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ABSTRACT recover the actual filters. In the same time, the subspace method

Subspace methods are a powerful tool to recover unknown filters by has aIIov_ved us to restrain the search for the filters to a relatively
looking at the second order statistics of various signals originating small affine space.
from the same source (also called a SIMO problem). An extension ttn section 4 we introduce our method to disambiguate the results
the multiple source case is also possible and has been investigated the subspace method and recover the actual filters. Section 5
in the literature. In this paper we show how the blind superresolu-presents experimental results for both filters recovery and image
tion problem can be solved by this tool. We first present the problerrestoration based on this recovery.
of superresolution as a multiple input multiple output (MIMO) one.
We show that the subspace method can not be used, as is, to recover 2. THE SUBSPACE METHOD
the filters affecting each image, and we present two possible solu-
tions, based on the statistical characteristics of the images to solvkn this section, we present the subspace method such as developed
this problem. Experiments are shown which validate these ideas. by [6] for 1-D signals. This method, first introduced by [7],
considers multi output systems. This allows the use of second order
1. INTRODUCTION statistics of the outputs, instead of higher order statistics, to identify
) blindly the filters. This method, under some mild assumptions,
The subspace method has been introduced by [7] and furtheistimates the noise and signal subspaces from the eigenvalue
investigate in a multitude of papers [1, 5, 6, 8]. The idea of thegecomposition of the autocorrelation matrix of the outputs, and

method is to observe multiple outputs of various unknown filtersexploits the orthogonality between this subspaces to identify the
having all the same input. In this case, the second order statistics gfier coefficients.

the received signals carry enough information to allow the recovery

of the filters and furthermore the recovery of the original signal.the | observed images are modeled as noisy outputs of a FIR sys-

The main application that authors had in mind was to conceivgem s driven by an input imag® :

wireless protocols in a varying environment, in which no training

sequence have to be transmitted. Indeed, in such an environment, X = #D+B 1)

the filters that affect the signal can change and have to be re-learned o

very often. Being able to learn them without the use of a training

signal would be a great asset and could save an important amouf{fere :

of bandwidth. e X stacks the. observed imageX', | = 1 : L, more precisely, a
vectorized formulation of a processing windowed area, of size

Extensions to the case where a multitude of signals are transmitted (Ny , Ny), extracted from the observed images :

through the same channel have been investigated (see [1] or [5]).
In this late approach, a crucial step is the use of a source separation | | | | -
technique. We investigate the possibility of using the subspace X' = [X (Ny—1,Nx—1) X (Ny—=2,Ny—1) --- X (0,0)]" (2)
method in the context of image superresolution. More precisely,

we observe a certain number of images of the same scene acquired D is a vectorized formulation of the related windowed area of
through various filters and subsampled (the subsampling accounts the original image :

for the aliasing that occurs in every image acquisition process). We

would like to recover the original image and will do so in two steps. D = [d(Ny +My —2,Ny+ My —2)--- d(0,0)]" )
The first step is to recover the filters using the subspace technique.

The second step is to apply a regularized inversion to the observed ., P . | .
images in order to recover the original scene. e 7 stacks thd block-Toeplitz filtering matrices#” associated

with each filtersH!

The paper is divided as follows: Section 2 presents the sub-

space method in order to provide the reader with a self contained

overview. Section 3 states the problem of superresolution as a H =
MIMO one, in which the multiple inputs are the various subsampled | : | )
versions of the image (they differ by a translation). This presenta- h'(My—1,0) ... h(My—1,Mc-1)
tion allows us to understand that:

e The separation of sources is impossible in the case of superres-
olution because the sources are very correlated with each other %”O' Jﬁ,\}l _1 0
and have exactly the same statistics. . )

e The subspace method provides us with a mixture of the actual . .
filters. Therefore, we have to implement a method to unmix and 0 /fo' e ,}f,\',lel

hl (0,0) hl (0, My — 1)
: : 4

®)
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whereji”j' is a Toeplitz matrix of sizNy , Ny+ My — 1) asso- e Each eigenvecto;, i = 0 : LNxNy —dy — 1 is partitioned into

ciated to thej'" column ofH' : L vectorsG| of size(NyNy , 1).
o | ) e Each parlG} can be considered as a vectorized formulation of
h'(0,j) ... h(My-1j) 0 the matrix:
A . .
0 h(j) h'(My—1,j) : ; (12)
' containsNy rows of blocks and\y + My — 1 columns of a(Ny—1,0) ... g (Ny—1Nx—1)
blocks of sizeg(Ny , Ny 4 My —1). . . | e
e andB is a white zero-mean noise uncorrelated vidth o Letus define the block-Toeplitz matr¥' as the “filtering” ma-
trix associated th}. The term “filtering” points out that we
Let Rx denotes the autocorrelation matrix of the outpXits obtain%iI from G! in the same way we obtaig#’' from H' (eq.
(5) and (6)).
Rx = E(XXT) 7 e Finally, % stacks the. &' matrices.
where E denotes the expectation operator.Ry is of size  The quadratic form is now expressed in terms of the filter coeffi-
(LNxNy , LNxNy). From equation (1) we deduce that: cients:
Ry = #Rp#1 +Rg (8) LNy — 0 -1

q(H)=HTQH whereQ = % G 47 (13)
whereRp andRRg denote respectively the autocorrelation matrices i=
of the inputD and the nois®. We recall that the noise is assumed

to be uncorrelated with the input. The filter coefficients are identified, up to a constant, by the minimal

eigenvector of).

From noyv on, we make two assumptions: N _ 3. SUBSAMPLING
1. 2 is full column rank, a necessary condition is
LNyNy > (N + My — 1) (Ny + My — 1), 3.1 Problem Statement
2. andRp is full rank. We now extend the subspace-based method to the case of sub-

We deduce from eq. (8) and thanks to these assumptions, that tsempled observed images. The purpose is to estimate, from the

signal part of the autocorrelation matii, i.e. #Rp#T, has low-resolution observed images, a deconvolved image at a higher

rankdy = (Nx+ My — 1) (Ny +My —1). resolution: this problem is called super-resolution. To this end,
we assume that the original image is filteredlbhigh-resolution

Through an eigenvalue decompositiorif, we obtain a subspace filters, and thel output images are then subsampled by a factor

decomposition between the signal and noise subspaces. Tife The estimation is blind, i.e. we do not know the filters. In this

eigenvectors associated with tthe largest eigenvalues @y span sectlor], we focus on the fl|t6|.' identification, the image restoration

the signal subspace, whereas the eigenvectors associated with §ep will be developed in section 5.2.

LNxNy — dy smallest eigenvalues span its orthogonal complement, ) ) ]

the noise subspace. The signal subspace is also the subspddéer the convolution step, each observed imade| =1:L, is

spanned by the columns of the filtering matgiX. modeled as a noisy output of a FIR syste#fl driven by an input
imageD (see section 2):

By orthogonality between signal and noise subspaces, we deduce | | |

that each vector of the noise subspace is orthogonal to each column X ='D+B (14)

of the filtering matrix. LetG; denotes an eigenvector associated

with one of theLNxNy — dy smallest eigenvalues of the matiig .

The orthogonality condition can be formulated, fef 0 : LNxNy —

dy —1, as:

Then, the outputs are subsampled by a faBtor
Xlr=74rD+Blg (15)

where :
GT% =0 1.d | lf .
i (1,du) 9) e X ris a subsampled componentXf, of size(nkny,1), where
(1, LNyNX)(LNyNX,dH) N N,
Ny = p andny = ¢,
Since we have only an estimate of the autocorrelation matrix, thee D is the same as in equation (14), apart from theRastl rows
orthogonality condition is solved using a least square method. This and columns which are truncated,

leads to the minimization of the quadratic form: e iy is defined by extracting one row ever from
the matrix ' and is of size (nxny,dp), where
HNN o dh = P2(ne+my—1)(ny+my—1), where m—™  and
ar= 3 IGaP (10) A Bl
i= my = ', as we discard all the null columns.

Thanks to the following structural lemma, we provide an expressioré switching on purpose the columns.gf' (and at the same time
of the quadratic form in terms of the filter coefficients instead of the y g onpurp LR

filtering matrix : the rows ofD) in equation (15), the subsampled output images can
be related to the subsampled components of the original image:

. T oo _ T
Lemmal: G =H'Y (11) Doo
You can find a proof of this lemma in [6]. | | | | Do,1 |
XRr= (%,o Aoy - %—1;’—1) +BiRr
In this expression, the matri%, for i = 0:LNyNy—dy — 1, de- .
notes a matrix of siz€LMyMy , du). Dp_1p-1
This matrix is constructed as follows: (16)
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whereDy; p» is a vectorized subsampled component of the inpufThe structural lemma (see eq. (11)) provide an expression of the

imageD, i.e., if

doo dos—1

D=| : 7
ds,-10 ds-15-1

whereS, = Ny + My — 1 andS, = Ny + My — 1,
thus, for allpl,p2=0:P—1,

dp1,p2
dp1+Pp2

dp1,p2+(s,~1)P
dp14Pp2+ (5, 1)P
Dp1,p2 = .

dp1+<syfl)Rp2+<sﬁl)P
(18)

dp1+(s,-1)Pp2

wheresy = ny +m, — 1 ands, = n +m— 1,

orthogonality condition in terms of the polyphase components of
the filters instead of the columns of the filtering matrix:

1
Hp1,p2

HY p2% =0 where Hp pp = (22)

1,8/5)
HIﬁl,pZ

where¥; is a(Lmymy,s,s) filtering matrix defined from the eigen-

vectorsGj, andpl,p2=0:P—1.

By stacking the contributions of all the polyphase components of

the filters, we obtain:

where H= (Hoﬁo Hp,l’p,l) (23)

The minimization of the quadratic form associated to the orthogo-
nality condition provide a set d¥? vectors, denotel. We can not

H'¢% = O(p2ss,)

distinguish these eigenvectors using only the orthogonality condi-
tion. Indeed, each column &f is in the null space of the quadratic
form, thereforeH is a combination of th&? columns ofV. We can
identify the filtersH only up to a reversibléP{ P2) mixing matrix
denotedMly, such as:

o andjf'l, » is the block-Toeplitz matrix of sizényny,s,s) as-
sociated to the filter

h h

|
| pl,p2+(m—1)P
hpl+P,p2+(rm—l)P

|
p1,p2

I
hp1+P, p2

H = VM (24)

H =
p1,p2
| Source separation methods have been used to estimate such a matrix
pl-+(my,—1)P,p2+(m—1)P [1, 5], but these methods usually state the assumption that the input
(19)  signals are uncorrelated. This is not our case, as the inputs are the
one of theP? polyphase components of the high resolution different subsampled components of the same source image.

filter H' (see eq. (4)).

h h

|
pl+(my—1)P,p2

4. EVALUATION OF THE MIXING MATRIX

By stacking all vectors and matrices coming from equation (16) for] € determination of the matriM is, as we showed theoretically,
alll = 1:L, we obtain the following model: impossible in the case where the mixed sources (here the polyphase

components of an image) have the same distribution. Despite
this fact, we try to estimate the mixing matrix by introducing

XLlR %,}o %l—l,P—l Do,o some prior knowledge on the statistics of the image or the filters.
= : : : +Br (20) Indeed, natural images have a spectrum which is far from constant
L " L . (as in the case of a white noise or a compressed signal). On the

Xr 00 Ap_1p_1 Dp_1p-1 other hand, filters that are encountered in image processing are

often very smooth with a single local (and global) maximum at
The superresolution problem is now expressed like a multiple inthe origin, whereas a multi-reflection filter, that affects wireless
put multiple output problem. In multiple input systems, the inputscommunications, can be irregular and display a multitude of local
usually come from different sources, and are considered as ind&axima. The subspace method was designed to deal with such
pendent from each other [5]. In our case, the inputs are the differeftregular filters, with the counterpart that the sources are of different
subsampled components of the same source image and are therefgtatistical nature, allowing an efficient separation of sources.
strongly correlated.

In this section we will use a continuous notation, and the Fourier
3.2 Limits of the Subspace Method transform of a sampled signal at rate 1 will live jr1/2,1/2]

whereas the Fourier transform of a subsampled version at rate P,

In this section, we show that, for subsampled images, the subspagey e i [_1/2p, 1/2P). TheH! will refer to the estimated filters
method is not sufficient to determine the filters, but provide aN,e are trying to define

identification up to &P2, P2) mixing matrix.
4.1 Imposing Regularity of the Filters

First, let us see what happens when some regularity is imposed to
the filters. We do so by minimizing a certain regularity measure of
the filters under the constraint that the integral of each filter i$.one

Let us callRLR the autocorrelation matrix of the subsampled im-
ages)({R. If we apply the subspace method, we find that the eigen
vectors, denote@;, associated to thenyny — P?(ny +my, — 1) (nx+

my — 1) smaller eigenvalues (R'>-<R span the noise subspace. The
orthogonality condition between noise and signal subspaces is e¥wo principal choices have been proposed for the measure of

pressed by: filters regularity. The first one (which presents the advantage of a
low computational cost) is the integral of the squared norm of the
G’ 1 2 = 0 gradient (thet; norm [10]). The other one is the integral of the
I pLp (1859 (21) . L
(1,Lnyny)  (Lnyny,s;sy) (1,55) gradient (the total variation norm [9]).

wherei = 0 : Lnyny —dp — 1, 0(1,s,sx) is a null vector of size

(1,5/%), and Jp p2 @ block column of the filtering matrix in
equation (20).

1This is a physical requirement for imaging filters. It may not be true if
different images have been acquired under different illumination conditions.
In this case, the mean of each image gives a very accurate estimation of the
integral of the filter that generated it.
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The first choice may lead to smooth solutions and disadvantages tldg being not null when applied to the actual filters prevents us from
non continuous filters (such as motion blur). Nevertheless, we useoncluding that its minimum is obtained for those filters. Neverthe-
thisH criterion, for two reasons: less, images have a strong low-frequency component. This means
e We search for the best solution in a small-dimensional affindhat the minimizing filters fod, must reduce as much as possible
space (namely the vector space in whidly lives intersected the terms of the formH*(u)X°(u) — H' (u)X°(u)|?, because these

with the affine space represented by the const[bim't(x)dx: terms dominate the others (see [11] for a review of proposed statis-
1). In such a case, the smoothing effect of Hignorm com-  tical models of images). _ _ o
pared to thél'V norm could be ignored. As the experiments will show it, the error introduced by the aliasing

. L is negligible and does not lead to a noticeable error in the recov-
e The computational cost of such a minimization is much smaller,

than theT V one (see for example [2] for the numerical intricacy -, of the filters. One can also say that the high frequency com-

of TV minimization. althouah recent advances have been mad onents of the filters are not taken into account. Although this
o ug oint is correct, the filters, thanks to the subspace method, are con-
[3] but are not, as is, applicable to our problem).

strained to live in a small-dimensional affine space, thus controlling

N(HL,.. HL) = /HD@ HZ (25) the low frequency part of them is sufficient to yield a positive defi-
R Z 2 nite quadratic form on the subspace the filters live in.

In the next section we see how these two ideas can be applied to the

4.2 Imposing Similarity of the Double-Filtered Images disambiguation of the mixing matridx.

In the following we ta_lk_e advantage of the fact thgt we hav_e multiple 5  APPLICATIONS
views of the same original scene to recover the filters (which implies

the estimation oMy). 5.1 Blind Filters Identification

Let’'s assume that we have two versions of the same irhagad

I> formed after being filtered bid; andH,, and that we have two
candidatesd; andHy: we can check easily if these candidates are
reasonable or not. Indeed filteriigusingH; should yield the same
result as filterind1 usingH,. Based on this simple observation, we
define a functional which should be minimized by our compute
filters:

We want to estimate a deconvolved image, at a resolution increased
by a factorP = 2, from a set oL = 6 low-resolution images of the
same scene, filtered by 6 different unknown filters. This can be
expressed as a 4 input 6 output system.

010 evaluate the results with an objective criterion, the psnr (see eq.
(29)), we have to simulate this case: we filter a known original im-

k=L 2 ageD with 6 known filtersH and then subsample the outputs by a

LAY, .. AN = Z HH' *xk_ﬁk*x'H ) (26)  factorP =2 in each directions.

kf=1 2 The psnr is given by:

(maxD) —min(D))?
MSE(D, Dest)

whereXK are the observed images afil are the estimated filters.
Note that we don't have access to a fully sampled version okthe
thus we interpret the convolutions that occur in (26) as the product ) )
of the low frequencies of the filtéfl with the Fourier transform of WhereMSEis the mean squared error between the imadgesd
X, squaring the result and summing over the low-frequency domai

PSNRD, Desy) = 10 logyo

(29)

est:
Mhe original image® is (576,720), and the windowed area of study

We definé (10,10). The filters are(6,6) 2D-Gaussian centered at a random
- . 2 L . N . 2 point with standard deviations:00.9,1,1.1,1.3,1.5.
HH' s« XK —Hk s X! H = / H (u)Xk(u) — H*(u)X! (u)| du To recover the filters, we use a weighted sum of the two criteria
2 J-5 aJ1l+ (1— o)J2. We obtain a psnr of 222 dB forae = 1, and a

. . o (27)  psnr of 2146 dB fora = 0. The results are better when the two
This last functional could be the perfect criterion if no subsamplingcriteria are mixed, in our case for= 0.04, the filters are recovered

were present. Indeed; is null in a noise-free, well-sampled set- with a psnr of 2617 dB (J; andJ, are normalized so their minimal
ting only if the filters are the real filters (after checking tbatis eigenvalue is 1).

a positive definite quadratic form). Unfortunately the subsampling

that affects our images is expressed by : 5.2 Image Restoration
sk OPNIPANE: Once the filters are estimated, the recovery of the original image
H'(uX¥(W) - HYWX (U)‘ can take place. The recovered imagenust satisfy some straight-
b1 forward conditions, namely :
= AW S Xou+ DyAkwr Dy e The image filtered by the estimated filters and subsampled must
n= P P be close to the observed images, which yields the first data-
P_1 2 driven functional:
- — n | n
—  HKk(u) XO(u+|3)H (u+ 5) B L o 2
= AR) = 3 s (R+Hh=X!||". (30)
P—1 =1
- - - n
— 0 a k | _
- H;X (u+p) (H (WH (u+ P) S being the subsampling operator at rBte

- - no2 e Since the observed images are affected by noise and, most im-
—  HI'(uHX(u+ 5))‘ (28) portantly, the filters we computed are estimates of the actual
ones, a regularization functional must also be minimized:

for u€ [~ 45, 5], where theH* are the actual filters and® is the ) -
original image. R(X) = /”DXHZ (31)

2We use a one dimensional notation to simplify the equations, we conThese two criteria sum up to the minimization of a single functional
sider an infinite-size discrete signal subsampled atPat€he hat denotes  given by: . 5 .
the time-discrete Fourier transform of a signal J3(X) = A(X) + AR(X), (32)
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in fact, subsamples of the one same image. We showed how statis-

tical properties of images can be used to disambiguate the problem
and achieve a satisfactory recovery of the filters and of the original

image. The advantage of using this method is that it can be ap-
plied to a wide range of filters without further assumption than their
smoothness. In future work, one may want to apply other types of
regularization to the image or the filters. The most promising lead

is the TV regularization [3] which would be available as a usable
technology very soon. The other possibility of improvement is the
extension to the case where the made algebraic assumptions fail to
be true, in such cases subspace method happens to be very unstable.
We may apply the ideas presented here to stabilize the problem.
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