basis vectors, the disparity map can be obtained
from very coarse descriptions of the multi-view images. Moreover,
the proposed correlation model inherently matches the correspond-
ing features between views giving enough information for the re-
covery of the relative camera pose. The experimental results show
that very coarse image approximations can lead to quite precise
disparity maps between multiple views, which can be further ef-
ficiently exploited for the depth estimation, camera pose estimation
and compression of the light field. Such benefits are quite interest-
ing in the design of efficient multi-view coding strategies, and the
novel framework presented in this paper certainly opens interest-
ing perspectives for the joint design of coding and rendering of 3D
scenes.

The paper is structured as follows. We introduce in Section 2
the view correlation model based on sparse image approximations.
In Section 3, we define the transform model for the case of omnidi-
rectional images, while in Section 4, we explain how the transform
model is used for disparity map and camera pose estimation. Ex-
perimental results are presented in the Section 5.

2. CORRELATION IN SPARSE DECOMPOSITIONS

Modeling the correlation between multi-view images in camera net-
works is one of the most important problems in both multi-view
rendering and coding. A good correlation model should relate cor-
responding features in different views and hence lead to an efficient
scene geometry estimation. In camera sensor networks, the corre-
lation between images is mainly driven by the 3D motion of the
objects in the scene, which results in local changes of image com-
ponents that represent these objects. If we decompose each image
into sparse components that capture the objects in the scene, we can
assume with high probability that the most prominent components
are present in all images, possibly with some local transformations.
Since these local transforms capture the motion due to changes of
viewpoint, they carry the disparity information that can be advanta-
geously used for depth estimation. We therefore propose to model
the correlation between views by local geometrical transformations,
which are estimated by pairing components in sparse image decom-
positions.

More formally, given a certain basis, or a possibly redundant
dictionary of atomsD = {φk},k = 1, ...,N, in the Hilbert spaceH,
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every imagey can be represented as:

y = Φx =
N

∑
k=1

xkφk, (1)

where the matrixΦ is composed of atomsφk as columns. When
the dictionary is over-complete,x is not unique. In order to find a
compact image representation one has to search for a sparse vector
x. We say thaty has asparserepresentation inD if the number of
non-zero components inx is much smaller than the dimension ofx.
Therefore, the sparse representation ofy is:

y = ΦIc = ∑
k∈I

xkφk, (2)

wherec is the vector of non-zero elements ofx, I labels the set of
atoms{φk}k∈I participating to the representation, andΦI is a sub-
matrix ofΦ with respect toI .

In the case of two correlated imagesy1 = ΦI1c1 and y2 =
ΦI2c2, there exists a subset of atoms indexed respectively byJ1∈ I1
andJ2 ∈ I2 that represent image projections of the same 3D features
in the scene. We assume that these atoms are correlated, possibly
under some local geometric transformation. DenoteF(φ) the trans-
form of an atom in the image decomposition that results from the
motion of an object in the 3D space, or equivalently, the transfor-
mation imposed to atomφ in different views due to camera dis-
placement. Therefore, the correlation between the images can be
modeled as a set of transformsFi between corresponding atoms in
sets indexed byJ1 andJ2. The approximation of the imagey2 can
be rewritten as the sum of the contributions of transformed atoms,
and remaining atoms inI2 :

y2 = ∑
i∈J1

x2,iFi(φi)+ ∑
k∈I2\J2

x2,kφk. (3)

This work addresses the disparity map estimation and camera pose
recovery inferred from the proposed correlation model, but this
model could also be used for joint or distributed coding of multi-
view images. The depth estimation and encoding process are tightly
interlaced since geometry is key to effective representation of 3D
scenes.

3. TRANSFORMS IN OMNIDIRECTIONAL MULTI-VIEW
IMAGES

In this section we apply the generalized correlation model intro-
duced in section 2 to the case of omnidirectional camera net-
work. More precisely, we define the local transform model among
sparse components in omnidirectional images that are appropriately
mapped to spherical images.

Motions of objects in the 3D space introduce various types of
transforms in the image projective space. Most of these transforms
can be represented by the 2-D similarity group elements, which
include 2-D translation, rotation and isotropic scaling of the im-
age features. We also consider anisotropic scaling to further ex-
pand the space of possible transforms among image features. In
order to efficiently capture transforms between sparse image com-
ponents, we propose to use a structured redundant dictionary of
atoms for image representation. Atoms in the structured dictio-
nary are derived from a single waveform that undergoes rotation,
translation and scaling. Hence, transform of an atom by any of the
2-D similarity group elements or anisotropic scaling, results in an-
other atom in the same dictionary: the dictionary is invariant with
respect to any transform action. In particular, we use a dictionary
of atoms on the 2-D unit sphere. Given a generating functiong
defined in the space of square-integrable functions on a unit two-
sphereS2, g(θ ,ϕ) ∈ L2(S2), the dictionaryD = {φk}= {gγ}γ∈Γ is
constructed by changing the atom indexesγ = (θ ,ϕ ,ψ,α,β ) ∈ Γ,
i.e., by applying a unitary operatorU(γ): gγ = U(γ)g. The triplet

(θ ,ϕ ,ψ) represents Euler angles that respectively describe the mo-
tion of the atom on the sphere by anglesθ and ϕ, and the rota-
tion of the atom around its axis with an angleψ, andα,β repre-
sent anisotropic scaling factors. In such a structured dictionary, the
transform of one atom to another interestingly reduces to a trans-
form of its parametersγ, i.e.,gγ j = F(gγi ) = U(γ ′)gγi = U(γ ′ ◦γi)g.
Note finally that the size and redundancy of the dictionary is directly
driven by the number of distinct atom transformations.

In order to relate the corresponding features in different camera
views, we need to find the local transforms between sparse com-
ponents that describe these features. In other words, we are inter-
ested in finding correspondences between atoms that respectively
represent the imagesy1 and y2, generated by two spherical cam-
eras that capture the same scene. Consider an atomgγi ,γi ∈ J1 from
the sparse decomposition of imagey1. The subset of transforms
V0

i = {γ ′|gγ j = F(gγi ) = U(γ ′)gγi} allows to relategγi to the atoms
gγ j in the expansion ofy2. However, not all these transforms are
feasible under epipolar constraints. These constraints represent one
of the fundamental relations in multi-view analysis, and define the
relation between 3D point projections (z1,z2∈R3) on two cameras,
as:

zT
2 T̂Rz1 = 0, (4)

whereRandT are the rotation and translation matrices of one cam-
era frame with respect to the other, andT̂ is obtained by repre-
senting the cross product ofT with Rz1 as matrix multiplication,
i.e., T̂Rz1 = T ×Rz1. The set of possible transforms is there-
fore reduced to the transforms that respect epipolar constraints be-
tween the atomgγi in y1 and the candidates atomsgγ j in y2. We
evaluate the constraints given in Eq. (4) on atom centers denoted
ml = [sinθl cosϕl sinθl sinϕl cosθl ]T with l ∈ {i, j}, and define the
setVE

i ⊆V0
i of possible transforms of atomgγi as:

VE
i = {γ ′|gγ j = U(γ ′)gγi ,m

T
j T̂Rmi = 0}. (5)

Equivalently, the set of atomsgγ j in y2 that are possible transformed
versions of the atomgγi is denoted as theepipolar candidates set. It
is defined by the set of atoms indexesΓE

i , with

ΓE
i = {γ j |gγ j = U(γ ′)gγi ,γ

′ ∈VE
i } ⊂ Γ. (6)
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Figure 1: Selection of positions of atoms that satisfy the epipolar
constraint.

A graphical interpretation of the epipolar constraint for spheri-
cal images is shown on the Figure 1, where we denote asS1 andS2
the two unit spheres corresponding to camera projection surfaces.
The centermj of the atomgγ j , lies on the part of a great circleCi
obtained by projecting the rayLi on the sphereS2. This ray origi-
nates from the center of camera 1 and passes through the center of
atomgγi on the sphereS1.

Recall that corresponding atoms represent the same object in
the 3D scene. Hence, we assume that the 3D motion of an object re-
sults in a limited difference between shapes of corresponding atoms,
and we further restrict the set of possible transforms by constraints
on the similarity of candidate atoms. We measure the similarity
or coherence of atoms by the inner productµ(i, j) = |〈gγi ,gγ j 〉|,
and we impose a minimal coherence between candidate atoms, i.e.,
µ(i, j) > s.
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This defines a set of possible transformsVµ
i ⊆V0

i with respect
to atom shape, as:

Vµ
i = {γ ′|gγ j = U(γ ′)gγi ,µ(i, j) > s}, (7)

and a set of candidate atoms iny2, denoted theshape candidates
set, whose indexes belong toΓµ

i ⊂ Γ, with:

Γµ
i = {γ j |gγ j = U(γ ′)gγi ,γ

′ ∈Vµ
i }. (8)

Finally, we combine the epipolar and shape similarity con-
straints to define the set of possible transforms for atomgγi , as
Vi = VE

i ∩Vµ
i . Similarly, we denote the set of possible parameters

of the transformed atom iny2 asΓi = ΓE
i ∩Γµ

i . Therefore, given
an atomgγi in y1, finding its corresponding atom iny2 reduces to
a search for agγ j such that:γ j ∈ I2 andγ j ∈ Γi . Since the image
decomposition ofy2 is sparse, the coherence between two distinct
atoms inI2 is very small, whereas the coherence between two atoms
in Γi is high due to its definition. Hence, if the corresponding fea-
ture is present iny2, the intersection of the two constraint setsγ j ∈ I2
andγ j ∈ Γi contains only the correct corresponding atom with very
high probability. In the case where the correspondence does not ex-
ist, this intersection is empty. Correspondences allow to define a set
of pairs of atoms from two viewsy1 andy2, which can be exploited
for estimating the geometry of the scene, as explained in the next
section.

4. SCENE GEOMETRY ESTIMATION FROM ATOM
TRANSFORMS

In comparison to feature points matching, the pairing of atoms
with local transforms also offers a geometrical description of the
local neighborhood of the observed features. Therefore, pairing
two atoms in different views provides an estimation of the dispar-
ity map in the local neighborhoods where the corresponding atoms
have high energy.

Disparity map relates a pointz1 on the imagey1 with a point
z2 on y2, such that the epipolar constraint from Eq. (4) is satis-
fied. Consider now a pair of corresponding atoms(gγi ,gγ j ) in two
images. We want to find a mapping of each point ongγi to its cor-
responding point ongγ j . Whengγi is defined in the discrete space,
i.e., on the spherical gridG1, disparity mapping translates to the grid
distortion induced by the local transform betweengγi andgγ j . Let
us denote withP1 the matrix of sizeq×3 that consists of Euclidean
coordinates ofq points onG1. Let furtherγi = (θi ,ϕi ,ψi ,αi ,βi) and
γ j = (θ j ,ϕ j ,ψ j ,α j ,β j ). The transform of the gridG1, given with
P1, to a gridG2, given with a matrixP2, includes two transforms:
1. transform of rotation of the atomgγi , given by Euler angles

(θi ,ϕi ,ψi), into the rotation of the atomgγ j , given by Euler an-
gles(θ j ,ϕ j ,ψ j )

2. transform of anisotropic scaling of the atomgγi , given by the
pair of scales(α1,β1), into the anisotropic scaling of the atom
gγ j , given by the pair of scales(α2,β2).

By combining these two transforms,P2 can be evaluated as:

P2 = R−1
γ j
·u(Rγi ·P1), (9)

where Rγi and Rγ j are rotation matrices given by Euler angles
(θi ,ϕi ,ψi) and (θ j ,ϕ j ,ψ j ), respectively, andu(·) defines the grid
transform due to anisotropic scaling. Since the anisotropic scaling
of atoms on the sphere is performed on the plane tangent to the
North pole by projecting the atom with stereographic projection,
the gridG1 is first rotated such that the North pole is aligned with
the center of atomgγi , then deformed with respect to anisotropic
scaling, and finally rotated back with the rotation matrix of atom
gγ j .

The stereographic projection [6] at the North pole projects a
point (θ ,ϕ) on the sphere to a point(x,y) on the plane tangent

to the North pole, and it is formally given with:x+ jy = ρejϕ =
2tan(θ/2)ejϕ . Under this projection, the transform of the point
(θ ,ϕ) on the gridG1 to the point(θ ′,ϕ ′) on the gridG2 due to
anisotropic scaling can be obtained by scaling the stereographic pro-
jection of(θ ,ϕ) with 1/α2 and1/β2, in the following way:

x′= ρ ′ cosϕ ′ =
1

α2
x =

α1

α2
ρ cosϕ (10)

y′= ρ ′ sinϕ ′ =
1
β2

y =
β1

β2
ρ sinϕ ,

whereρ ′ = 2tanθ ′/2 andρ = 2tanθ/2. By solving the system (10)
for θ ′ andϕ ′, we get:

ϕ ′= up(ϕ) = arctan

(
α2β1sinϕ
α1β2cosϕ

)
(11)

θ ′= ut(θ ,ϕ ,ϕ ′) = 2arctan

[
tan

θ
2

√
α2

1 cos2 ϕ +β 2
1 sin2 ϕ

α2
2 cos2 ϕ ′+β 2

2 sin2 ϕ ′

]
.(12)

Finally, we can define the functionu(·) as a pair of transformsup(ϕ)
andut(θ ,ϕ ,up(ϕ)) followed by the transform of spherical coordi-
nates(θ ′,ϕ ′) to Euclidean coordinates.

Each row in the matrixP2 therefore results in a pointz2 that
is a disparity mapping of the pointz1 given by the corresponding
row in P1. Finally, the disparity maps obtained from the correspon-
dences in all views are combined into a single disparity map by
selecting the most confident mapping for each pointz2 from differ-

ent mappingsz(i)
1 , i = 1, ...,n, defined byn correspondences. The

final mapping pointz∗1 is selected as:

z∗1 = arg max
z(i)

1 ,i=1,n
wγi (z

(i)
1 ), (13)

where the confidencewγi is a normalized weighting function that
prioritizes the points with highest response of the correspondence
gγi . The goal of this function is to put more importance onto the
disparity mapping of points that lie closer to the geometrical com-
ponent captured by the atom (typically edges). One example could
be a 2-dimensional Gaussian weight function, anisotropically scaled
and oriented, which fits the atomgγi .

The disparity map can be further used for recovering the relative
pose between cameras and for depth estimation.

4.1 Camera pose recovery

Finding the corresponding atoms in two multi-view images opens
the door to an efficient and robust method for estimation of the rela-
tive pose between two cameras, denoted asR,T for the rotation and
translation. Relying only on the shape similarity constraint between
corresponding atoms, we can find for the atomgγi ∈ I1 its corre-
sponding atomgγ j such thatγ j ∈ I2 andγ j ∈Γµ

i . Moreover, since the
coefficients of corresponding atoms are correlated, they also help in
the pairing process. The pairs of atoms can be used to estimate the
disparity map and identify the matching feature points on the whole
atoms. Each pair of atoms therefore defines a set of feature points
that describe the constraints given by the local transform. Using the
eight point algorithm [7] we can recover the camera poseR,T from
a set of corresponding feature points(zk

1,z
k
2),k = 1, ...,n(n≥ 8) ob-

tained by gathering feature points from all pairs of atoms. The eight
point algorithm consists of three basic steps:
1. Find an approximation of the essential matrixE = T̂R

Compute the singular value decomposition of the matrixχ =
[a1,a2, ...,an]T ∈ R9, whereak = zk

1⊗ zk
2 (⊗ denotes the Kro-

necker product). From the singular value decompositionχ =
Uχ ΣχVT

χ takeEs to be the ninth column ofVT
χ , and form the

approximation of the essential matrix by unstacking nine ele-
ments ofEs into a square3×3 matrix E.
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2. Project onto the essential space
Compute the singular value decomposition of the approximated
matrix E to be: E = Udiag{σ1,σ2,σ3}VT , whereσ1 ≥ σ2 ≥
σ3 ≥ 0 andU,V ∈ SO(3). In general, the matrixE is not in the
essential space (σ1 6= σ2 andσ3 6= 0), so the final approximation
of the essential matrix is the projection of matrixE onto the
normalized essential space, evaluated asE =Udiag{1,1,0}VT .

3. RecoverR,T from E
R andT are extracted from the essential matrix as:

R= URT
Z(±π

2
)VT , T̂ = URZ(±π

2
)ΣUT , (14)

where

RT
Z(±π

2
) =

(
0 ±1 0
∓1 0 0
0 0 1

)

and

T̂ =

(
0 −T(3) T(2)

T(3) 0 −T(1)
−T(2) T(1) 0

)
.

This algorithm gives four solutions forR,T, but three of them can
be eliminated by imposing the positive depth constraint.

The advantage of matching the whole atoms is that we have a
much bigger number of epipolar constraints coming from the local
neighborhood covered by the matching atoms. This makes the pro-
posed atom matching method very robust to low precision feature
points estimates.

4.2 Depth estimation

When the relative camera poseR,T is known, pairing atoms from
two images can be done by using both the epipolar and shape con-
straints. In other words, for the atomgγi ∈ I1 we can find its corre-
sponding atomgγ j such thatγ j ∈ I2 andγ j ∈ Γi . From atom pairs,
the disparity map betweenP1 andP2 is estimated as described in 4.
Therefore, the depth of the 3D point whose projections to two spher-
ical images are given withz1 andz2, related by the disparity map,
can be evaluated as:

ρ =
|T×Rz2|
|z1×Rz2|

, (15)

where× denotes the cross product. WhenR,T is given as a relative
pose of camera 2 with respect to camera 1, the depthρ is evalu-
ated also with respect to camera 1. By computingρ for each pair
of points inP1 andP2 we get a depth field for the observed atom
correspondence pair.

5. EXPERIMENTAL RESULTS

The performance of the proposed scene geometry estimation
method is evaluated on a simple synthetic scene and on the more
complex natural scene captured with omnidirectional cameras. The
sparse image decomposition has been obtained using the Match-
ing Pursuit (MP) algorithm [5] on the sphere with two dictionar-
ies, based on generating functions that respectively consist in a 2D
Gaussian function:

gG(θ ,ϕ) = exp

(
− tan2 θ

2

(
α2cos2 ϕ +β 2sin2 ϕ

))
, (16)

and a 2D function built on a Gaussian and the second derivative of
a 2D Gaussian in the orthogonal direction (i.e., edge-like atoms):

gEL(θ ,ϕ) = − 1
K2

(
16α2 tan2 θ

2
cos2 ϕ−2

)

· exp

(
− tan2 θ

2

(
α2cos2 ϕ +β 2sin2 ϕ

))
. (17)

The position parametersθ and ϕ can take 128 different values
(Nt = Np = 128), while the rotation parameter uses 16 orientations,

between 0 andπ. The scales are distributed in a logarithmic scale
from 1 toNt/8 for the Gaussian atoms and from 2 toNp/2 for edge-
like atoms, with 3 scales per octave.

For a simple and comprehensive illustration of the proposed
scene geometry estimation method based on sparse image decom-
position, we have constructed a simple synthetic scene that consists
of three objects: a sphere, a cube and a cone. The scene is captured
with two spherical cameras, and the original images are shown on
Figure 2a) and b) (unwrapped). These images have been decom-
posed using the MP on the sphere. Three pairs of atoms in two de-
compositions have been recognized as correspondences, where each
of the atoms corresponds to one of the objects. Using the transforms
of only these three atoms, the disparity map has been estimated and
applied to the imagey1 to reconstruct an approximation of the image
y2, as shown on the Figure 3a). Disparity maps from different atom
pairs have been combined by taking a weighted average of the map
at each pixel, where the weights have been assigned proportionally
to the atom value taken on that particular pixel. This simple exam-
ple shows that we can obtain a very good estimate of the disparity
between two images of the same scene, in using only very coarse
approximations of the original images (shown in Figure 2c) and d)).
It makes this method suitable in the context of low bitrate compres-
sion of light fields. Figure 3b) displays the difference between the
two original images, while the Figure 3c) shows the difference be-
tween the original and reconstructed imagey2. The range of values
for both images is [-1,1]. We can observe that many high valued
errors (white and black pixels) are removed or reduced by applying
the disparity map as shown in Figure 3a). Therefore, the disparity
map efficiently captures the transforms of the three objects.

(a) (b) (c) (d)

Figure 2: Original synthetic images: a)y1, b) y2. Approximated
synthetic images: c)̃y1, with 3 atoms, d)̃y2 with 6 atoms.

(a) (b) (c)

Figure 3: a) Estimation ofy2 from y1, using the disparity map:̂y2;
b) y1−y2; c) ŷ2−y2

In order to show that we can also extract object depths for the
observed scene only from the three obtained transforms, we have
evaluated the mean distance to each of the objects to camera 1 based
on the obtained disparity map, when the relative camera poseR,T
is known. The results are shown in the Table 1, where the estimated
distances are compared with the original distances of objects mea-
sured at pixels on the spherical image that correspond to centers of
the three MP atoms. We can see that the depths are well estimated
using only the obtained coarse image descriptions.

The natural scene images shown on the Figure 4 have been de-
composed with the MP algorithm. The omnidirectional cameras
have been placed in a line (no rotation, same altitude) where suc-
cessive images are denotedy1, y3 andy2. The proposed method is
used to recover camera pose from edge camera imagesy1 andy2.
The threshold on the coherence is set tos= 0.4 to capture as many
correspondences as possible and thus get more accurate results. For
each atom, the correspondences are sought in the neighborhood of
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Table 1: Comparison of estimated depths with the ground truth for
the simple scene

Object Ground truth distance Mean measured distance
Sphere 1.0 1.54
Cube 2.0 2.29
Cone 1.7 1.82

the solid angleπ/4. The camera poseR,T is recovered from 18
correspondences, as described in the Sec. 4. Due to the camera
placement in a line, the rotation matrix between them should be
equal to the identity matrix and the translation vector to[1 0 0], in
the ideal case. With the proposed method, we obtain the following
result for the rotation matrix:

R=

(
1.0000 0.0000 −0.0015
−0.0002 0.9914 −0.1307
0.0015 0.1307 0.9914

)

and translation vector:T = [0.9909 −0.1322 −0.0252]. There-
fore,R andT have been correctly recovered with a high precision.

y1 y3 y2

Figure 4: Natural images

Figure 5 represents the unwrapped original natural images. Fig-
ure 6 shows the reconstructed imagey3 obtained by pixel mapping
from imagesy1 andy2, using the combined disparity map obtained
from y1 andy2 (as explained in the Sec. 4). For the disparity map-
ping, we have useds= 0.9 to have a consistent and smooth disparity
map. The differences between the imagesy3 and reference images
y1 andy2 are shown on the Figure 7 a) and b) respectively, with the
range of [0, 1], where 1 (white) means no error. Figure 7c) illus-
trates the difference between the original imagey3 and its recon-
struction with the proposed disparity mapping. For a quantitative
comparison of the three residual images, we evaluated their ener-
gies. The first residualy1− y3 carries the highest energy of89.2,
followed by they2− y3 with the energy77, while the residue after
disparity mapping with the proposed scheme resulted in the lowest
energy of49.7, confirming the benefits of our method. Once again,
we can see that the obtained disparity map succeeds to compensate
the movements and transforms of objects in the scene, which can
be advantageously used for the depth estimation and the predictive
coding within light-field streaming applications.

6. CONCLUSIONS

We have presented a method for estimating the disparity map and
camera pose from very coarse multi-view image descriptions. This
method is based on a novel correlation model between sparse ap-
proximations of multiple views. We show that the use of structured
dictionaries for sparse decompositions enables pairing correspond-
ing features among views, under local transform constraints. Ex-
perimental results demonstrate that this method leads to good esti-
mation of the disparity map and the camera pose.
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