15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

A REDUCED REFERENCE VIDEO QUALITY METRIC FOR AVC/H.264

Tobias Oelbaum, Klaus Diepold

Institute for Data Processing Technische Universitidt Miinchen
Munich, Germany
oelbaum @tum.de, kldi @tum.de.

ABSTRACT

A reduced reference video quality metric for AVC/H.264 is pro-
posed. This reduced reference metric evaluates a set of features
such as blur or blocking and combines these measurements into
one quality information using multivariate data analysis. The met-
ric needs a very low overhead in terms of additional bit rate and is
verified with data from accurate subjective testing. It does not only
outperform standard PSNR but also shows to be superior compared
to two full reference video quality metrics. In addition a method for
designing video quality metrics is presented. This method is based
on multivariate data analysis, a tool that is widely used in chemo
metrics and food science to predict latent variables such as taste by
evaluating a set of variables that can easily be measured.

1. INTRODUCTION

Four years after the first version of the upcoming video coding
standard AVC/H.264 [1]] was released, next to no results exist to
demonstrate the prediction capabilities of video quality metrics for
AVC/H.264 encoded video data. Up to now most video quality
metrics have been verified using MPEG-2 encoded videos, but as
AVC/H.264 encoded video has significant different characteristics
(e.g. no fixed block sizes, filtering in the decoder loop), those re-
sults do not necessarily apply for this new generation of encoded
video.

Being the de-facto standard for objective video quality metrics
PSNR is still used for comparing AVC/H.264 with other video
codecs or for comparing different encoder implementations or cod-
ing settings for AVC/H.264. This is in spite of the knowledge, that
PSNR values may be misleading [2], meaning that PSNR may not
even give an indication about which of two coded videos does have
a better visual quality. Video quality metrics such as the approach
presented by Gastaldo et al in [3] that were especially designed for
MPEG-2 video or a different unique video codec obviously can not
predict the quality for an AVC/H.264 encoded video as precisely as
if the codec for which this metric was developed was used. Due to
tools such as the inloop filter that are an integral part of AVC/H.264,
also more generic video quality metrics may have a reduced predic-
tion accuracy for AVC/H.264.

While the adoption of AVC/H.264 video in the market has already
reached a remarkable level, very few data about objective methods
for measuring the quality that can be gained with this codec has
been presented. So apart from conducting a precise but time con-
suming subjective test the answer to the essential question about the
quality of an AVC/H.264 encoded video relies on guessing and as-
sumptions only.

The rest of the paper is organized as follows: In section [2]a short
overview about related works is presented. The method used to
develop the proposed reduced reference metric is described in sec-
tionBland the model itself is described in detail in section 4] Sec-
tion [5| presents the results for the proposed method and finally sec-
tion [6|concludes this paper.
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2. RELATED WORKS

2.1 Full Reference Quality Metrics

The most popular video quality metric is the Peak Signal to Noise
Ratio (PSNR). This simple metric just calculates the mathematical
difference between each pixel of the encoded video and the original
video. In fact up to now PSNR is the only video quality metric that
is widely accepted and therefore PSNR is the de-facto standard for
measuring video quality.

In 2004 the ITU released a recommendation which included four
different full reference (FR) metrics (not only the coded video but
also the original video is needed for the evaluation) which outper-
formed PSNR in terms of correlation to results of extensive subjec-
tive tests. Among those is the Edge PSNR method [4] developed
by Lee et al which was chosen as a comparison point to the metric
presented in this contribution. This metric is based on the observa-
tion that human observers are especially sensitive to degradations
in regions around edges. Therefore this metric evaluates the PSNR
only at those pixels that have been classified to belong to an edge
region (this classification can be easily done using a edge detec-
tion algorithm such as the Canny algorithm [5[]). Another FR image
metric which has gained a high popularity since it was introduced in
2002 is the so called SSIM (Structural SIMilarity index) [6}[7]. This
metric was the second metric chosen for comparison. The SSIM is
built on the assumption that the human observer wants to gather the
structural information of an image, which is independent of average
luminance and contrast and therefore the image quality is closely re-
lated to how much this structural information can be retained. The
SSIM performs a separate comparison on luminance, contrast and
structure in the original and the coded image and uses this informa-
tion to calculate one overall quality index.

2.2 Reduced Reference and No Reference Quality Metrics

Comparably few approaches were presented for reduced reference
(RR) quality evaluation and even less for no reference (NR) quality
evaluation. For a RR metric only parts of the original video or some
extracted properties of this video are needed for evaluation. For a
NR metric no information about the original video is needed. One
popular approach for a NR image and video quality metric is the
insertion of watermarks in the original image and then measuring
the amount to which these watermarks can be recovered at the
receiver [8, 9]. Wang and Simoncelli showed that natural images
have a certain frequency distribution and therefore the frequency
distribution of a coded image can be used to predict the visual
quality [10]. Recently Callet et al presented an approach using
a neural network system to learn how human quality perception
is influenced by different image properties [11]. In addition to
complete quality metrics there exist several measurements that
concentrate on one single image property or a special artifact.
Prominent candidates from this field are the blocking measurement
introduced by Bovik and Wang [12], or the blur measurement
proposed by Winkler [13].
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3. MULTIVARIATE DATA ANALYSIS FOR OBJECTIVE
VIDEO QUALITY ASSESSMENT

3.1 Challenges in Building Objective Quality Metrics

Video quality metrics that try to model the human visual system
(HVS) face the problem that what should be modeled is very com-
plicated and up to the moment not well understood. Measuring the
strength of a certain artifact (e.g. blocking, blur) and trying to pre-
dict the quality by a linear combination of the measured artifacts in-
troduces the problem that it is not known to which extend a certain
artifact affects the perceived video quality. In addition this method
ignores the possibility that there may be interferences between cer-
tain types of artifacts.

For these two reasons it is proposed to design new video qual-
ity models using methods provided by multivariate data analysis.
Multivariate data analysis is a tool that is widely used in chemo
metrics and food science where the aim is to find the value of a
latent variable (e.g. taste) by measuring some fixed variables (e.g.
sugar, milk, cocoa) [14]. For the field of video quality assessment
this translates to measure the latent variable video quality by mea-
suring fixed variables (or features) such as blocking, blur, activity,
continuity or noise. Features selected for the proposed model are
presented in the following section.

3.2 Feature Selection

A set of simple no reference feature measurements was selected
representing the most common kind of distortions namely block-
ing, blurriness and noise. One feature measurement was added to
measure the amount of detail present in the encoded video. To take
into account the time dimension of video four different continu-
ity measurements were performed: predictability (shows how good
one frame can be predicted using the previous frame only), motion
continuity (measurement for the smoothness of the motion), color
continuity (shows how much color changes between two successive
images) and edge continuity (shows how much edge regions are
changing between two successive images).

e Blur: the blur measurement used is described in [13]. The al-
gorithm measures the width of an edge and then calculates blur
by assuming that blur is reflected by wide edges. As blur is
something natural in a fast moving sequence this measurement
is adjusted if the video contains a high amount of fast motion.

e Blocking: for measuring the blockiness the algorithm intro-
duced in [12]] is used. This algorithm calculates the blockiness
by applying a FFT along each line or column. The unwanted
blockiness can be easily detected by the location in the spectra.

e Noise: to detect the noise present in the video a very simple
noise detector was designed. First a prediction of the actual
image is built by motion compensation using a simple block
matching algorithm. Second a difference image between the ac-
tual image and its prediction is calculated and a low pass version
of this difference image is produced by first applying a median
filter and a Gaussian low pass filter afterward. A pixel is classi-
fied to contain noise if the difference value between the original
difference image and the low pass difference image exceeds a
threshold of 25 (assuming 8 bit values ranging from 0 to 255)
for one of the three color planes. This noise detection algorithm
is performed on all three channels of an RGB image and the
algorithm returns the percentage of pixels that are classified to
carry noise.

e Details: to measure the amount of details that are present in a
video the percentage of turning points along each line and each
row are calculated. This measurement is part of a BTFR metric
included in [15]. As the amount of details that are noticed by
an observer decreases with increasing motion the activity mea-
surement is adjusted if high motion is detected in the video.

e Predictability: A predicted image is built by motion compensa-
tion using a simple block matching algorithm. The actual image
and its prediction are then compared block by block. A 8 x 8
block is considered to be noticeable different if the sum of ab-
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solute differences in this block (SAD) exceeds 384. To avoid
that single pixels dominate the SAD measurement both images
are filtered using first a Gaussian blur filter and a median filter-
ing afterward.

e Edge Continuity: The actual image and its motion compensated
prediction are compared using the Edge-PSNR algorithm as de-
scribed in [4].

e Motion Continuity: Two motion vector fields are calculated:
between the current and the previous frame and between the
following and the current frame. The percentage of motion vec-
tors where the difference between the two corresponding motion
vectors exceeds 5 pixels (either in x- or y-direction) determines
the motion continuity.

e Color continuity: A color histogram with 51 bins for each RGB
channel is calculated for the actual image and its prediction.
Color continuity is then given as the linear correlation between
those two histograms.

All feature measurements are done for each frame of the video sep-
arately and the mean value of all frames are then used for further
processing. The above selected measurements are just one example
for a set of variables that are used for building such a model. The
presented variables were used for their simplicity. Using more com-
plex measurements for artifacts like noise or blur may result in even
more accurate models as well as adding measurements for artifacts
not considered here (e.g. ringing). For this case only no reference
feature measurements are considered, including some feature mea-
surements that require the original video a RR or FR metric could
be built.

3.3 Multivariate Calibration

Multivariate calibration is the method of learning to interpret a num-
ber of k input sensory signals that contribute to a common output y.
For the presented metric the input signals are the above mentioned
feature measurements while the output would be the visual quality
of the video. The data set used for calibration of the model con-
sisted of four different standard video test sequences (Bus, Football,
Harbour, Mobile) at CIF resolution that were encoded according to
AVC/H.264 at three (Bus, Harbour) and seven (Football, Mobile)
different bit rates ranging from 96 kbit/s to 1024 kbit/s and with a
frame rate of 15 or 30 fps. Different encoder settings concerning
the number of B-Frames that were inserted (zero to two B-Frames),
or the I-Frame periodicity (only one I-Frame or periodic I-Frames)
were used. For each of the / calibration sequences the selected fea-
ture values f,; (m € {1---k},i € {1---1}) were computed, for ref-
erence the / X k matrix containing the feature values is denoted as
F.

3.3.1 Correction of the Feature Measurements using MSC

As it is expected that the measured features are not free from multi-
plicative or additive effects (e.g. the measurement for noise may be
correlated with and affected by the amount of details present in the
video), multiplicative signal correction (MSC) is performed before
starting the multivariate regression. MSC was originally developed
to correct measurements in reflectance spectroscopy, but can also
help in this context to remove multiplicative and additive effects
between different objective features. The MSC corrected value of
one feature m for one sequence i is calculated as following:

f;;li :C+fV”i*d

The two variables ¢ and d are obtained by simple linear regression
of the feature values of the sequence i compared to the average of
the feature values of all / calibration sequences. For a detailed de-
scription of MSC see chapter 7.4 in [14]. Consequently the matrix
F becomes F’ after MSC treatment.

3.3.2 Multivariate Regression using Partial Least Squares

The obtained feature values 7, are then used together with the cor-
responding subjective ratings y; that form the column vector y to
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built a regression model using the method of Partial Least Squares
Regression (PLSR) which is an extension of the Principal Compo-
nent Regression (PCR). PCR is a is a bilinear regression method
that consists of a Principal Component Analysis (PCA) of F/ into
the matrix T that contains the PCs of F/ followed by a regression
of y on T. For the PLSR the modeling of F’ and y is done simulta-
neously to ensure that the Principal Components (PC) gained from
F’ are relevant for y.
F’ can be modeled as:

F =1ef+TePT {E;.

With P being the loadings of the & input features, T being the
scores of the [ input sequences. f represents the row vector of the
mean values of the features and Eg is the error in F’ that can not be
modeled.

Likewise y can be modeled as:

y= l-y—t—ToQT—Q—Ey.
The prediction y for sequence i can then be modeled as:
yi =bo+ fil *b

b is the column vector of the single estimation weights b,,, by
is the model offset. A detailed description of PLSR can be found
in chapter 3.5 of [14]. The process of building the quality model is
shown in figure[T}

Calibration
Videos

|

Feature
Extraction

Building
MSC model

Regression
with PLSR

Subjective
Quality y

bo, b

Figure 1: Quality model building process

3.4 Prediction Correction using Additional Quality Informa-
tion

The NR quality metric gained by the previous steps faces the prob-
lem that even the original video may contain a certain amount of
blur, blocking or noise and different sequences also have different
motion properties. For this reason the overall prediction accuracy
of the so far described model is low. But plotting the predicted qual-
ity against the quality measured in subjective tests reveals that the
prediction accuracy for each single sequence is very high: the data
points for one sequence lie on one straight line only with unknown
slope s and unknown offset 0. The overall prediction accuracy there-
fore can be improved by estimating slope and offset of these lines
by calculating the predicted quality of the original video (i) and
of a low quality version of the video (y},,,) using the same NR qual-
ity metric. While the original video is available and the subjective
visual quality of this original is inherently given to be 1 on a 0 to
1 scale with a comparably small error only, an estimation of a low
quality video can be produced by e.g. encoding the original with
a low bit rate. Apparently the subjective visual quality of this low
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Figure 2: Prediction Model

quality video can only be guessed (here set to 0.25). The possibility
of improving the prediction accuracy of the model obviously de-
pends on the accuracy of the estimated low quality video.

Including the predicted quality of the original video and the pre-
dicted quality of the low quality video, the NR model will become
a RR model, even if the additional data that has to be send is very
low (not more than two values per sequence). The final prediction
¥, is then calculated as

5 — Yi—o

Yi= "3

Yorig=Yiow

with s = 755575 and 0 = 4, — 0.25%s .

Figure 2] gives an overview over the presented prediction model.

4. A REDUCED REFERENCE METRIC FOR AVC/H.264
ENCODED VIDEO

4.1 Subjective Testing

A reduced reference metric using the above described method was
built using data from two subjective tests that included AVC/H.264
encoded video. Tests were done on video encoded at CIF reso-
lution and were performed according to the rules given in ITU-R
BT-500 [16]. This especially includes:

e Room setup compliant to ITU-R BT-500

o SSIS (Single Stimulus Impairment Scale) evaluation using a dis-
crete impairment scale ranging from O to 10 (later rescaled to O
to1)

o All test sequences were evaluated by at least 20 naive view-
ers (students who were not familiar with video coding or video
quality evaluation), all screened for visual accuracy and color
blindness

e To minimize the contextual effect, which is known to affect re-
sults in a single stimulus environment, every encoded sequence
was shown twice in the test

e Each test was preceded by an extensive training session to train
the subjects on the task of evaluating the video

e Each single test session did not last longer than 25 minutes and
an adaptation phase of five sequences was set at the start of each
test session (this was not disclosed to the subjects).

The 95% confidence intervals for the subjective ratings were be-
low 0.04 on a O to 1 scale, which shows, that the results from the
tests are very reliable. Before building the model the data from
those tests was split into two parts: only four out of 13 different
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Table 1: Weights of objective features

Table 2: Comparison of objective metrics

[ Feature [[ Weight b |
Activity 0.036
Blocking -0.120
Blur -0.109
Color Continuity 0.054
Edge Continuity -0.072
Motion Continuity 0.090
Predictability 0.095
by 4.073

sequences were used for calibration of the metric, while the other
nine sequences were used for the verification phase.

4.2 The Regression Model

After applying a MSC on the calibration data, a very simple regres-
sion model with only one PC can be built by applying a PLSR. The
resulting weights b, of the objective features and the model offset
by are given in Table The PLSR on the matrix F' revealed that the
feature "noise’ does not have an influence on the model (the weight
for noise would be below 0.005), therefore this feature was removed
and only the remaining seven features were taken into account.

4.3 Correcting the Results of the Model

The low quality video needed for the correction step as described
in section [3.4] was constructed by encoding the video using the
AVC/H.264 reference encoder with a high (fixed) quantization pa-
rameter (resulting in low quality). It has to be noted, that not only
the coding parameters for producing this low quality video differ
quite significant from those used to encode the videos under test,
but also a different encoder has been used for this task.

5. RESULTS

Beside PSNR two other FR metrics were calculated for the pre-
sented data. The Edge-PSNR metric [4] was chosen as one rep-
resentative of the methods standardized in ITU-T J.144 [15]. The
second FR metric chosen for comparison is the SSIM as presented
by Wang in [6].

5.1 Performance Metrics

The metrics that are most often used to measure the performance of
an objective quality metric are the Pearson correlation, the Spear-
man rank order correlation and the outlier ratio. The Pearson cor-
relation (I gives an indication about the prediction accuracy of the
model. A similar task is solved by the Spearman rank order cor-
relation {2). This rank order correlation gives an indication how
much the ranking between the sequences under test changes for the
model’s values compared to the subjective values (prediction mono-
tonicity).

 Yi(g-9)(MOS, — W10S)
\/Zk (g — 5)2\/2,/{ (MOS, — m)z

Here g is the predicted value for the video under test and g is the
mean value of all predictions. MOS; and MOS are the respective
subjective values. For the Spearman rank order correlation r*y is
the rank of ¢ and 7; is the rank of the respective subjective value
MOSy,. X and 7 are the respective midranks.

P

)

PR VL /S 10/ Skt )
VI~ 27V Tk (-7

A data point is considered to be an outlier if the difference be-
tween measured and predicted quality is higher than 0.05 on a 0 to
1 scale. Note that for the outlier ratio no data fitting was applied for

@3
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Pearson Spearman | Outlier
Model Linear Rank Oder Ratio
Correlation | Correlation
Proposed RR 0.844 0.799 0.582
PSNR 0.690 0.623 0.833
Edge-PSNR 0.802 0.745 0.833
SSIM 0.763 0.623 0.667
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Table 3: Regression line before data fitting

[ Model [[ Slope | Offset |
Proposed RR || 0.969 0.042
PSNR* 0.625 0.183
Edge-PSNR 0.353 0.348
SSIM 0.173 0.821

For easier comparison PSNR was
rescaled to PSNR* = (PSNR-15)/30

the proposed method while linear fitting was applied for the other
three metrics. Linear data fitting has been chosen to fit the predicted
values to the actual given data. While higher order fitting is some-
times proposed for this purpose, higher order fitting always carries
the danger of fitting the model too much to the actual data and pos-
sibly jeopardizing the ability to predict unknown data.

In addition the slope and offset of the linear regression line before
linear data fitting are given in Table[3] This shows how much the
model relies on a final fitting stage (an information, that is not given
by the correlation measurements) and the ability to finally provide a
correct and meaningful quality measurement as without the knowl-
edge of that line no meaningful prediction can be made. For a per-
fect model the slope of this regression line would be 1.0 with 0
offset.

5.2 Verification

The gained model and the comparison models were compared on
the basis of a dataset consisting of nine different video sequences
coded at bit rates ranging from 96 kbit/s to 1024 kbit/s. This re-
sulted in a total of 36 data points. The standard test sequences that
were used were: City, Crew, Deadline, Foreman, Husky, Ice, Paris,
Tempete and Zoom. Detailed results of each metric are given in fig-
ures [3] to [6] showing the predicted quality plotted versus the actual
visual quality as measured in the subjective test. Error bars show
the allowed variation of 0.05 in addition to the calculated values.

6. CONCLUSION

A reduced reference quality metric for AVC/H.264 was built using
methods provided by multivariate data analysis. The metric was
validated using results from careful conducted subjective tests and
no sequence used for calibration of the model was included in the
verification phase. The gained metric was verified using a wide vari-
ety of different video sequences including sports (Husky) conversa-
tional sequences (Deadline, Paris) or news (City, Crew) and results
show that this metric produces stable results for sequences differ-
ent from those that were used to gain the weights. The proposed
RR metric provides a slightly higher prediction accuracy compared
to two well known FR metrics and clearly outperforms PSNR. In
addition the gained model allows a quality prediction by transmit-
ting only two additional values, while most other reduced reference
metrics need a much higher amount of additional data to be trans-
mitted. One additional advantage of the proposed metric is, that no
final data fitting step is needed, but a 1:1 relationship between the
output of the metric and visual quality is given.

It is expected that using more complex features and the inclusion of
features that were not regarded for the presented model will result
in even more accurate quality models.
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