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ABSTRACT VBsMRFE | e | veswRF Wel Engine EC Engine
In H.264/AVC standard, motion estimation can be pro-| ™E Engne | FMEEngine | o | DB Engine
cessed on multiple reference frames (MRF) to improve the - e
video coding performance. The computation is also int— " 5% —le— 2”stage .l 3"Stage_.l.4"Stage |

creased in proportion to the reference frame number. Many?Fun : Tre numberof reference frames; - MV: Integer accurate motion vector
software oriented fast multiple reference frames motion esFigure 1: Block diagram of 4-stage hardwired H.264 encoder
timation (MRF-ME) algorithms have been proposed. How-
ever, for the VLSI real-time encoder, the heavy computation
o_f fractignal _motion estimation (FME) makes the integer MOyyare. Another kind of promising scheme is reducing the
tion estimation (IME) and FME must be scheduled in tWOgearch areas on MRFs depending on the MVs' strong cor-
macro block (MB) pipeline stages, which makes many fask|ations in consequent pictures [2][3].
MRF-ME algorithms inefficient. In this paper, one edge gra-  \iost of these algorithms are software oriented and the
dient detection based algorithm is provided to reduce thgegtrictions of VLSI implementation [4] are not fully con-
computation of MRF-ME. The image being rich of texturégiqered. The main adverse impact of hardwired encoder is
and sharp edges contains much high frequency signal angs v pipelining architecture. A brief overview of the MB
this nature makes MRF-ME essential. Through analyzmgthgpe"mng dataflow is introduced first. As shown in Fig. 1,
edges’ gradient, we just perform MRF-ME on those blocksy the first MB stage, IME engine processes on all reference
with sharp edges, so the redundant ME computation can bBgames. The integer motion vectors (MV) of 41 blocks in
efficiently reduced. Experimental results show that averagyig on all reference frames are achieved and dispatched to
26.43% computation can be saved by our approach with thgye second FME stage. Through 1/4-pixel accurate ME and
similar coding quality as the reference software. This pro-yrecise RD-cost evaluation, FME engine finds the best can-
posed algorithm is friendly to hardwired encoder implemenyjigates and the corresponding reference frames and decides
tation. Moreover, the provided fast algorithms can be comyg pest inter prediction mode. The post inter/intra mode de
bined with other fast ME algorithms to further improve the qision IP and chroma MC are implemented at the third stage.
performance. EC and DB are processed in parallel in the fourth stage.
Based on the hardwired encoder structure, the perfor-
1. INTRODUCTION mance of those provided fast MRF-ME algorithms are re-

The superior performance of the latest international videyiéwed and analyzed. All the early termination criteriofis o
coding standard, H.264/AVC, mainly comes from the new1] must be used in the second FME stage. At this moment,
techniques, which include 1/4-pixel accurate variableklo the macro block in FME stage has already finished its MRF-
size motion estimation (VBSME) with multiple reference !ME search. That means the computation load of IME, which
frames (MRF), intra prediction (IP), context-based adepti IS the most computation intensive part, can not be saved. For

variable lenath entropyv coding (EC) and in-loop deblockindthe hardwired encoder implementation, motion vector com-
(DB), etc. g by g (EC) P g::)osition based algorithms [2][3] have following drawbacks

According to the analysis in [1], 89.2% computation_(l)ThiS algorithm consumes much hardware cost because of

power is consumed by ME part. MRF is the main issud!S MV composition.  For example, in reference [2]x4
that leads to the huge computation complexity. The requiregilggl?sb?zs(ij%V;it%nlggngéasrggr?hurS;r?eek:r?cti. ;frgr;grgﬁg‘ee
Eompﬂtatmn 'S Lﬂ d|recft ratio 1o thf '\;lg‘gre?ce _H]ame ! r|n_frames totally 1.65Mb memories are req%ired For the accu-
er. However, the performance o algorithm mainly , 0o  are re - 70
depends on the nature of sequences. For some test sequené@y of MV composition, the multiplication, which increase
MRF-ME greatly improves the coding quality, but this is the hardware cost, is also applied. (2)This algorithm just
not always. In other words, most computation consumed bzﬂ?ggﬂeosf ?ﬁégﬁ&ﬂftlon of IME and does not reduce the
MRF-ME is wasted. In order to reduce the redundant com* .
putation of MRF-ME, many interesting and powerful algo-  1hrough the mathematical analysis [5][6][7], aliasing
rithms have been provided [1][2][3]. One excellent work isgit‘:ﬁgr:é;htig'cﬁggﬁczgﬁ é?faigiléen'gcy gutg_e (raTI]&ilrI:':els'Suig that
provided in [1], which provides four criterions to earlyter JMRF toch P donted b Hé64 PI _ rttm
minate the motion search on MRFs. These algorithms effidn echniques adopted by H.264 mainly aim 1o com-

ciently reduce 30%-80% redundant computation in the softénsate the prediction error caused by aliasing. In thisipap
based on the 2-D gradient measurement with Sobel opera-

This paper was supported by CREST, JST. tor, we can accurately analyze the frequency nature of image
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and dynamically adjust the reference frame number. Con
quently, the redundant computation is efficiently elimauht ]

Moreover, our algorithm is compatible with other fastbloc @31 = _~—= —o— football_gcif_5ref _
matching, fast MRF-ME and fast inter/intra mode decisic E A T~ —&—football_qcif_tref _
algorithms [8][9]. Combined with these fast algorithmsy ot @ 35 +------ <= ----——----—-- —O—mobile_qif_Sref
algorithm can achieve better performance. K - —+—mobile_qcif_fref _

The rest of this paper is organized as follows. In se
tion 2, the impact of aliasing to prediction error, which i 0 500 1000 1500 2000
caused by the high frequency signal, is first briefly intrc Bit-Rate(kbps)
duced. And then, the spatial edge gradient effect to its f'eFigure 2: Rate-distortion curves of ‘mohitgif’ and foot-

quency spectrum is mathematically analyzed. Based on they | qcif with 1 f f
conclusion of section 2, the fast MRF-ME algorithm is pro—n% -qeif with 1 and S reference frames

posed in section3. Section4 shows some experimental re-
sults to demonstrate our algorithm. Conclusions are draw
in section 5.

Between the currerg (X,) and the previous_;(x,) image
is sub-pel and the more previous image(x,) has the full-
pel displacement, i.eAy;_k=0, s_k(xn) is preferred to be

2. IMPACT OF EDGE GRADIENT TO MRF-ME chose as the reference because its aliasing problem dose not
ALGORITHM exist any more.

By mathematical analysis, aliasing is the main compo- Now, we can explain why ‘Mobile’ sequence is so sensi-
nent that deteriorates the prediction efficiency [5, 6, 7]tive to MRF-ME. The main reason is that many textures are
H.264/AVC adopts 1/4-pel accurate interpolation and MRFcontained in this video sequence. Sharp edges in the spatial
techniques to compensate the prediction error caused i{pmain generate rich high frequency signals in the frequenc
aliasing. In this section, we first give a brief overview of domain. Even though the 2-D Wiener filter interpolation al-
the impact of aliasing and this analysis reveals that thi higgorithm in H.264/AVC can alleviate the error of aliasing, it
frequency spectrum is the main issue. And then the edggffec_t can not compare with the reference image with the full
gradient contribution to high frequency spectrum is mathePel displacement. o o
matically analyzed. Seven reasons of MRF-ME achieving better_pred|ct|on

In order to simplify the mathematical description, theresults, such as ‘uncovered background’, ‘Alternatingeeam
analysis is restrict to one spatial dimension signal [fx)  angles’ and ‘Camera shaking’ etc, are listed in [2]. In fact,
andl;_1(x) denote the spatial-continuous signals at time inthrough our experiments, aliasing is the main issue making
stancet andt — 1. l;(x) is a displaced version df_1(x) MRF-ME essential. For example, the rate-distortion curves
and the distance ig, which can be expressed &$x) = of ‘football_qcif” and ‘mobile.qcif’ standard sequences with
lt—l(x_ dx) Their frequency domain signa|s are denotedl and 5 ref.erence frames are shown in FIgZ Even thOUgh
asL;(w) andL,_1(w). These continuous image signals are‘football_qcif’ has large and complex motions, MRF-ME
sampled by the sensor array before digital processing. Thean not achieve noticeable coding gain. However for ‘mo-
interval of the spatial samplers is denotegashe displace- bile_qcif’, because of its sophisticated texture, the peak sig-
ment error can be expressed Ms= dx—rounddy/sy) - S. nal to noise ratio (PSNR) differences between searching five
Aliasing dose not exist if Nyquist-Shannon sampling preconreference frames and searching only one reference frame are
dition, i.e.,L;_1(w) =0 for |w| > ws/2, wherew is the sam-  about 1.4-1.5dB. _
pling frequency, is satisfied. However, because no spatial- The 2-D Fourier spectrum amplitude of these two se-
limited signals can be band limited and the low-pass filter ofiuences are shown in Fig.3. Itis obvious that the high fre-
the sampling system is not ideal, the precondition of Nytguis guency signal of ‘mobilgcif’ is much more abundant than
Shannon sampling theorem cannot be fulfilled. its counterpart ‘footbalbicif’. The intuitive approach is dy-

According to [7], with the normalized sampling fre- Namically adjusting the reference frame number depending
quency, i.e.cx = 21T, the magnitude of prediction error sig- 0N the image’s Fourier spectrum analysis. However, this
nal caused by aliasing can be described as (1) method has two demerits: (1) Fourier transform is not a pow-

erful tool for short length signals. It can not efficientlyeal
the local frequency nature of a signal. (2) The computation

|Et(w)| =2 |A_1(w)] - |sin(Ax - 1) (1)  complexity of 2-D Fourier transform is very high.
In fact, we can derive a signal’'s frequency spectrum
whereA;_1(w)=L_1(w+2m)+Li_1(w—2m). features through analyzing its gradient amplitude. In theo
According to (1), two important conclusions can bethe signal frequency spectrum spreads linearly with its
drawn: gradient amplitude.

1. Because of the iter 1 (w)| , aliasing is cause by the Proof: Supposel (x) is a Lebesgue integrable function,

high fre_quency S|_gnals_|ht_l(w), Whgre|w| 2T L(w) is denoted as its Fourier transform. In particular, if we
2. According to the itemsin(A« 11)|, the impact of aliasing ¢4 ,6676 4 function in domaina times, it can be expressed
vanishes at full pixel displacements and is maximum agsl(ax) The derivative of (ax) is '

half pixel displacements.
Conclusion 1 states that the image being rich of high fre- gl (ax) ,
quency signals is prone to be affected by the aliasing prob- 5, ~ al’(ax) (2)
lem. Conclusion 2 explains the necessity of MRF-ME dur-
ing prediction processing: If the displacement erg¢_1  (2) demonstrates that [{ax) is concentrated around O, its
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6 Gy estimates the gradient in the x-direction and the of&gr,
55-] estimates the gradient in the y-directioByx andGy can be
o ‘w" : written as
R ‘ -10 1 1 2 1
B ' Gy=| -2 0 2|Gy=| 0 O 01 (4)
g -1 0 1 -1 -2 -1

P denotes the input picture and the convolution between
P andG derives the gradient in horizontal direction. At the
coordinatdi, j] of luminance picture, the gradientstis de-
fined as

! ;‘\'_‘V_‘v—%y—‘——"v‘r—*—V/__"—#ﬁ
100 50 0 50 100 0 0 50 100

dX,j=—pi-1,j-1—2Pi-1,j — Pi-1,j+1+

v u (5)
(a) football qcif frequency Pitt,j-1+2Pia,j+ Pirt, j41
o In the same way, we can achieve the gradieft in
: I dyi,j =Pi-1,j-112Pi j-1+Pia j-1— ©)
| ‘ : Pi-1,j+1— 2P, j+1— Pitd, j+1
] A M x N block, whereM andN are 16 or 8, is defined as

a homogeneous one, if all edge gradient amplitu¢tbs, |
and|dy; j|, in this block are less than a predefined threshold
Thdy. This decision procedure can be expressed as

log10(E(IF(u.v))))
w
o
|

Vi,jepositions in the block

{ |d%.j| < Thdy and|dy; j| < Thdy homogeneous

otherwise nonhomogeneous
‘ ) (7)
(b) mobile qcif frequency How to define the value oF hdy is another critical issue

Figure 3: Frequency spectrum analysis of ‘moljtaf’ and ~ because this threshold directly affects the performanceiof

‘football_qcif’ sequence (128 frames at@mming window @lgorithm. Itis assumed that the prediction ereas a sta-
adopted) tionary jointly Gaussian source of zero mean and variance

0?. The distortion of quantization [11] is label & which
can be approximated as

gradient amplitude is increased linearlyao According to

the scaling property of Fourier transform,| {k) <= L(w) D= f (8)
denotes thal(x) andL(w) are a Fourier transform pair, we 3
can derive

In order to simplify the analysis of the variance of predinti
errore, we still focus on one spatial dimension signal. From

1 w
l(ax) = HL(E) () Fig. 4, it can be observed thatan be approximated as
Namely, the frequency spectrum span @fx) also expends e~ Ax-li—1'(Xn) 9

in proportional toa. In summary, if a image contains a lot ) ) ) )
of sharp edges, it must be rich of high frequency spectrum/Vhere, the displacement errd; is a random variable with
From the analysis of (1), we can see that, in this case, MRFZEI0 meany € (—Sy/2,5,/2), s is the spatial sampling dis-
ME is a essential and efficient approach to reduce the predi¢ance. In consequerd? should be linear tgl; 1/ (xn))?
tion error.
o?~a- (-1’ (x))? (10)
3. EDGE GRADIENT DETECTION BASED FAST
MRE-ME ALGORITHM According to the analysis of [12], the rate distortion func-

. i tion of a memoryless Gaussian source of variagéavith
Sobel operator is widely used to perform a 2-D spatial grarespect to the squared-criterion is
dient measurement on an image and also emphasizes regions
of high spatial frequency that correspond to edges. In this 2
gh s duency o J { 05l0g% 0<D<0? 1)

paper, we apply it as the edge detector. Another reason of R(D) =
0 D> o2

adopting Sobel operator is that this operator is also agpilie
the fast inter/intra mode decision algorithms [8][9][1&o,
applying the same operator makes it easy to combine our alt should be noticed that whed > 2, R(D) becomes zero.
gorithm with these fast mode decision schemes. Sobel edge more intuitive explanation is that, when the amplitude
detector uses a pair of>33 convolution masksx andGy.  of residues is less than the threshold of quantization ethes
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Figure 6: VLSI architecture with fast MRF-ME algorithm
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Figure 4: 1-D prediction error analysis

Table 1: Coding performance comparisons

y T and _ 0 (8)| Sequence | ME (%) BDPSNR(dB) BDBR(%)]
residues vanish and no rate cost is required. From (8)f —— =

(10)and (11),Thdy should be increased linearly wi@P. Foremandcif _20'51 _0'038 0.82
ith exh h h . i d Mobile_gcif 07.71 0.023 0.43
Wr|]t exhaustive experiments on various video sequences, News qcif 1728 0.017 028
Thd, is setas Footballqcif | -30.06 -0.020 0.28
_ Foremancif -43.59 -0.098 2.27
Thdy =5QP (12) | Mobilecif | -07.81  -0012 021
The pseudo code of fast inter ME algorithm of encoding| Stefancif -14.55 -0.007 0.14
one macro block is shown in the following, as Fig.5. Our| Footballcif | -45.56 -0.025 0.40
changes to the reference software have been highlightad wit__Containercif | -50.85 0.002 -0.06

the bold italic font.

Edge_Gradient_Detection ( Current Macro-Block ) RD optimization is enabled

Mode= P16X16 or P16X8 or P8X16: Reference frame number is 5

Loop 16x16 or 16x8 or 8x16 Blocks

MV is 1/4 pel accurate
Loop Reference Frames ( frame number=1 for homogenous;
frame number=5 otherwise)

GOP is IPPP
Integer and Fractional Motion Estimation { Encoded 200 frames
Compute Cost of 16x16 or 16x8 or 8x16 Block;

) Four QCIF and five CIF format standard sequences are

ouhAwN

End Loop experimented with quantization parameters 20, 24, 28, 32
Accumulate Cost of 16x16 or 16x8 or 8x16 Blocks as Cost of Macroblock; and 36. In order to evaluate the ME speedup of our algo—
End Loop rithm, ME speedupE; is defined as
Mode=P8X8:
Loop 8x8 Blocks T — T
Loop Sub-Partition Modes ME; = — ™ x 100% (13)
Loop Reference Frames ( frame number=1 for homogenous; jm

frame number=5 otherwise)
Loop Sub-Blocks

Integer and Fractional Motion Estimation {
Compute Cost of Sub-Blocks;
}
End Loop
End Loop
Accumulate Cost of Sub-Blocks as Cost of 8x8-Block;
End Loop
Accumulate Cost of 8x8-Blocks as Cost of Macroblock;
End Loop

where,T; denotes the the ME time of our algorithm afigh
is the time taken by JM11.0.

The rate-distortion curve comparisons are shown in
Fig. 7. As our algorithm provides the almost the same cod-
ing efficiency, it is hard to distinguish our algorithm’s gas
from the reference ones in most cases. At high bit-rate,
the degradation of PSNR is slightly noticeable for “fore-

mangcif” and “foremancif” and is less than 0.1dB.

The experimental results are shown in Tablel. BDBR
(Bjonteggard Delta BitRate) and BDPSNR (Bjonteggard

This algorithm can be easily integrated to the hardwired?®!t@ PSNR) [13], which are respectively average diffeeenc
encoder engine as illustrated in Fig. 6. During loading & th Of bit-rate and PSNR between two methods, are used and
current MB pixels, the edge gradient detection is performed'ey are derived from the simulation results when QP = 20;
on the current MB. The edge detection results can be ag:# 28; 32. Itis observed that our algorithm has reduced
plied to guide the reference frame number of the IME proih€ ME time by 26.43% on average. The speedup perfor-
cessing of current MB. When the current MB is transferredhance of our method depends on the nature of the video se-
to the FME stage to do the refine search, its edge informatiofience. Sharp edges of ‘Mohigeif/cii’ make them very

is also delivered from IME stage to eliminate the redundangensitive to MRF-ME algorithm. For these sequences, just
computation of FME stage. 7.71%-7.81% ME time can be saved by our approach. For

those sequences not depending on MRF-ME algorithm, such
4. EXPERIMENTAL RESULTS as “Footballcif” and “Containetcif”, 45.56% and 50.85%

ME time can be saved, respectively.
The proposed fast MRF-ME algorithm is embedded into  Qur fast reference frame selection scheme can save a lot
JM11.0 provided by JVT. The simulation conditions areof unnecessary ME operations while maintaining the video
shown bellow. quality almost identical to full search scheme. It is differ
1. MV search range is16 for QCIF and+32 for CIF ent from the conventional fast block matching algorithms,

Figure 5: Pseudo coding of our fast MRF-ME algorithm
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C 1000 2000 3000 4000 5000
Bitrate(kbps)
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PSNR(dB)

Yo 500 1000 1500 2000 2500 3000 3500
Bitrate(kbps)

(d) footballcif and containercif RD curve comparisons

alyzing of raw video sequences. One interesting matter is
that our algorithm and other fast algorithms are orthogonal
For example, before ME processing, our algorithm decides
whether to use multiple reference frame and then conven-
tional fast search methods can be adopted during the search
procedure.

5. CONCLUSIONS

Fully considering the limitations of MB-pipelined hardwear
architectures, we propose the VLSI friendly fast algorishm
for MRF-ME in H.264/AVC: By analyzing the edge gradient
of current picture, we can estimate its frequency spectrum
nature. For those blocks being rich of sharp edges, multi-
ple reference frames are adopted during their ME processing
otherwise, just the previous reference frame is neededidn t
paper, the mathematical analysis shows that the threstiold f
edge detection should be proportional to the quantizatéen p
rameter. Through experiments, it is defined @§5Experi-
mental results show that average 26.43% computation can be
saved with almost the same coding quality as the reference
software. Moreover, the provided scheme can be combined
with other fast ME algorithms to further improve the perfor-
mance.
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