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ABSTRACT
In this paper, robust channel estimation and detection is considered
for impulse radio ultra-wideband systems (UWB) subject to non-
Gaussian noise and a frequency-domain receiver is proposed. In the
proposed receiver, robust recursive least square algorithm is used
for channel estimation and the least favorable density approach
is employed within the detector module. A convergence analysis
is presented for the robust frequency-domain estimator and an er-
ror performance analysis is provided for the robust detector. Then
the bit-error rate (BER) performance of the proposed frequency do-
main receiver is evaluated via computer simulations. The receiver
is shown to outperform the linear receiver architecture that is de-
signed to be optimum under additive white Gaussian noise (AWGN)
substantially under non-Gaussian noise without any significant ad-
ditional cost in complexity. It is also shown that the frequency-
domain channel estimator that is inherently robust to channel statis-
tics performs better than its time-domain counterpart especially in
non-line-of-sight channels.

1. INTRODUCTION

Impulse radio ultra-wideband (UWB) communication systems are
characterized by huge bandwidths obtained through the use of very
short duration pulses, usually on the order of a few nanoseconds, in
time-domain (TD). This bandwidth characteristic creates new po-
tentials for wireless applications that demand large user capacity,
low cost and low power. However, because UWB communication
faces severe frequency selectivity and requires high sampling rates,
it introduces unique signal processing challenges in the receiver de-
sign, especially in the areas of synchronization, channel estimation
and signal detection [1]. For instance, sampling rates in UWB sys-
tems are on the order of 10 GHz, which makes the number of pa-
rameters to be estimated24 for line-of-sight (LOS) and as large as
400 for non-line-of-sight (NLOS) indoor channels [2]. In addition
to the severe intersymbol interference (ISI) effect of the channels at
high sampling rates, another phenomenon that must be considered
in UWB system design is the noise, which is often overlooked and
is simply assumed to be additive white Gaussian (AWGN). How-
ever, as reported in [3], indoor environments where the UWB de-
vices are envisioned to be deployed are subject to noise produced by
electronic devices running concurrently, which is impulsive (non-
Gaussian) in nature. Therefore, UWB systems designed to be opti-
mum under Gaussian noise face severe performance losses when the
actual noise distribution deviates from the assumed nominal Gaus-
sian model [4]. For these reasons, in this paper we consider the
general channel estimation and detection problem for UWB sys-
tems under impulsive noise and present robust receiver algorithms.

The existing literature on UWB channel estimation and detec-
tion is usually limited to AWGN scenarios. For example, in [5],
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a two step estimation procedure is proposed where the first step
consists of a time-delay search and the second step estimates the
path gains. In this approach, the number of rays are assumed to be
known at the receiver, which results in a performance loss other-
wise. Another drawback, even in the AWGN case, is the computa-
tional load that is exponentially changing with the number of rays.
This prohibitive complexity is partially simplified in [6] by assum-
ing a resolvable channel where the paths are uncorrelated. How-
ever, this is not a fully justified assumption under realistic UWB
indoor channel models such as the Saleh-Valenzuela (S-V) indoor
model [7] where the multipath components arrive at the receiver in
clusters with non-resolvable rays. Even with this assumption, the
large number of multipath components in an UWB channel for suf-
ficient energy capture still brings am unaffordable computational
complexity to the detection and estimation. For this reason and
inspired by the single-carrier frequency-domain equalization (SC-
FDE) techniques proposed in [8], frequency-domain (FD) detec-
tion and estimation approaches have been proposed in [9]-[11] for
UWB systems over frequency selective channels. SC-FDE is orig-
inally designed as an alternative to orthogonal frequency division
multiplexing (OFDM) because of its performance improvement in
frequency selective channels without any need for channel coding.
FD channel estimation and detection is feasible not only because
it requires only the time-delay of the first path and nothing about
number of paths, but also because it is computationally less de-
manding depending on the channel structure. However, like their
time-domain counterparts FD detection and estimation algorithms
mentioned above also consider AWGN as ambient noise and are
bound to suffer from a performance loss when the noise is impul-
sive. For this reason, in this paper a robust receiver performing both
the channel estimation and detection in FD is proposed for com-
putational saving and improved performance under non-Gaussian
noise.

In the proposed receiver, channel estimation is done by a recur-
sive estimator originally proposed in [12] and modified here with
a different cost function. The convergence analysis of this estima-
tor is conducted and verified via simulations. Robust FD detector
is designed using the concept of least favorable density [13] rather
than the least favorable pair [14] in order to alleviate the difficulties
related with the latter. Moreover, theoretical bit error rate (BER)
analysis of this detector is presented, which takes channel estima-
tion errors into account. It should be noted that our all results re-
garding both channel estimator and detector can be generalized to
the AWGN case by setting the ratio of the impulsive component in
the background noise to zero.

The paper is organized as follows: Section II describes signal
model, Section III explains robust FD channel estimation with its
convergence analysis. Section IV presents robust FD detector. Sec-
tion V presents the performance analysis of the receiver. Section VI
presents numerical results and Section VII concludes the paper.
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2. SIGNAL MODEL

In an impulse radio UWB communication system, each symbol is
transmitted over a duration ofTs in whichNf frames are transmitted
with a duration ofTf , i.e.,Ts = Nf Tf . In each frame, a pulse,p(t),
with a duration ofTp is transmitted, and the location of the pulse
is controlled by time-hopping (TH) codes, according to which the
pulse is hopped by amount ofciTc whereci is the TH code corre-
sponding the transmitted pulse in theith frame andTc is the dura-
tion of the bins. The allowable range for TH codes is[0,Nc) where
Nc = Tf /Tc. The transmitted signal is given by

s(t) =
∞

∑
j=−∞

b j ps
(
t− j(Ts+NGTf )

)
(1)

whereb j ∈ {+1,−1} are the pulse amplitude modulation (PAM)

symbols andps(t) =
√

Es∑Nf−1
i=−NG

p(t − iTf − ciTc) for which Es

denotes the symbol energy.NG in (1) is the number of guard frames
which serve as prefix for FD processing to make linear convolution
of each symbol with channel look like circular convolution, which
is essential for fast Fourier transform (FFT)-based signal processing
techniques [8]. The channel is modeled by

h(t) =
L̃

∑
l=1

hl δ (t− τl )

whereL̃ is the number of paths,hl , andτl are the channel gain and
time delay of thel th path, respectively. Throughout the paper, chan-
nel gains and the associated time delays will be treated as unknown
deterministic quantities. Noise is modeled by a Gaussian mixture
with a probability density function (PDF) of

f (x) = (1− ε)g(x;0,σ2)+ εg(x;0,κσ2) (2)

where the first term accounts for nominal noise with higher prior
probability of occurence, while the second term is the impulsive part
with heavier tails.κ is the impulsive part’s relative variance with
respect to nominal noise variance andε is the relative frequency of
outliers. The received signal is given by

y(t) =

[
∞

∑
j=−∞

b j ps
(
t− j(Ts+NGTf )

)
]
∗h(t)+w(t)

where∗ denotes the linear convolution andw(t) is the noise which
is modeled by the two-term Gaussian mixture. After sampling, the
mth sample of thejth symbol is given by circular convolution of
data part of the symbol and the channel as follows.

y j (mT) = b j ps(mT)?h(mT)+w j (mT), m= 0,1, . . . ,N−1,

where ? denotes circular convolution,T is the sampling period
and N is the number samples taken per data part of the symbol,
i.e., N = Ts/T. y j (mT) and w j (mT) denote themth sample of
the jth received symbol and of noise, respectively. They can also
be explicitly expressed asy j (mT) , y

(
j(Ts + NGTf ) + mT

)
and

w j (mT) , w
(

j(Ts+NGTf )+mT
)
. The FFT of the received sig-

nal is given by

Yj (l) = b jPs(l)H(l)+Wj (l), l = 0,1, . . . ,N−1,

where Yj (l),Ps(l),H(l) and Wj (l) denote the FFT ofy j (mT),
ps(mT),h(mT) andw j (mT), respectively. Becauseps(mT),h(mT)
and w j (mT) are real-valued sequences, Hermitian symmetry re-
sults inPs(l) = P∗s (N− l),H(l) = H∗(N− l) andWj (l) =W∗

j (N− l)
where()∗ denotes complex conjugation. The received signal in FD
can be rewritten as

Y j = b jG+W j

whereY j ,G andW j areN×1 column vectors collecting the first
half of the received samples, aggregate channel response samples,
i.e. G, and the noise samples which are explicitly given by

Y =
[
ℜ

(
Yj (0)

)
. . .ℜ

(
Yj (N/2)

)
ℑ

(
Yj (0)

)
. . .ℑ

(
Yj (N/2)

)]T

G = [ℜ(Ps(0)H(0))ℜ(Ps(N/2)H(N/2)) ℑ(Ps(0)H(0)) . . .

. . .ℑ(Ps(N/2)H(N/2))]T

W j =
[
ℜ

(
Wj (0)

)
. . .ℜ

(
Wj (N/2)

)
ℑ

(
Wj (0)

)
. . .ℑ

(
Wj (N/2)

)]T

whereℜ(x) andℑ(x) denote real and imaginary parts ofx, respec-
tively and()T means transpose. It should be noted thatW j consists
of independent and identically distributed (iid) noise samples which
will enable us to estimate each element ofG independently.

3. ROBUST FREQUENCY-DOMAIN CHANNEL
ESTIMATION

In this section, we derive the robust FD channel estimator. The
recursive channel estimation in FD can be carried out with usual
methods such as recursive least squares (RLS) or least mean squares
(LMS). However, both methods employ a quadratic cost function
that is very sensitive to the tail behavior of the distribution (outliers).
As a consequence they suffer from performance deterioration when
the noise distribution is impulsive with a heavy tail. To obtain a
robust estimator, the quadratic cost function should be replaced with
one of the cost functions given in [?]. The cost function

ρ(x) =





x2

2σ2 for |x|< kσ2,

k2σ2

2 −k|x| for |x|> kσ2
(3)

is used, which results in theM-estimator for the PDF in (2). In (3),
k is the trimming parameter which should be adjusted according to
the intensity,κ , and the relative frequency,ε, of the outliers. More
detail on the calculation ofk is given in Section VI. Since samples
are independent, estimation of each frequency bin can be carried
out separately. Using (3), the cost function can be written as

J(Ĝn(m)) =
n

∑
j=1

λ n− j ρ
(
Y j (m)−Ĝn(m)

)
(4)

whereĜn denotes the estimate of the aggregate channel response
at nth iteration, i.e., usingn symbols. The recursive solution to (4)
can be written as [12]

Ĝn(m) = Ĝn−1(m)+
q
(
En(m)

)
En(m)

zn(m)
(5)

zn(m) = λzn−1(m)+q
(
En(m)

)
(6)

En(m) = Yn(m)−Ĝn−1(m) = ∆Ĝn−1(m)+Wn(m)

whereEn(m) is the composite error, which includes the channel
estimation error plus noise. The channel estimation error at thenth
step is given byG(m)−Ĝn−1(m) = ∆Ĝn−1. The clipping function
q(x) = ψ(x)/x whereψ(x) is the derivative ofρ(x) detects whether
or not the error contains an outlier. If an outlier is detected, the
corresponding sample is clipped; otherwise, it is directly added to
the channel estimate.

3.1 Convergence Analysis of Robust Frequency-Domain
Channel Estimation

In this section, we analyze the convergence properties of robust FD
channel estimation. Although such an analysis is conducted in [12],
the penalty function,ρ(·), and the signal model in this paper differ
from the former requiring a new performance analysis. Generally
speaking, an exact analysis of RLS-type algorithms is tedious, but
under a few reasonable assumptions, a consistent analysis can be
carried out. We make the following standard assumptions.
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• A1: The signal is ergodic [12].
• A2: For sufficiently largen, the channel estimation error,

∆Ĝn(m), is small compared toWn(m) for ∀m∈ {0,1, . . . ,N−
1}.

The rationale behind assumptionA2 is that the composite error usu-
ally falls in the linear part of the clipping function when outliers are
acting in (2).

Before starting the convergence analysis of the mean, it should
be noted that for sufficiently largen, using (A1), zn(m) can be ap-
proximated as

zn(m) =
n

∑
i=1

λ n−iq
(
∆Ĝn−1(m)+Wi(m)

)

≈
( n

∑
i=1

λ n−i
)

E
{

q
(
Wi(m)

)}
= λ (n)γ (7)

whereλ (n) = (1−λ n+1)/(1−λ ), γ = E
{

q
(
Wi(m)

)}
. In the next

two sections, the convergence analysis of the robust FD channel
estimator will be conducted using (7) and the assumptions (A1)-
(A2).

3.1.1 Convergence of the mean

In this section, convergence of the robust FD channel estimator is
investigated. The recursive relationship for the mean of aggregate
channel estimate is given by

E{∆Ĝn(m)}= E{∆Ĝn−1(m)}− 1

λ (n)γ
E{ψ

(
En(m)

)} (8)

where the expectation is over both noise and the channel estimation
error. Using (A2), the output of the clipping function can be written
as

ψ(En(m)) =





En(m)
σ2 if |Wn(m) |≤ kσ2,

k sgn(Wn(m)) if |Wn(m) |> kσ2.

(9)

Therefore, using (9), the expected value of the clipping function’s
output can be written as

E{ψ
(
En(m)

) | ∆Ĝn−1(m)}=
2∆Ĝn−1(m)β

σ2 (10)

where

β = 0.5− (1− ε)Q(kσ)− εQ

(
kσ√

κ

)
(11)

and Q(u) =
∫ ∞
u

(
1/
√

2π
)

exp
(−t2/2

)
dt. Using (10), the recur-

sive equation for the expected value of the channel estimation error,
namely (8), can be expressed as

E{∆Ĝn(m)}=

(
1− 2β

λ (n)γ

)
E{∆Ĝn−1(m)}

from which the asymptotic mean of the channel estimation error is
found to be

lim
n→∞

E{∆Ĝn(m)}= 0,

which implies that the robust FD channel estimator with the cost
function defined in (3) is an asymptotically unbiased estimator.

3.1.2 Convergence of the variance

In this section, we consider the convergence of the variance of the
robust FD channel estimator. The recursive equation for the second
moment of the aggregate channel estimate can be written as

E
{

∆Ĝ2
n(m)

}
= E

{
∆Ĝ2

n−1(m)
}

+
1

λ 2
(n)γ2

E
{

ψ2(En(m)
)}

− 2

λ (n)γ
E

{
∆Ĝn−1(m)ψ

(
En(m)

)} (12)

where the expectations are over both noise and channel estimation
error. The conditional expected value of the cross-correlation be-
tween the channel estimation error and the output of the clipping
function is evaluated next, which is given by

E
{

∆Ĝn−1(m)ψ
(
En(m)

) | ∆Ĝn−1}=
2∆Ĝ2

n−1(m)β
σ2 (13)

where we use (9), and the fact that channel estimation error
at the (n− 1)th step,∆Ĝn−1(m), is independent of noise at the
nth step,Wn(m). The conditional second moment of the output
of the clipping function can be expressed as

E
{

ψ2(En(m)
) | ∆Ĝn−1(m)}=

2β
σ4 ∆Ĝ2

n−1(m)+(α1 +α2) (14)

whereα1 andα2 are defined to be

α1 , 2(1− ε)
σ2

[
0.5−Q(kσ)− kσ√

2π
exp

(
−k2σ2

2

)]

+
2εκ
σ2

[
0.5−Q

(
kσ√

κ

)
− kσ√

2πκ
exp

(
−k2σ2

2κ

)]
, (15)

α2 , 2k2
[
(1− ε)Q(kσ)+ εQ

(
kσ√

κ

)]
. (16)

In deriving (14), we again use (9), and the independence of the
channel estimation error at the(n−1)th step,∆Ĝn−1(m), and the
noise,Wn(m). Using (13) and (14), the recursive relationship for
the second moment of the channel estimator, (12), is given by

E
{

∆Ĝ2
n(m)

}
= E

{
∆Ĝ2

n−1(m)
}
(

1− 2β
(
2λ (n)γσ2−1

)

λ 2
(n)γ2σ4

)

+
(α1 +α2)

λ 2
(n)γ2

from which the asymptotic variance of the channel estimator is
found to be

lim
n→∞

E
{

∆Ĝ2
n(m)

}
=

σ4(α1 +α2)

2β
(

2γσ2

1−λ −1
) ≈ σ2(1−λ )(α1 +α2)

4βγ
,

which is smaller than the total noise variance(1− ε + κε)σ2/2,
which is the noise floor induced by the RLS algorithm.

4. ROBUST FREQUENCY-DOMAIN DETECTION

In this section, we consider robust detection under the noise model
given in (2). From now on, the subscripts in̂Gn,Yn,Wn and∆Ĝn
indicating the symbol number will be dropped for notational sim-
plicity. The primary work considering robust detection is that of
Huber [14], where robustness is achieved by setting up the like-
lihood ratio (LR) according to the least favorable pair. However,
some difficulties related with this method are reported in [14]. First
is that for weak-signal conditions, there may not exist such a pair.
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Second is that when detection is based on an observation vector
rather than a single observation, for each sample of the observed
vector, the pair of the PDFs should be found independently, possibly
bringing about a computational load. Therefore, to overcome these
difficulties, the method proposed in [14] will be followed, which
mainly allows the two PDF families under each hypothesis to over-
lap and assumes that they differ only in their means resolving the
difficulties related with [13]. To that end, the PDF family

H =
{

h(x) = (1− ε)g(x;0,σ2)+ εv(x);v(x) is a symmetric PDF
}

is considered, to which (2) belongs. The least favorable PDF in this
family is given by

fLF (x) =





1−ε√
2πσ

exp(− x2

2σ2 ) for |x| ≤ kσ2

1−ε√
2πσ

exp( k2σ2

2 −k|x|) for |x|> kσ2
(17)

which obeys a Gaussian PDF at its center, then decays exponen-
tially, andk,ε,σ are related through

φ(kσ)
kσ

−Q(kσ) =
ε

2(1− ε)
(18)

whereφ(x) =
(
1/
√

2π
)

exp
(−x2/2

)
. Therefore, using (17) and

defining the hypothesisH1 (resp.H0) asb j = +1 (resp.b j = −1),
the robust test is

N−1

∑
m=0

TFD(m) =
N−1

∑
m=0

log

(
fLF

(
Y(m)−Ĝ(m)

)

fLF
(
Y(m)+ Ĝ(m)

)
) H1

>
<
H0

0

where the decision statistic behaves in a similar way as the clipping
function given in (3).
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Figure 1: NMSE of FD channel estimation under CM1 channel
whenε = 0.01,κ = 1000and SNR is 10 dB.

5. PERFORMANCE ANALYSIS

In this section, we will derive the probability of error of the FD
robust detector incorporating channel estimation errors. Hypothesis
H1 is assumed to be correct. Therefore, using (A2) stated in Section
3.1, TFD(m) can be expressed as

Tf d(m)=





2
(
G(m)+W(n)

)(
G(m)−∆Ĝ(m)

)
σ2 if |W(m) |≤ kσ2,

2k
(
G(m)−∆Ĝ(m)

)
sgn

(
W(m)

)
if |W(m) |> kσ2,
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Figure 2: NMSE of FD channel estimation under CM4 Channel
whenε = 0.01,κ = 1000and SNR is 10 dB.
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Figure 3:BER performance of FD processing whenε = 0.01,κ =
300.
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ing whenε = 0.01,κ = 300and the channel is CM4.
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using which, the mean ofTFD(m) underH1 is given by

µFD,r (m) , E{TFD(m)|H1}=
4G2(m)β

σ2

whereβ is given in (11). The second moment ofTFD(m) underH1
is

E{T2
FD(m)|H1}=

4
(
G2(m)+E

{
∆Ĝ2(m)

})[
2G2(m)

σ4 β +(α1 +α2)
]

whereβ ,α1,α2 are given in (11), (15), (16), respectively. Defining
the variance ofTFD(m) as

ν2
FD,r (m) = E

{
T2

FD(m)
}
−E2{TFD(m)} (19)

and using the central limit theorem and the symmetry between the
two hypotheses, the probability of error is given by

Pr
e,FD = Q


 ∑N−1

m=0 µFD,r (m)√
∑N−1

m=0 ν2
FD,r (m)


 (20)

for which the effect of noise on the test statistic is governed by
β ,α1 andα2, contrary to FD matched filtering, for which this ef-
fect is governed directly byE{w2}.

6. SIMULATION RESULTS

In this section, we test the performances of channel estimation and
detection. The pulse is selected as the second derivative of the
Gaussian function with durationTp = 1 ns. The frame duration
is selected to be 20 ns. Each symbol consists ofNf = 15 frames
resulting inTs = 300 ns. NG = 5 guard frames are employed for
FD processing. The chip duration is chosen asTc = 1 ns and the
TH codes are randomly generated from a uniformly distributed set
of {0,1, . . . ,Nf −1}. The number of samples taken per data part of
the symbol is given byN = 2400which corresponds to the Nyquist
rate. In all graphs, the signal-to-noise-ratio (SNR) value is calcu-
lated asEs/2

(
(1−ε)σ2+εκσ2

)
. Moreover, in all simulations, the

forgetting factor,λ , is set to0.999and the threshold parameter,k,
of (3) is adjusted according to (18). All theoretical results concern-
ing the the linear estimator and detector are calculated by setting
k→ ∞.

For channel estimation, the normalized mean square error
(NMSE) is used as performance measure. In Fig.1and Fig.2, learn-
ing curves of the robust FD channel estimator and RLS algorithm
are plotted. In both cases, RLS converges to the total SNR whereas
for the robust FD channel estimation algorithm, NMSE converges
to the nominal SNR value due to the elimination of the outlier com-
ponents by the nonlinearity given in (3).

Next, we test the robust channel estimator and the detector to-
gether. For channel estimation, each packet is sent with a training
sequence of 100 symbols which are all+1s. In Fig.3, we plot the
BER performances of the robust FD receiver and the FD matched
filter when ε = 0.01,κ = 300. As depicted by Fig.3, the robust
receiver substantially outperforms the matched filter. Moreover, as
in robust FD channel estimation, robust FD receivers have the same
performance both in CM1 and in CM4 channels, despite their to-
tally different characteristics, which indicates robustness to channel
parameters, as well. As in channel estimation alone, theoretical re-
sults are in good agreement with simulations.

Lastly, we compare the FD robust receiver presented here to its
TD counterpart which tries to estimate firstL paths of the channel
and combines them. To compare the FD and TD receivers,L is se-
lected asL ≈ 12 because of the fact that complexities of FD and
TD processing areO(N logN) andO(NL), respectively [10]. The

resulting plot is given in Fig.4 from which it can be concluded that
robust FD processing outperforms its TD counterpart in the NLOS
CM4 channel. Though not presented here, for line-sight-of chan-
nels, both have approximately the same performance and complex-
ity.

7. CONCLUSION

In this paper, a FD receiver is presented which performs both chan-
nel estimation and detection robustly. Theoretical and numerical
performance evaluations demonstrate the substantial performance
gains obtained via robust design. The inherent robustness of FD
techniques to channel statistics is witnessed, and the superior per-
formance of FD processing for NLOS channels is presented.
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