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ABSTRACT 
In this paper we investigate the robustness and the effective-
ness of a microwave imaging technique, based on Bayesian 
estimation theory, for the reconstruction of dielectric pro-
files. The validation is conducted on real experimental data, 
the well-known “Marseille” dataset. Our statistical based 
inversion algorithm takes advantage of Bayesian regulariza-
tion, which permits to invert a strongly non-linear model 
using a Markov Random Field as a-priori statistical model 
of the unknown image. Such choice leads to a robust and 
effective non-linear inversion method. An exhaustive analy-
sis on the experimental data is also performed, in order to 
show the good performance of the method. 

1. INTRODUCTION 

Tomographic imaging at microwaves amounts to produce 
images (tomograms) of internal sections of objects [1]. Such 
images are usually formed by the samples of the so-called 
contrast function, that is strictly related to the complex per-
mittivity of the object. Tomographic imaging can be useful 
in wide range of applications, for instance in medical imag-
ing of human body, in the detection of internal defeats of 
objects used in aircrafts and nuclear plants, in ground pene-
trating radar (GPR) imaging for archeology, for underground 
tunnels detection, and many others.  

Microwave tomography is a typical case of inverse 
problem for image formation. The images are obtained by 
illuminating the objects with known incident fields and by 
measuring the fields they scatter outside. The measured scat-
tered fields data samples are related to the contrast function 
(the unknown) through a non linear mapping. Since the 
overall information content of the measured scattered fields 
data is bounded, and the unknown samples belong to func-
tional spaces whose dimension is not finite, the tomographic 
problem is ill-posed and a regularization strategy is neces-
sary [2]. Typically, this consists of imposing some con-
straints to the solution, and it is usually realized by using a 
penalty term. 

Basically, regularization techniques can be grouped in 
two main categories: in the first one the unknowns are mod-

elled as a deterministic function (classic approach), in the 
second the unknowns are modelled as a random process 
(Bayesian approach). Classic techniques make use of 
quadratic (Tikhonov), entropy-type, or roughness measure 
penalty terms. Regardless of this choice, a crucial point is the 
evaluation of the tuning parameter related to the regularizing 
term; in a non-linear framework this task becomes very dif-
ficult and generally is overcame through supervised and 
empirical techniques. Bayesian techniques make use of sta-
tistical a-priori information. A question common to all ap-
proaches is related to the need of using iterative techniques 
to minimize the adopted cost function. Being the mapping 
between data and unknowns non-linear, such cost function is 
non-convex. In this situation, the convergence of the algo-
rithm depends on the starting point of the procedure, and the 
eventuality of trapping in a local minima, representative of a 
false solution, is not negligible. 

In this paper, we present a Markov Random Field 
(MRF) based Maximum A Posteriori (MAP) estimation 
technique (which belongs to the class of Bayesian ap-
proaches) to solve this problem, and we show how the value 
of the regularization parameters can be estimated avoiding 
supervised and empirically based solutions. 

The paper is organized as follows: in the next section 
we present the microwave tomography model, and the inver-
sion procedure, consisting of both image and parameter’s 
estimation algorithms. In section 3 we present a performance 
analysis based on the inversion of a well known experimental 
data set [3]. In section 4, conclusions and future works are 
outlined. 

2. THE MICROWAVE TOMOGRAPHY MODEL AND 
THE INVERSION PROCEDURE 

To recover faithful tomograms it is necessary to invert a 
mathematical model relating known quantities (the probing 
incident field Ei, and the measured scattered fields Es), to the 
unknown ones (the object internal characteristics we are in-
terested to, such as the dielectric permittivity ε, and the total 
electric field E inside the object). Such a model in a two di-
mensional (2-D) geometry is given by [4]: 
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where Ω is the compact support of the object, Rm, m=1,…,M, 
is the co-ordinate of the m-th measurement point, χ(.)=[εr(.)-
1] (εr(.) is the complex relative dielectric permittivity of the 
object) is the so-called “contrast function”, the unknown to-
mographic image, gext(.) and gint(.) are the Green’s functions 
to be chosen according to the geometry of the problem [4], 
and the additive term n(.) is a zero mean white Gaussian 
noise (AWGN) process with known variance σn

2. The index 
v, where v=1,…,V, denotes the V different illumination con-
ditions: the probing incident fields can be changed, so that 
new fresh data from different aspect angles can be collected 
[4].Consequently, a total of MxV measurement scattered field 
values are collected. 

Equations (1) cannot be solved analytically, and must be 
properly discretized as shown in Ref [4]. After discretization 
of eqs. (1): 
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where Ae and Ai are the discrete counterparts of integrals in 
eqs. (1), and y, ei, e, x and n are vectors collecting the sam-
ples of scattered field, incident field, total field, contrast, and 
noise, respectively, and after substitution of the second equa-
tion into the first, the tomographic problem can be syntheti-
cally formulated as [5]: 
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The general formulation of the problem solution in the 
classical statistical framework leads to the Maximum Likeli-
hood (ML) estimation method. In particular, in our case 
(AWG noise), ML reduces to least square (LS) estimation. 
However, because of the ill-posedness of the inverse prob-
lem, the solution is typically achieved minimizing or maxi-
mizing a cost function, respect to the unknowns [2]: 
 

 ( ) ( )0,,)( xxyxxxy dαφφψ +=0,,  (4) 
 

where φ(x,y) is a term related to the likelihood function (in 
our case φ(x,y)=(1/2σn

2)||y-A(x)||2, which is also the function 
to be minimized in the LS problem), φd(x,x0) is the penalty 
function, that is a measure of the distance between the esti-
mate and a nominal value x0, and α is the Lagrange multi-
plier. 

MAP estimation technique requires the use of an a-
priori statistical model for the image to be estimated. We 
adopt a Gaussian MRF (GMRF) as a-priori model [6], in a 
complex form adapted on the current complex formulation 
of the problem. In this model, we use two different regulari-
zation parameters, from here called “hyperparameters”, one 
for the real part of the image and another for the imaginary 

part. The hyperparameters are estimated from the measured 
data. The method requires the use of the Expectation-
Maximization (EM) algorithm and the Metropolis algorithm 
[7], optimised for the case [8]. After hyperparameter’s esti-
mation, it is possible to perform the inversion via MAP es-
timation. This is obtained by a sub-optimal deterministic 
minimization technique to achieve high resolution capabili-
ties at low computational cost. 
 
2.1 Image Estimation Procedure 

Following the Maximum a Posteriori (MAP) formulation, 
and denoting with fX|Y the a posteriori probability density 
function (pdf) of the unknown, and with fX the a priori pdf, 
the inversion procedure consists of finding the solution that 
satisfies the following criterion: 
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where, in this case, both data and unknowns are considered 
as samples of a random process, denoted by X and Y. With 
reference to model (3), and in case of AWG noise, we get: 
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Implementation of (6) requires the knowledge of the a priori 
pdf fX. A common choice in the image processing community 
is the use of MRF models, because they allow to model in a 
natural way image pixels contextual information. In particu-
lar, we consider a GMRF model, generalised for a complex 
valued N-dimensional random vector, X=XRe+jXIm, where 
XRe= [X1

Re X2
Re … XN

Re]T and XIm= [X1
Im X2

Im … XN
Im]T are 

real valued vectors. If we assume real and imaginary parts to 
be statistically independent, and adopt two hyperparameters, 
βR and βI, for real and imaginary part of the image, respec-
tively, the a-priori joint pdf is: 
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where ZR and ZI are the partition functions [7], N={Ni, 
i=1,..,N} is a neighbourhood system of second order, (con-
sisting of the nearest 8 pixels of pixel i), and N is the number 
of pixels. Substituting (7) in (6), we get: 
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Since ||A(x)-y||2 is a non-convex functional, it is attractive to 
use a convex a priori model (GMRF), so that the risk of be-
ing trapped in local minima is reduced. In fact, the GMRF a 
priori term is a sum, over all the pairs of neighbouring pixels, 
of quadratic potentials, and so it can help against false solu-
tions. The minimization in (8) has been performed using a 
deterministic and effective algorithm, the coniugate-gradient 
method. This method suffers of the presence of local minima 
in the functional (8); however, the use of a quadratic regu-
larization term, and the estimation of the hyperparameters via 
a robust  statistical algorithm, as explained in the next sec-
tion, make the overall procedure very robust respect to this 
aspect, as confirmed by the results presented in section 3. 
 
2.2 Regularization Parameters Estimation Procedure 

Hyperparameters estimation can be classified in estimation 
from complete data and estimation from incomplete data [6]. 
Estimation from complete data consists of computing hyper-
parameter value by direct observation of image x, while es-
timation from incomplete data occurs when we try to achieve 
it starting from the data y (actually observed data), linked to 
the image x through a non linear mapping. Of course, the 
only available is estimation from incomplete data.  

In order to implement estimation scheme (8), we have 
to estimate the value for hyperparameters βR and βI from 
available data set. For this aim, a very popular strategy, used 
for ML estimation from incomplete data, is the Expectation-
Maximisation (EM) algorithm [6]. For the case of a unique 
hyperparameter, it solves the ML estimation problem repeat-
ing two steps, an expectation and a maximisation step, until 
convergence: 

STEP E (expectation): 

( )( ) ( ) ( )[ ]k
X

k yYXfEQ ββββ ,|;ln| == ; 

STEP M (maximisation): 
( ) ( )( )kk Q βββ

β
|maxarg1 =+ . 

The convergence is guaranteed at least to a local optimum. 
In our case, the estimation problem is separable respect to 
the two quantities to be estimated, and the EM solution, at 
the (k+1)-th iteration, read [6]: 
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The analytical evaluation of the expectations in the last is not 
possible, because of non-linearity, so we have to approximate 
them by sampling the a posteriori distribution, which is a 
MRF distribution [6], too. We use the Metropolis algorithm 
[7] for this generation, which is very easy to implement also 
in presence of non-linearity, but it is very time consuming. 
However, we use a fast implementation of the algorithm, 
based on similar considerations to those presented in [1]. We 

argue that this statistical algorithm is robust respect to non-
linearity, in the sense that it generally produces “good” sam-
ples, and usually is able to get out from an eventual local-
minima of the distribution, producing a hyperparameter esti-
mation which is not dependent from local-minima solutions. 
In the next section, we substantiate such considerations via 
experimental data inversions; exhaustive analysis of the 
method via simulated data has been already presented in lit-
erature. 

3. EXPERIMENTAL ANALYSIS 

We investigate the performance on two experimental data 
sets, usually known as the “Marseille” data, provided from 
the CCRM laboratories in Marseille, France [3]. The meas-
urement set-up configuration is suitable for our method, 
because a 2-D measurement system with vertical cylinder 
target is considered. The data relate to dielectric targets 
composed of one or two filled dielectric cylinders with ra-
dius a = 15mm. These cylinders are placed about 30mm 
from the azimuthal positioner axis. The estimation of the 
relative permittivity of the objects, made by experimenters 
[3] via other traditional measurement methods, has resulted 
in a value of 3.03±=rε  (i.e., 3.02±=χ ). 
 
3.1 Case 1: Single Dielectric Object 

The first case considered is related to a single dielectric cyl-
inder. We consider a subset of the available data, the ones 
related to experiments conducted using incident fields in the 
range 4-8 GHz. We consider a domain under investigation 
18×18 cm2 wide, larger than the minimum region required to 
enclose the scatterer. In all the reconstructions, we used a 
given minimal spatial resolution, forced from the sampling 
rule given in Ref. [1], since we have noticed than a further 
increase of the resolution does not improve the reconstruc-
tion quality. 

After the incomplete data estimation of the two hyper-
parameter’s value (one for the real part and one for the 
imaginary part of the complex image), such estimated values 
have been used in the MAP procedures to reconstruct the 
unknown contrast profile [8]. 

Data at 4 GHz have been inverted using the back-
ground (absence of object) as starting point; instead, data at 
5-8 GHz have been inverted exploiting a “frequency hop-
ping” technique [9] where the initial point at a given fre-
quency was the reconstruction at the immediately lower 
frequency. 

Fig.1 represents the MAP reconstructions obtained us-
ing data at various frequencies, both for real and imaginary 
part of the image, on the left and to right, respectively. 

The result of the reconstruction searching 42×42 un-
knowns using the incident field at 4 GHz is shown in 
Fig.1(a). As it is shown, the estimated contrast maximum 
value (χ≈2.35) is slightly higher than the expected value. 
This notwithstanding, it is possible to recover the location 
and the size of the object. The result of this reconstruction is 
used as initialisation point for the following reconstruction at 
5 GHz, shown in Fig.1(b) searching 42×42 unknowns for the 

©2007 EURASIP 1090

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



contrast function. In this case, the estimated contrast maxi-
mum value is χ≈2.5. The main differences between the two 
reconstructions are the diameter of the estimated real part of 
the target, which is smaller for the 5 GHz case, and a less 
oscillating imaginary part (for the 5 GHz case). 
 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
Figure 1 - For all image, left: real part, right: imaginary part. (a) 

Reconstruction obtained at 4 GHz; (b) reconstruction obtained at 5 
GHz, using as starting point the reconstruction at 4 GHz; (c) recon-
struction obtained at 6 GHz, using as starting point the reconstruc-
tion at 5 GHz; (d) reconstruction obtained at 7 GHz, using as start-
ing point the reconstruction at 6 GHz; (e) reconstruction obtained at 

8 GHz, using as starting point the reconstruction at 7 GHz. 
 

A significant improvement can be observed at 6 GHz, 
searching for 52×52 unknowns (see Fig.1(c)). The recon-
struction is clearly more accurate than the ones obtained at 4 
and 5 GHz. 

Proceeding by hopping [9] from 7 GHz to 8 GHz, and 
increasing the number of unknowns from 62×62 to 72×72, 
we refine upon the quality of the reconstructed permittivity 
profile. As final result, the maximum value of the estimated 
contrast is χ≈2. 

As a final comparison, the same image cut of the real 
part of the reconstructions are presented in Fig.2; this shows 
the improvements that are obtained by using an increasing 
working frequency. 

 

 
 

Figure 2 - Cuts of nominal and reconstructed profiles of Fig.1. 
 
3.2 Case 2: Double Dielectric Object 

We consider as second case the double dielectric cylinder, 
with data collected in the range 4-8 GHz. As in section 3.1, 
we choose a region under test 18×18 cm2 wide and we use 
the background as starting point for the 4 GHz case, and the 
same frequency hopping technique at 5-8 GHz described in 
the previous sub-section. 

Similarly to the previous reconstruction experiment, we 
first perform estimation from incomplete data of the two 
hyperparameter’s value. After, we perform the MAP recon-
structions obtained at the various frequencies (Fig. 3), both 
for real part and for imaginary part of the image, on the left 
and the right, respectively. 

It is interesting to observe in Fig.3, the effectiveness of 
the procedure to separating the two objects, also using the 
lowest frequency. The quality of the reconstructions is clearly 
improved as the working frequency increases. As a final 
comparison, the same image cut of the real part of the recon-
structions are presented in Fig. 4. 

4. CONCLUSIONS AND FUTURE WORK 

Statistical based regularization represents a valid approach 
to circumvent the problems of classic regularization tech-
niques, especially regarding the ability in avoiding a manual 
and supervised setting of the regularization parameters. The 
presented algorithm is tested on a well-known experimental 
data set, providing good quality solutions, avoiding local-
minima, and remaining totally unsupervised. The recon-
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structed shapes of the objects and their permittivity values 
are an effective representation of the real ones, especially if 
compared with the results of other approaches [3].  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
Figure 3 - For all image, left: real part, right: imaginary part. (a) 

Reconstruction obtained at 4 GHz; (b) reconstruction obtained at 5 
GHz, using as starting point the reconstruction at 4 GHz; (c) recon-
struction obtained at 6 GHz, using as starting point the reconstruc-
tion at 5 GHz; (d) reconstruction obtained at 7 GHz, using as start-
ing point the reconstruction at 6 GHz; (e) reconstruction obtained at 

8 GHz, using as starting point the reconstruction at 7 GHz. 
 

 
 

Figure 4 - Cuts of nominal and reconstructed profiles of Fig.2. 
 

These facts confirm what already deduced via simula-
tion and theoretic analysis in previous papers about the ap-
proach [4,5,8,9]. Further works are concerned with the ex-
perimentation with other available real data sets. 
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