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ABSTRACT

The design of complex Digital Signal Processing (DSP)
hardware accelerators implies to minimize architectural
cost and to maximize timing performances. Exploring
different  communication — architectures and  timing
behaviors is thus a key step in the modern system design
flows. In this paper, we present a methodology that permits
the design space exploration of DSP applications. The
proposed approach consists in embedding a sequential
function into a Behavioral Description Model (BDM) that
includes a set of I/O and control processes.
Communication architectures and timing behaviors (I/O
scheduling, I/O parallelism...) can be varied and easily
explored by adding 1/O and synchronization code into the
dedicated concurrent processes while keeping the
functionality  description unchanged throughout the
exploration step. A high-level synthesis tool is next used to
generate the architectures that respect the design
constraints. We show the interest of our approach in the
case study of a Hyper-plane Intersection and Selection HIS
algorithm for MC-CDMA system.

Index Terms— System analysis and design, Design
automation, High-level synthesis.

1 INTRODUCTION

Consumer electronic devices are more and more oriented
towards multimedia and communication applications. The
design of real-time embedded SoC architectures is
currently achieved by using system-level descriptions,
electronic-system level ESL tools and by re-using pre-
designed IP-cores. Typical SoC architectures include
several processors, memories, I/O devices, communication
media and dedicated HW accelerators. Indeed, the
increasing complexity, the low-power design constraints
and the growing data rates of applications from the digital
signal processing (DSP) domain still often requires
hardwired implementations to be used as dedicated
accelerators in the final system-on-chip (SoC). In [1]
authors  introduced  the  Interface-based  design
methodology. The underlying idea of this work is to split
the communication and the functionality to allow an
independent refinement of their timing behavior. The
SystemC methodology [2] is based on this concept and
implements it with the Interface Method Call (IMC)
mechanism. In [3] the authors propose a similar approach
that uses the SpecC language. Many commercial tools
(such as Cadence NCSystemC [5], CoCentric Synopsys
System Studio [6], CoWare N2C [7]) have started to
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support system exploration at the Transactional Level
Modeling TLM level. However, while these approaches
target software dominated design, they do not address
precise timing issues and do not define how to refine and to
model detailed communication architectures and behaviors
which are required for the design space exploration of
hardware DSP functions (see [8]). Some other approaches
are more oriented toward the hardware design of DSP
applications. Thus, in [9] and [10] the authors propose
approaches that use Matlab/Simulink/Stateflow tools for
the system specification and that produce a VHDL RTL
architecture of the system. Based on hardware
macro/generators that use the "generic"/"generate"
mechanisms, the synthesis process can be summarized as a
block instantiation [11] which does not permit a real design
space exploration.

In [12], [19], [20], we show the interest of reusing
algorithmic IP cores to design hardware accelerator of the
DSP domain. Based on high-level synthesis techniques, the
approach aims at synthesizing an algorithm (a C function)
by taking into account integration constraints: application
rate, technology, I/O timing diagram, memory mapping...
The proposed approach does not however propose any
support for the exploration of the design constraints. In
[18], we introduce a behavioral description approach
(BDM) that allows to explore, by easily modifying some
architectural and I/O timing constraints, the design of
complex DSP systems.

This paper is organized as follows: Section 2 introduces the
problem of communication refinement and specification in
the design space exploration. Section 3 briefly reminds the
main concepts of the BDM approach. In section 4, we
show the interest of our approach by presenting the design
space exploration of a Hyper-plane Intersection and
Selection HIS algorithm [16].

2 PROBLEM FORMULATION

Let us consider the typical design of a DSP application
including a function add v that adds two vectors (A and B)
of N elements. At the untimed functional level (UTF), the
application is developed in a C or MATLAB like
environment. The intrinsic concurrency of the application
is next exhibited through a process network where modules
(that embed the functions) are connected by FIFOs. Each
computation is processed in zero time using blocking read
functions which arguments are structured data: vector type
(1D-array) in our add v example. FIFO sizes are then
bounded and timing information is added for the
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Figure 1: Communication timing behaviors of an adder component: (a) sequential behavior with abstract data type, (b)
sequential behavior with refined I/O data type, (c) pipelined behavior, (d) interleaved behavior with refined I/O data type.

computation latency of each function by using a wait

statement  (Timed

Functional

description

TF).

Communication delays are next added for each I/O data
transfer by using the same annotation technique. Note that
I/O data types have not yet been refined and are still
referred as atomic structures. At the Bus Cycle Accurate
(BCA) level, the communications are realized through
cycle accurate component interfaces. Read and write
operations to memory use physical addresses to access fine
grain data (scalar). This implies that both the data types
and the timing refinements have been done which is true
only for pre-designed core. In this context, the main
problem confronted by the designer is how to easily
explore communication architectures and timing behaviors
of components that compose a complex system, to identify
an ideal design point in earlier design stages. Traditional
approaches describe the reading, the processing and the
writing operations inside a single process which limits the
capability to efficiently and quickly explore different
behaviors (see Figure 1.a and Figure 1.b). However,
refining a sequential behavior description (a pure C
function for example) into a concurrent one requires the
designer to modify its specification source code. For
simple algorithms, a basic behavior like the interleaving
between reading, processing and writing operations, with
or without pipeline, can be modeled by modifying the code
as presented in Figure 1.c and Figure 1.d. However, this
task becomes rapidly too complex, time consuming and
error prone for real world examples. This complexity
needed to describe concurrent, overlapping and pipeline
communication behaviors between I/O ports and
computation, is not acceptable in the context of efficient
design space exploration which requires rapid and safe
modifications.

A new approach that allows a simple and rapid exploration
of communication architectures and timing behaviors of
DSP functions is thus needed. We proposed, in [18], a
refinement model called Behavioral-Description-Model
(BDM) which is summarized in the next section. For a
given communication architecture (i.e. number of I/O ports
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which can also easily be modified), the BDM approach
allows the designer to model several timing behaviors:
sequential (first reading all the inputs, then computing and
finally writing all the outputs), interleaved (reading some
inputs, computing and writing some outputs), and
pipelined, without modifying the original computation
function. Moving from one behavior to one other can be
done by simply modifying I/O processes in which the
designer sets the delay values, port assignment and
synchronization between ports. Moving from an
abstraction level to an other can easily be realized by
refining the port type and the I/O data granularity (matrix,
vector or scalar type) and/or set or reset delays (Untimed
Functional vs. Timed Functional). All these refinements
and behavioral specifications are done without modifying
the computation function. In the next section, we present
an overview of our BDM approach.

3  BDM APPROACH OVERVIEW

A behavioral description model is to be used in the context
of Process Network PN to describe a concurrent DSP
application. Hence, a BDM has a set of read and write
ports connected to channels allowing the BDM
components to be chained and to communicate with each
other. The behavior of a BDM consists of reading inputs /,
writing outputs O and executing a computation function
which uses intermediate storage variables SV. Each BDM
includes:

e A set of input, output and aging shared-variables
respectively named isv, osv and asv, with SV={isv, osv,
asvy,

e A set of input processes IP={ipy,...,ipy}, which allows
the variables of the set isv to be assigned from the
input values (belonging to /) coming from the input
channels,

e A set of output processes OP = {opy, opy,..., Opu},
which allows the variables of osv to be computed and
next written as output values (belonging to O) into the
output channels,
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e A set of two control processes CP = {icp, ocp}
composed of one input control process icp and one
output control process ocp which control and
synchronize /P and OP execution and which handle the
state of the shared variables SV.

¢ One computation function f,., that determines the
functionality of a BDM component and gives results to
the output data in osv, depending on the input storage
variables of isv and aging storage variables of asv.

The BDM processes can exchange control events which

allow the designer to specify reactivity, synchronization...

between inputs and/or outputs. Figure 2 presents the
possible architecture of the BDM for the vector adder

component described in fig. 1.

sv=vipuvop Adder

Figure 2 : BDM architecture of adder component.

The traditional specification model that uses only one
process which includes all the read, compute and write
operations is thus decomposed into a set of concurrent
processes, which allow the parallel execution of read,
processing and write tasks. Note that in our model, only
one computing function exists. Communication
architectures and timing behaviors (I/O scheduling, /O
parallelism...) can be varied and easily explored by adding
I/O and control instructions into the dedicated concurrent
processes while keeping the functionality description
unchanged throughout the refinement steps.

Behavioral Description Model has been implemented using
the SystemC language. A BDM component is a SystemC
module that has a set of I/O ports through which it
connects to other modules via FIFO channels. Designer can
thus easily model a complex digital signal processing DSP
application as a process network PN. Input, output and
control processes are implemented using SC THREAD
processes. Read, write and control primitives are provided
as polymorph functions regrouped in a C++ class named
“BDM toolbox” from which each BDM module inherits.
Synchronization between processes is realized using the
dynamic event primitives provided by SystemC. Read and
write primitives are instantiated into I/O processes and
allow a BDM module to access communication channels
via its I/O ports. The SystemC read and write methods, that
we provide in the toolbox, also allow the generation of
both (1) simulation traces relative to I/O transfers and (2)
design constraint files for high-level synthesis.

More details about the BDM approach can be found in
[18].

4 A CASE STUDY OF A HIS ALGORITHM FOR
MC-CDMA SYSTEMS
In this section, we show the BDM efficiency in exploring
communication architectures and timing behaviors, and
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their impact on the final design, for an industrial
application: an Hyper-plane Intersection and Selection HIS
algorithm used in MC-CDMA systems (see [16] for
algorithm details).

An efficient sub-optimal algorithm, called HIS (Hyper-
plane Intersection and Selection) detection algorithm [16],
has been proposed to solve the problem of joint detection
of K users in a MC-CDMA system. This algorithm has
three characteristics very attractive for practical systems.
Firstly, it has nearly optimal performance. Secondly, it has
a low computational complexity (O(K*) multiplications and
O(K®) additions). Third, the algorithm has an inherent
parallelism level which allows us to predict an efficient
hardware implementation.

4.1 HIS Application overview

In the following, we give all steps of the HIS detection
algorithm with parameters D (the number of studied
dominant axis noise) and M (the number of selected
candidates):

Input: the received vector Y, the channel matrix H.
Output: a nearly Maximum Likelihood (ML) solution X,
of (3).

A

X @), =argmin|[y(n-HOxX]| 3)

Pre - processing:

¢ Find the D singular vectors (v,),-1.p associated to the
smallest singular values of the channel matrix H.
Compute the D x N values (1/v,(i)) and compute H !
Note that this pre-processing step is performed only
once for every new channel matrix H.

e Calculate an initial sub-optimal solution p using ZF
(Zero Forcing) algorithm.

e Generate the D references lines {A,..., Ap} defined by
the point Xz and vectors {v,},=1..D.

A =lzeRz=prav,, ack (@)}

Step 1: Geometrical Intersection (GI)

For each lines Ay, find all intersection points between this
line and all hyper-plane P defined as (5). There are 2n
points to be calculated as shown in Figure 3. Finally
project all intersection point on {-1,1}", suppress redundant
points and generate candidates points Ip;.

p=llfew iz =tfulew/z00=-1] ©)

K
(=1 = -/
s
,,,,,,,, "/ e

o Intersection point

m Candidate point
z(2)=-1

Figure 3: example of HIS algorithm for D=1 and n=2.
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Step 2: Evaluation (Eva)
For each direction k (k=1....D), evaluate the cost function,
second member of relation (3), for all /p;.

Step 3: Sort and Select (SS)
For each Ip;, extract the M candidate points having the
lowest cost function.

Step 4: Search and Select (GS)

Use each candidate point by, (k=1....Dand t =1....M) as a
starting point of a greedy function (local search function)
and select the Quasi-optimal solution X;,, for problem (3).

4.2 Design space exploration

We present in this sub-section the design space exploration
we did by using our BDM models to specify several
communication architectures and several timing behaviors
for each sub-block that composes the HIS application. We
first described the HIS algorithm as a set of purely
sequential C functions, each performing one of the four
algorithm steps described in the previous section. We next
encapsulated each function into a BDM SystemC object as
shown in Figure 4. This new description of the application
was an untimed and concurrent specification of the HIS
application that included four BDM components: G/
(Geometrical Intersection), EVA (Evaluation), SS (Sort and
Select) and GS (Sort and Select). Each component had a set
of input ports and output ports connected to SystemC
FIFOs. The first sequential specification written in C
language has thus been parallelized thanks to the
concurrency introduced by the set of BDM modules. We
then refined at different abstraction levels this parallel
specification and defined several timing behaviors. This
allowed us to explore different architectures and to analyze
their impact on the timing performances and the area of the
HIS system. The communication constraints specified for
the simulation were next used for the high-level synthesis

of each block.

Ve sV =vip Uvop EVA\
—_—

SV=VpUYP 8
— ¢

K HIS

Figure 4: A hierarchical HIS BDM architecture.

At both the untimed and timed coarse grain BDM levels
(UTF-CG and TF-CG), the read (write) primitive gets
(puts) all the scalar data simultaneously since the FIFOs
handle data with structured types (vectors/matrix of
integers). We next refined the type of both the FIFOs and
ports to handle integers (at the fine grain description level
FG), and we specified the scheduling of inputs and outputs
by using for loops instructions in the input and output
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processes. At the TF-FG level, four timing behaviors have

been specified, when possible, for each component:

e one sequential behavior with no overlapping between
1/O: the first output data is produced in an output
FIFO only when all the inputs have been read like in a
Synchronous Data-Flow SDF actor. Thus, the original
sequential function is executed only one time.

e one “interleaved” behavior where the /O were
overlapping: some results are written in the output
FIFOs before all the inputs had been read. Until all
the input data have not been read, the computation
function is executed each time a result has to be
produced.

e  One “pipelined” behaviors with I/O data overlapping
where the component starts input data read for the
next algorithm iteration before finishing the
production of output data of the current iteration.

e One “pipelined” behaviors without [/O data
overlapping.

These four types of behavior have been specified by using
the parameterized communication primitives that we
provide in the SystemC toolbox.

For each timing behavior of each BDM component, an I/O
trace file has been automatically generated during the
functional SystemC simulation. These traces have next
been used as 1/0 timing constraints for high level synthesis
of the components. Synthesis results have been obtained by
using the HLS tool GAUT [17] with a 10ns clock period
constraint. This allowed us to estimate the impact of
different communication strategies on the final hardware
implementation of the GI, EVA and GS components. SS
which is an interleaver, has been used for simulation
purpose but was not synthesized in this experiment. Table
1 presents the results of the design space exploration we
performed for the HIS algorithm. The algorithmic
parameters of each components were the matrix dimension
N=4 and the number of selected candidates C=4. The
synthesis of each block was performed for the three
following I/0O sampling rates: 1 data/4 cycles, 1 data/cycle
and 2 data/cycle. For each I/O sampling rate, each of the 4
types of behavior (sequential, interleaved...) has been
synthesized whenever possible (according to the data
dependencies of the algorithms) while targeting the best
timing performance (lowest latency and iteration period,
maximum throughput).

When the behavior is not pipeline, the iteration period must
be greater or equal to the latency which depends on the
sampling rate. In this case, the I/O overlapping (when it is
possible, see tablel) reduces the total latency and thus
enhances the maximum throughput but leads to larger
component areas. The overlapping ratio between [/O
depends on the data dependencies of the algorithm and on
the I/0 schedule. In Table 1 the interleaved behavior of the
EVA block gives a larger area than the sequential behavior
since the architecture must be more parallel in order to
respect a shorter latency. The overlapping ratio between
I/O depends also on the sampling rate since a slow
sampling rate will result in a large timing delay during
which operations can be scheduled. Hence, the EVA
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N N¥2N+D) Gl EVA GS
N Latency| Tteration | Area | Throughput|[Latency| Tteration | Area |Thr K Latency| Tteration Area [Thr K
N*(2N+1) . (ns) |Period(ns)| (u?) | (Kdata/s) (ns) | Period(ns)| (u?) | (Kdata/s) (ns) Period(ns) | (u?) | (Kdata/s)
NZN”’ ate 1: Sequential || 9000 | -9000 [31619 2300 | -2300 [34813] 17391 || 3750 | =3750 |15032] 6400
NN e 1 data/"lcycles Interleaved - - - 1700 =1700 ]42187] 23529 - - - -
C Pipelined 9000 310 47 380 = - = - 3750 3 000 30 261 8 000
N+ Rate 2: Sequential 2400 =2400_ |26 601 1550 =1550 |11980] 25806 2830 =2830 13 484 8 480
N N*C 1 data/cycle Pipelined 2400 300 41 886 - - - - - - - -
N*C GS c Rate 3: Sequential 1380 =1380 [27337 1550 =1550 |10694| 25806 2 600 =2 600 35 951 9 236
c 53 2 data/cycle Pipelined 1380 300 44 446 - - - - - - - -

Table 1: The HIS component behaviors.

interleaved behavior is no more possible for rate2 and
rate3. When the behavior is pipelined, the throughput
depends on the iteration period which depends itself on the
data dependencies of the algorithm. The area depends on
the iteration period but also on the latency which is
function of the I/O sampling rate (see table GI and GS in
tablel).

Hence, the architecture performances of digital processing
applications rely on a set of parameters that are
interdependent which needs a dedicated design space
exploration environment.

5 CONCLUSION

In this paper, we described a behavioral description model
BDM which allows the design space exploration of DSP
applications. The proposed approach consists in
encapsulating a sequential function into a BDM object
which also embeds input, output and control processes. By
using these processes, the designer defines a
communication architecture for which he next specifies
and refines the timing behavior. The BDM approach which
has been implemented in SystemC has been used in this
paper to highlight the complexity of the design space
exploration task. The system level modeling and
refinement of a HIS system has been realized using a set of
BDMs and has next been synthesized by using a high-level
synthesis tool.

We are currently working on the development of a tool
named DsXplore that automates the encapsulation of a
pure C function and the generation of its corresponding
SystemC BDM. Through a graphical interface (an Eclipse
plug-in [21]), this tool allows the specification and the
exploration of BDM networks. This API will be next
connected to our HLS tool GAUT that already use the
design constraints generated by the BDM models.
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