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ABSTRACT

The aim of this paper is to estimate the directions of
arrival of ultra-high-energy cosmic rays using an antenna
array. Extensive air showers produced generate wideband
transient signals which have to be detected and characterized
by the use of wavelet packet (WP) transform. An adaptive en-
ergy detector is used as a criterion to choose the best basis
of WP. After reconstruction of the selected WP, the Maximum
Likelihood Estimator is applied to estimate the parameters
and the directions of arrival. Results evidence the efficiency
of the method for simulated and real signals to detect the
pulses from the input signal to noise ratio of -20 dB. More-
over, the performances of the proposed method are studied
via extensive Monte Carlo simulations and compared with
the Cramer Rao bounds. For this purpose, the colored noise
disrupting signals is proposed.

1. INTRODUCTION

For almost 70 years, physicists and astronomers have stud-
ied cosmic rays and gained a good knowledge of the flux as
a function of energy up to 10'° eV. However, in this energy
range, the problem of the origin and the nature of ultra-high-
energy cosmic rays (UHECR) is unsolved and stands as one
of the most challenging questions in astroparticle physics.
In order to collect the elusive events above 10! eV (which
present an integrated flux of less than 1 event per km? per
steradian and per year) giant detectors are presently being
designed and built [1]. To overcome some of the difficulties
already encountered after several studies [1, 2], a new experi-
mental radio air shower detector CODALEMA (COsmic ray
Detection Array with Logarithmic ElectroMagnetic Anten-
nas) has been proposed and operated using a MIMO (Multi-
ple Input Multiple Output) antenna array [1]. The principle
of the measurement is to estimate the parameters of the Elec-
trical Transient (ET) signals induced by UHECR such as the
amplitude, the time scale and the time of arrival used to esti-
mate the Directions Of Arrival (DOA) of the UHECR.

In practical, these transient signals which are typically
of about 10 to 60 nanoseconds (ns) are observed in the fre-
quency band of about 0 to 250 MHz and even 0 to 500 MHz.
Therefore, these transient signals are corrupted mainly by
many Radio Frequency (RF) Telecom signals. In this work,
a new detection procedure of the ET signals corrupted by
highly colored noise, with low signal to noise ratio (SNR),
is firstly proposed. The parameters and directions of arrival,
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which are in the center of preoccupations for the astrophysi-
cists, are secondly estimated. As the capability to detect the
ET signals strongly depends on the choice of the frequency
band [1], our approach consisted of choosing multiscale de-
composition using Wavelet Packets (WP) [3]. WP decompo-
sition leads to a redundant tree where only a few WP are rel-
evant for a specific task like change detection. The Wavelet
Packet Transform (WPT) is used for its capacity to chose an
optimal basis for the detection problem and reduction noise
by rejecting the noise frequency bands while keeping the
bands of interest. The choice of the basis depends on criteria
determined by analysis goals, such as compression, filtering
(smoothing) [4], and detection [5]. Recently wavelet theory
has been introduced to array signal processing in two ways :
the wavelet denoising [6], and subbanding [7] methods. Pa-
rameters and DOA estimations are in many fields including
radar, sonar [8], medical imaging [9] and communications.
Almost all methods presented in the literature are essentially
limited to narrowband or stationary data [10]. But in other
cases (e.g. sonar or cosmic rays) [11], received signals are
assumed to be wideband. In most of the methods [12], wide-
band signals are decomposed into many narrow band signals
with Fourier transform. Another class of possible wideband
methods are time-domain methods such as delay-and-sum
(DS) beamforming [11].

In this study, the astrophysical signals are wideband and
highly drowned in colored noise. For this application, a spe-
cific criterion is proposed in order to select the best basis
for further event detection. The adaptive energy detector is
used as an index of each WP to detect the pulses. The idea
is to determine the maximum of the estimated adaptive en-
ergy detector on each WP and select the packets which have
the higher values. After WP selection, parameters and DOA
are estimated using a Non Linear Least Squares (NLLS)
method [13] on the reconstructed chosen WP. To generate
the test sequences for Monte Carlo simulations and to eval-
uate the Cramer Rao Lower Bounds (CRLB’s), modeling of
the noised signals is required. According to the spectral anal-
ysis of the real signals, a Rice decomposition seems to be the
most adequate to model the real noise. Results show that the
proposed procedure detects well the pulses even for low sig-
nal to noise ratio of -20 dB and also leads to good estimates,
as evidenced by comparison with the CRLB’s.

This paper is organized as follows. In Section 2, a sig-
nal and noise models are presented. In Section 3, the WP
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Figure 1: Experimental setup for particle detection and DOA
estimation.

decomposition to select the best basis for event detection
and estimation is described. NLLS estimation procedure
and CRLB’s are briefly cited. Results and comparisons with
Monte carlo simulations are shown in section 4. Finally, sec-
tion 5 concludes the paper.

2. PROBLEM FORMULATION
2.1 Signal model

Consider a MIMO array composed of M antennas receiving
ET pulses s with broadband frequency characteristics. These
pulses are emitted by sources with very high energy. The
M x 1 vector of antenna outputs can be modeled as

y(k) =s(k—17) +n(k), M

where n(k) is the M x 1 colored noise vector, (k=0,...,N —
1, N is the number of the available observed samples). y, s
and n are M x N matrices. The M x 1 vector of timing dif-
ferences T corresponds to the propagation times of the wave-
front for the different antennas, and also includes electronics
and cable delays [1]. For one antenna m, the delay is written

as
T
A%
T =F cp’”, ®)

where p,, = (X, Ym,Zm)(m = 0,...,M — 1) are the antennas
locations. Fj is the sampling frequency, c is the propagation
velocity and v is a unit vector which defines the direction of
propagation and can be written as

—sinysino
—cosy

; 3

—sinycosa
V=

where o is measured counter clockwise from the x axis, and
v is measured clockwise from the z axis as shown in figure
1. Introducing (3) in (2), 7,,, becomes

F,
T = —— (X Sin Wcos & + y,, sinysina +z,, cos y). (4)
c
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The pulse waveform can be defined as [1]

(k) = e(k)AC ( k >2ei, 5)

where €(k) =1 for k > 0 and O for k < 0. This expres-
sion is derived from various research works in different fields
of theoretical and experimental physics including Electro-
magnetism, Nuclear Science, wave propagation and anten-
nas. A fixes the time scale of the positive-amplitude part
(the maximum is reached for k = 2A) and A is the maxi-
mum amplitude. The vector of parameters to be estimated
is (@ = [A,A, &, y]T). Therfore, the pulse waveform can be
rewritten as

s(k—1) =s(k,®). (6)

The next section investigates the noise modeling and its au-
tocorrelation function in order to calculate the Cramer Rao
Lower Bounds.

2.2 Noise model

The colored noise is mainly due to the Radio Frequency tele-
com signals. To propose a model to such noise signals, a
spectral and temporal study has been made on the real array
output signals in analyzing all the correlations and estimated
power spectral densities between antennas. Based on the ex-
perimental observations and a statistical analysis of RF tele-
com signals, the Rice decomposition is proposed to model
the noise [14]:

Ny

n(k) = Y (ai(k)cos(2mfik) +b;(k)sin(2m fik)),  (7)

i=1

where Nj, is the number of harmonic frequencies. a; and b;
are obtained after a low pass filtering of two independent
gaussian processes for each harmonic frequency. The auto-
correlation function of n(k) is given by :

Ny

Ou(k) = @1 (k) Y Ai(k)cos(2mfik), (8)
i=1

where the amplitudes A; and frequencies f; are extracted au-
tomatically from the careful spectral analysis of the real as-
trophysical signals. ¢y, (k) is the autocorrelation sequence of
the impulse response for the synthesis of low pass random
processes a;(k) and b;(k). These methodologies allow us to
characterize the noise and to generate the test sequences clos-
est to the reality.

3. PROPOSED WAVELET PACKETS DETECTION
AND ESTIMATION METHOD

3.1 Wavelet Packet Transform (WPT)

WPT is an extension of Discrete Wavelet Transform. Each
detail coefficient vector is decomposed into two parts using
the same approach as in approximation vector splitting [3].
We start with #(n) and g(n), the two impulsive responses of
low-pass and high-pass analysis filters, corresponding to the
scaling function and the wavelet function, respectively [3].

EUSIPCO, Poznan 2007



15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

3.2 Cost function for detection purposes

To determine the best basis, a cost function must be chosen
to represent the goal of the application. In our approach we
propose to use an estimated adaptive energy detector of sec-
ond order as a basis for the definition of the cost function.
The total energy estimator (sum of suqres) or the maximum
squared wavelet coefficients (W/%i) are not adequate in this
study because they do not take into account the local char-
acter of the transient signals existence. Estimated adaptive
version of the energy is applied to each wavelet packet W; ;
(j is the scale parameter and i is the sequence parameter). It
can be written as

g (k) = i3 (k —

Wji(k)* =5 (k—1)), (9

where u is the the adaptive step which controls the conver-
gence of the estimator. The parameter U is to be determined
a priori but the performance curves show that there is a little
influence on the quality of detection. In general, the value
U = 0.1 is well appropriate for the transient signals detec-
tion. As a criterion for WP selection, we used the maximum
(D) of the adaptive energy detector of equation (9) for

each wavelet packet W ;

1)+ u(

D = max(iis ). (10)

3.3 Wavelet Packet selection

The goal of this part is to retain only the WP that are able to
detect the electrical transient pulses. The main idea is that the
maximum D7 is greater than a threshold when a WP con-
tains the transient signal. Two approaches can be imagined
for WP selection : either defining a threshold on D', or se-
lecting Dm’”‘ in descending order and limiting the number of
selected WP to a predefined number. Whatever the approach,
a node in the WP tree will be put to 1 if the corresponding
WP has been selected, the others being put to ”’0”. The pre-
vious step identified all nodes (i.e. WP) where significant ac-
tivities were detected. As the tree is highly redundant, there
is a need for a further step to reduce the number of selected
nodes to only non-redundant ones. The current implemen-
tation of this second step is detailed in [5]. Let us define a
Father Node (FN) as any connection between two branches
whose ends are called Children Nodes (CN). A Father Node
at level j is a Children Node for level (j —1). A component
is the association of a FN and its two CN.

Our algorithm selecting the best basis can be described as
follows :

1. Take samples of signal model (1) which forms a M x N
matrix.

2. From the binary tree of wavelet packets, we build a corre-
sponding tree with the same structure, and where a given
node takes the value ”0” or 1" according to the value of
the corresponding D'/ (figure 2.a).

3. Modify the node values according to the following rules:

e If all nodes in a component have the value ’1”, put
”0*” to the FN (all information is contained in CN).

e If FN = ”1” and both CN = 0" or ”0*” in a com-
ponent, put FN to 0 (aberrant case or information al-
ready taken into account).

e Select all CN = ”1” with FN = ”0” in a component
(information is only detectable in the CN).
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Figure 2: Steps for selection of the best basis.

e If FN = 1" with CN1 = ”1” and CN2 = 07, select
FN (FN and CN1 display the same information).
e If FN ="1” with CN1 ="1” and CN2 = 0*”, select
CN1 (the only information not taken into account yet
isin CN1). All these cases are displayed in figure 2.b.
4. Select all nodes at 17 (figure 2.c).
Reconstruct the data matrix from the selected packets.
6. Apply Non Linear Least Squares (NLLS) estimation
method to the new data model.

v

3.4 Non Linear Least Squares Estimator

After the detection and reconstruction steps, available signals
can be written as

Y- (k) =

where s,(k,®) is the reconstructed pulse defined in equation
(5). Therefore, ® can be estimated with the NLLS estimator
[13]:

s:(k,©) +n, (k). an

6= arg min (|ly, (k) — s(k,0)|%). (12)

3.5 Cramer Rao Lower Bounds (CRLB’s)

To demonstrate the performance of this estimation method,
the CRLB’s were calculated in the case of colored noise. The
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Figure 3: Average of D7'{" from 500 simulated training sig-
nals on 30 packets. The number of each packet is associated
to each value of D;’f;”‘ (SNR =-15 dB). X-axis: arbitrary unit.
Yaxis: D'{* value.

CRLB’s are used as a theoretical lower bound for any unbi-
ased estimator [13]. Most of the derivations of the CRLB’s
for wideband source localization found in the literature are
in terms of relative time-delay estimation error. This appli-
cation is a deterministic case, a more general CRLB’s is di-
rectly calculated from the signal model. In first approxima-
tion, the correlations between antennas are neglected. Thus
the CRLB’s which are are the inverse of Fisher matrix can be
written as [13]:

o)y = % [ %] e[ 25 0]. 0y

m=1

where C,, is the noise covariance matrix of antenna m calcu-
lated from equation (8).

4. RESULTS OF WP SELECTION FOR DETECTION
AND ESTIMATION

4.1 Results on simulated signals

In this section, Monte Carlo simulations have been con-
ducted with M = 15 antennas and N = 2520 samples. The
algorithm described in section 3.3 is first applied to a train-
ing data set composed of 500 simulated signals. Each signal
is obtained with the pulse s defined by equation (1) drowned
in the colored noise modeled by equation (7). The UHECR
DOA are supposed to be o =70° and y =40°. The sampling
frequency is 1 Ghz, A= 8 ns, A = 1. The wavelet Daubechies
10 is used, with a tree developed until level 4. This choice is
done after the analysis of the performance curves which have
been traced for different wavelets (Wavelets Symlet 1 to 10,
Coiflet 1 to 5 and Daubechies 1 to 10). To decide which
packets are able to highlight the presence of ET pulses, the
average of D} is calculated for each WP (there are 30 pack-
ets). Figure 3 shows the D’”ax values in descending order in
the case of SNR = -15 dB. By examining figure 3, there is a
clear threshold = 1.5. The adaptative choice of the threshold
is important because the experimental conditions can change.
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Figure 4: Relative standard deviations of A and A in % versus
SNR.

In this study, thechoice of the threshold 1.5 gave good results.
Value 17 is given to the packet Wy 1 (the packets on figure 3
are numbered by according the number 1 to the packet Wi
and the number 30 to the packet Wy 15). This threshold is
used for all SNRs. The SNR influences widely the choice of
the packets revealing the presence of the pulses. The same
packet Wy ; is selected for SNR = -20 dB to 5 dB. For SNR
> 10 dB, the same procedure is repeated. We found that the
packets which have D’"”x > 1.5 are Wi g, Wa o, W30, Wa o and
Ws,1. After applying the algorithm of selection of best ba-
sis, only packets Wy o and Wy 1 are retained for the best basis.
The NLLS estimation procedure is then applied to the recon-
structed selected packets for 500 signals of a test set (built
in the same way as the previous training set) to estimate ©.
To demonstrate the performances of the algorithm, the re-
sults are compared with CRLB’s. Relative standard deviation
(SD) of A and A estimations (c37/A and 5 /A respectively)
given in % are shown in the figure 4 according to SNR (de-
fined as the square of the ratio of the pulse amplitude and the
noise SD). Figure 5 shows the standard deviations (SD) of
the DOA (angles o and y) estimations as functions of SNR.
Figures 4 and 5 present the performances of combined WP
and NLLS method versus classical NLLS procedure. The
simulation results are closer to the theoretical CRLB’s after
applying the WP selection. As expected, the SD’s decreases
rapidly as the SNR increases.

4.2 Results on real signals

The antenna signals are recorded after RF signal ampli-
fication (1-200 MHz, gain 35 dB) by LeCroy digital os-
cilloscopes (8-bit ADC, 1 GHz sampling frequency, 2.5
us recording time). The training set consists of a total
of 100 runs and each run contains 15 antenna recordings.
The signals are decomposed by WPT by using the wavelet
Daubechies 10. For SNR = 10 dB, only packets Wi g, W2 g,
W30, Wa 0 and Wy 1 (bandwidths: [0-250], [0-125], [0-62.5],
[0-31.25] and [31.25-62.5 MHz] respectively) are first se-
lected after applying the first step of the selection algorithm.
The WP are easily selected according to the D'/ by setting
the threshold to 1.5 (the threshold is obtalned in the same
way that in the case of the simulated signals). Only packets
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Figure 5: «a and y standard deviations in degrees versus
SNR.

Wi,0 and Wy 1 are finally retained. For SNR =-20 dB to 5 dB,
only the packet Wy 1 which its bandwidth corresponds to the
pulses is selected. To test the performances of the algorithm,
100 other test runs are used. The same packets are chosen
for each SNR. Figure 6 illustrates the detection of ET pulse
on the selected packet Wy ; for SNR = -10 dB. The pulse is
not detected on the other packets (e.g packets W; o, W5 3 and
Ws,7). This shows the performance of the WP selection for
detection the electrical transient pulses on real data.

5. CONCLUSION

In this paper, the application of WP selection algorithm has
been investigated to increase the performance of detection
and estimation for wideband electrical transient pulses in
colored noise. The factors that affect the accuracy are the
parameters of transient pulses, the signal to noise ratio, the
sampling rate, and the geometry of the sensor array. All
these parameters have been included in the calculation of the
CRLB’s. The NLLS method applied on the reconstructed
selected WP improves the estimation variances which are
closer to the CRLB’s. The same best packets are selected in
the case of simulated and real signals showing that the pro-
posed models are in agreement with the real data.

The transient signals detection procedure is satisfactory and
permits to identify almost all pulses received on the antennas
of CODALEMA experiment. The results give more preci-
sion on the nature and the origin of the cosmic rays. They
permit to locate with more exactitude the positions of the
particles.
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