
A REGULAR INTERCONNECTION SCHEME FOR EFFICIENT MAPPING OF DSP
KERNELS INTO RECONFIGURABLE HARDWARE

Sotiris Xydis, George Economakos and Kiamal Pekmestzi

School of Electrical and Computer Engineering, National Technical University of Athens
Iroon Polytexneiou 9, GR-15780 Athens, Greece

phone: + (30) 210-7223653, fax: + (30) 210-7722428, email: sxydis@microlab.ntua.gr
web: www.microlab.ntua.gr

ABSTRACT

This paper presents a design technique for coarse grained
reconfigurable cores targeting mostly DSP applications. The
proposed technique inlines flexibility into custom Carry-
Save-Arithmetic (CSA) datapaths exploiting a stable and
canonical interconnection scheme. The canonical inter-
connection is revealed by a uniformity transformation im-
posed on the basic architectures of CSA multipliers and CSA
chain-adders/subtracters. The design flow for the implemen-
tation of the core is analyzed in detail, and the advanced
mapping opportunities are presented. The paper concludes
with the experimental results showing that our architecture
performs an average latency reduction of 32.63%, compared
with datapaths of primitive computational resources, with
sufficient hardware utilization.

1. INTRODUCTION

The advent of Reconfigurable Computing [4] has generated
a whole new research field in the area of digital design.
The new computational model augments the available logical
density of the circuits, binding the spatial (high parallelism)
and the temporal (high programmability-flexibility) models.
Along with the high integration densities provided by the cur-
rent ASIC technologies, we are able to design dynamic con-
figurable hardware systems on a single chip (Configurable
System-on-Chip, CSoC) [12, 13, 14].

A significant number of reconfigurable architectures have
already been proposed, varying mostly on the granularity’s
degree. An overview of the most popular reconfigurable
architectures can be found in [7]. Fine-grained architectures
[7, 8] favor bit-level operations and mapping universality,
but suffer from high reconfiguration delays and power con-
sumption. Coarse-grained architectures [13, 14] eliminate
the disadvantages of fine-grained ones and preserve univer-
sality at most cases, but operate only on word-length data
formats. Recently, hybrid architectures [10] have been pro-
posed which try to combine the benefits of the two above
approaches. All these solutions propose new architectures to
enable dynamic hardware reconfiguration. The aim of this
work is to enable reconfigurability in already known circuits
which incorporates a significant degree of computation den-
sity, such as array multipliers.

In this paper, an area and time efficient reconfigurable
arithmetic unit (RAU), targeting mainly the DSP domain, is
introduced. In precise, onto the datapath of a 16x16 carry-
save multiplier we mapped the behaviors of carry-save adder
and subtracter enabling single or chained operations. The
interconnection scheme, between the cells of the flexible

datapath, remains stable at each operation case, through the
appliance of the a uniformity transformation.

The proposed architecture provides fast implementations
for the set of mapped operations due to the CSA-based logic,
which eliminates the time consuming carry-propagation. The
fast arithmetic operations and the stable interconnection
scheme rise the opportunities for efficient operation chain-
ing. Operation chaining is a well known synthesis technique,
from the field of the High Level Synthesis (HLS), which re-
moves the intermediate registers between data-dependent op-
erations improving the total delay of the combined units.

2. RELATED WORK

Many coarse grained reconfigurable architectures have been
proposed in bibliography. The Morphosys reconfigurable sy-
stem [13] is a complete reconfigurable SoC implemented at
the layout level [11]. It incorporates a 32-bit RISC proces-
sor and a 8x8 array of coarse-grained reconfigurable cells for
efficient mapping of DSP applications. The basic reconfigu-
rable cell is universal consisting of an ALU and a MAC unit.
The SoC also incorporates a DMA-controller and a Frame
buffer for fast data transfers between the memory and the re-
configurable array module.

A coarse grain reconfigurable architecture, which tar-
gets DSP applications, is proposed in [5], enabling efficient
template-based operation chaining. Every node of the appli-
cations’ DFG is mapped on a computational resource. The
templates are implemented by interconnecting appropriately
a number of computational cells. Template-chaining is per-
formed by using a flexible inter-template interconnection net-
work. Although, the proposed architecture seems to have
performance gains, the area overheads imposed by the basic
template cell architecture are not negligible.

Morphable multipliers proposed in [3] are multi-mode
(morphable) functional units (MFU) based on the exploita-
tion of the compressors’ timing slack in tree multipliers. The
system is configured to perform two operand multiplication
or addition. Each desired mode is analyzed separately and
the adder chains that will form the adder mode is produced.
However, a severe constraint is that only sharing between sin-
gle addition and multiplication operations is considered, so
the applicability set of the produced designs is strict enough.

In [2] synthesis techniques of Multi-Mode (MM) Cores
are presented, targeting DSP embedded systems. The ini-
tial specification of the desired configurations is formatted as
separate DFGs, one for each configuration. The main objec-
tive is to design low-power MM units following the conven-
tional ASIC design-flow of existed industrial synthesis tools.

©2007 EURASIP 1004

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

MC

0,3

MC

0,2

MC

1,3

MC

0,1

MC

0,0

MC

1,1

MC

1,2

MC

1,0

MC

2,3

MC

2,1

MC

2,2

MC

2,0

MC

3,3

MC

3,1

MC

3,2

MC

3,0

j

i

Figure 1: A 4 � 4 multiplier

3. EFFICIENT INTERCONNECTION SCHEME

The generality of most reconfigurable architectures is
achieved by both interconnection’s and functional block’s
reconfigurability. For interconnections, classical FPGAs
use switch matrices while coarse grained reconfigurable ar-
rays use complex bus-based and highly multiplexer-based
resources. These complex interconnection schemes impose
a significant area overhead and also a reconfiguration delay
overhead due to the augmented number of configuration bits
needed to control the interconnections.

DSP applications are based mainly on four operative
modes, namely, addition, subtraction, multiplication and
shifting. This can be easily confirmed by profiling of the
the main DSP kernels’ dataflow-graphs. Thus, the abil-
ity of performing the previously mentioned primitive op-
erations, maintaining temporal flexibility and stable/simple
interconnection structure, can expose high area and reconfig-
uration delays gains comparing with classical coarse grained
architectures. This paper describes a technique to map the
main DSP operations onto the structure of a modified array
multiplier, while maintaining the efficient routing between
the initial multiplier’s basic cells.

Consider a N � N array multiplier based on Carry-Save-
Adders (CSA) [9]. The array consists of N2 multiplier cells
(MCs) and their interconnections. The structure of such a
multiplier is given in figure 1 for N � 4. The overall archi-
tecture can be described by the following relations:

Mul Celli � j : a j
� bi

� sii � j � cii � j � soi � j � coi � j (1a)

sii � j � 0 � i � 0 (1b)

sii � j � soi � 1 � j � 1 � i �	� 1 � N
 1 � (1c)

cii � j � 0 � i � 0 (1d)

cii � j � coi � 1 � j � i �	� 1 � N
 1 � (1e)

a j � bi � sii � j � cii � j � soi � j � coi � j �	� 0 � 1 � (1f)

Relation 1a defines that each basic cell is a multi-input-
multi-output function targeting the Boolean domain, as im-

i

FA

0,3

FA

0,2

FA

1,3

FA

0,1

FA

0,0

FA

1,1

FA

1,2

FA

1,0

FA

2,3

FA

2,1

FA

2,2

FA

2,0

FA

3,3

FA

3,1

FA

3,2

FA

3,0

j

Figure 2: A 4 � 4 chain-adder

posed by relation 1f. Relations 1b to 1e refer to the routing
properties of the CSA multiplier’s architecture.

The structure of an array of CSA adders for chain ad-
dition is very similar. It also consists of N2 cells and the
basic component of full addition is present. An illustrative
example of 4 � 4 CSA chain-adder is given in figure 2. The
corresponding relations are the following:

Add Celli � j : a j
� sii � j � cii � j � soi � j � coi � j (2a)

sii � j � x0 � j � i � 0 (2b)

sii � j � soi � 1 � j � i �	� 1 � N
 1 � (2c)

cii � j � y0 � j � i � 0 (2d)

cii � j � coi � 1 � j � i �	� 1 � N
 1 � (2e)

a j � x0 � j � y0 � j � sii � j � cii � j � soi � j � coi � j ��� 0 � 1 � (2f)

The same relations also apply in chain-subtraction, with
only difference in the basic cell’s truth table. The routing
schemes for both the array multiplier and the chain-adder
(or chain subtracter), denoted by relations 1c, 1e, 2c and 2e,
present specific dissimilarities, as also shown in figures 1 and
2. Mapping together multiplication, addition, subtraction,
chain addition and chain subtraction operations on a single
circuit, and changing dynamically the configuration between
these behaviors can lead to a high performance functional
unit, especially for the DSP domain. However, the combina-
tive mapping of the above configurations in a straightforward
manner suffers from the described routing dissimilarity, and
from the functional dissimilarity occurring between each ba-
sic cell configuration context.

Routing dissimilarity imposes a complex interconnection
scheme between the cells. Actually, a 2 to 3 switch circuit is
needed for every celli � j to route appropriately the cell’s out-
puts. This scheme is area inefficient, augments the architec-
ture’s configuration word-length and imposes a highly com-
plex interconnection routing between the cells.

To tackle the routing dissimilarity we propose a tech-
nique based on a uniformity transformation. The transfor-
mation applies on the primary inputs’ bit-order and on the

©2007 EURASIP 1005

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

MC

0,3

MC

0,2

MC

1,3

MC

0,1

MC

0,0

MC

1,1

MC

1,2

MC

1,0

MC

2,3

MC

2,1

MC

2,2

MC

2,0

MC

3,3

MC

3,1

MC

3,2

MC

3,0

j

i

Figure 3: Mirror architecture of array multiplier

cell’s input and output ports and results to a stable routing
scheme among all configurations enabling an efficient com-
bined mapping of the desired behaviors.

The proposed transformation is completed in three
stages. At the first stage, a reference architecture is selected.
The reference architecture can follow the interconnection
scheme of either the array multiplier or the chain-adder (the
chain-subtracter has the same interconnection scheme). The
interconnection scheme of the reference architecture will re-
main stable throughout all operation modes. What is chang-
ing is the functionality of the basic cell, which is a unified
cell (UC) functioning as either a multiplication cell (MC), or
as an addition cell (AC), or as a subtraction cell (SC), de-
pending on a set of selection signals � M0 � M1 � .

The two interconnection schemes are equally canonical
and enable efficient VLSI implementation. The selection is
based on the demands of the applications that will be mapped
onto the reconfigurable architecture. For example, if one
application requires a large number of multiplication oper-
ations, it is preferable to select the multiplication scheme as
reference architecture. The chain-adder scheme will be se-
lected if additions or subtractions occur more often. The de-
mands of an application set can be found through profiling.
For the rest of the paper, without loss of generality, we con-
sider reference architecture the interconnection scheme of
the chain-adder (as found in our experiment suite).

In the subsequent stage, we reverse the bit-order of the
multiplier’s input a j � j ��
 0 � N
 1 � , and the mapping order of
the basic cells to preserve the correct functionality (figure 3).
The resultant architecture is mirror symmetrical to the initial.
The relations for the mirrored architecture are obtained by
substituting j � N
 j in the relations for the multiplier:

aN � j
� bi

� sii � N � j
� cii � N � j

� soi � N � j � coi � N � j (3a)

sii � N � j � 0 � i � 0 (3b)

sii � N � j � soi � 1 � N � j � 1 � i ��� 1 � N
 1 � (3c)

cii � N � j � 0 � i � 0 (3d)

cii � N � j � coi � 1 � N � j � i �	� 1 � N
 1 � (3e)

aN � j � bi � sii � N � j � cii � N � j � soi � N � j � coi � N � j �	� 0 � 1 � (3f)

These new relations indicate that each celli � j’s input sig-

M1
 M0
 a
 xxx
 si
 ci

0
 1

so
 co

a
j
 co
i-1,j-1
so
i-1,j

CL

UC
i,j
 = AC
i,j

(a) AC

b
i

M1
 M0
 a
 b
 ci
 si

0
 0

co
 so

a
j
 so
i-1,j

CL

co
i-1,j-1

UC
i,j
 = MC
i,N-j

(b) MC

Figure 4: Port mapping of the unified cell

nals for both chain-adder and mirrored-multiplier structures
are issued by the same cells of the previous row. Therefore,
the routing dissimilarity constraint is partially relaxed, due
to the fact that the input signals now have the same sources.
However, each source is still attached to different ports on the
sink cell. The different port attachment imposes the need for
two 2-to-1 multiplexers under each cell to drive the inputs in
a proper way. Elimination of these multiplexers is performed
by the third stage of the proposed transformation.

In the UC structure, a straightforward port assignment
generates the need of the internal multiplex usage. This hap-
pens because port si in the chain-adder’s case has input from
the right above cell, but in multipliers case it has inputs from
the above left cell. An equivalent condition holds for the port
ci. To overcome this limitation, we propose to keep steady
the unified cell’s external port interface and alter the inter-
cell port mapping. The altering can be made as a simple
permutation operation on the UC’s internal port instantiation
mapping, as shown in figure 4.

These three stages form the proposed uniformity trans-
formation. The transformation exposes a canonical routing
scheme for efficient mapping of multiple arithmetic behav-
iors, on the same architecture, minimizing the routing com-
plexity and circuits criticality imposed by interconnection
dissimilarities. The feasibility of multiple behavior mapping
generates opportunities of flexible, run time configurable
area/time efficient architectures targeting the DSP domain.

4. DSP APPLICATION MAPPING

Based on the technique of the previous section, we have con-
structed a Reconfigurable Arithmetic Unit (RAU) on which
we mapped DSP kernels. The RAU consists of a 16 � 12
array of UCs, a context register, four input reversing-order
modules, a carry propagate adder/subtracter and a register
file for intermediate variables’ storage.

The architecture can be instantaneously configured either
as one multi-cycle pipelined functional unit or as three stand-
alone and independent single cycle computational units. Its
3-stage pipelined structure permits high throughput applica-
tions to be mapped and a high utilization degree between the
independent stages. At the beginning of each stage there is a
multiplexer based intermediate line which enables the proper
routing of the pipelines inputs. The configuration is guided
by the context register which drives all the allocated mul-

©2007 EURASIP 1006

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

x

v1
 v2

+

v3

+

v4

+

v5
 v6

-

v7

+

+

x

v8
 v9

r1

r3

r2
r4

res

Figure 5: Application DFG

tiplexers. A 16 � 12 multiplication can be mapped as a 3
cycle pipelined CSA multiplier. It can be clocked by high
frequency clocks because of the its pipelined structure and
its CSA architecture. Comparing the maximum clock peri-
ods between the RAU and an un-pipelined CSA multiplier,
the former yields in ASIC technology about 3 � (or 2,3 � in
FPGA technology) faster clock rates.

Several DSP applications can be mapped onto the RAU.
For example, consider the DFG of figure 5. Figure 6 shows
a possible mapping. In each control step 3 processing units
are available Seq 1, Seq 2, Seq 3, corresponding to the archi-
tecture’s pipeline stages. The multiplication operations are
performed in three control steps (indexes a, b and c) and the
final result is obtained from the last pipeline segment. The
storage requirements are reduced due to operation chaining
and next-stage data forwarding capabilities.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our archi-
tecture in terms of latency reduction and hardware utilization.
The testbench suite includes seven application DFGs, com-
ing from the DSP domain (benchmarks found in [1] and a
4 point FFT). Initially, the DFGs and the synthesizable RTL
implementations of all benchmarks were evaluated using the
SPARK HLS framework [6]. They were coded in C inserted
into SPARK with the resource constraint of 2 ALU and 2
multiply units. This resource constraint was selected because
of the similarities in hardware functionality and complexity
with our architecture. Next we formed an experimental setup
for our architecture, a 4-way pipelined 16x16 RAU with the
first three pipeline segments being configurable and the last
non-configurable. A top level FSM module was instantiated,
to emulate the data busses and the configuration bus, pro-
viding appropriate input data and configuration words to the
reconfigurable kernel. The DFGs, obtained from SPARK,
were manually mapped to our reconfigurable architecture.

The clock period of the primitive resource datapath, Tpr,
was set to the delay of the multiplier unit. We assume that
the ALU unit operates in Tpr � 2 of the period. Our reconfigu-
rable arithmetic unit is able to operate in � Tpr � 4 due to the
pipelined architectural structure that it integrates. So, taking
into account the extra multiplexer lines and the unified cell

S

t
e

p

1

Seq 1
 Seq 2
 Seq 3

x

v1
 v2

a

x

v1
 v2

b

x

v1
 v2

c

+

v5

-

v7

v6

x

v8
 v9

a

x

v8
 v9

b

x

v8
 v9

c

r1

r2

r3

+

+

v4

+

v3
 r1

r3

r4

+

r2
r4

res

S

t
e

p

2

S

t
e

p

3

S

t
e

p

4

S

t
e

p

5

Figure 6: DFG mapping onto the proposed architecture

structure introduced in RAU’s datapath, a more precise value
of the clock period is TRAU � Tpr � 3.

Figure 7 shows comparative performance results with the
datapaths generated by SPARK. Our architecture achieves la-
tency reduction in all cases. The speedups range between
27%-54%, with an average speedup of � 32 � 63%. The
DCT benchmark presents the highest performance gain due
to the fact that many ALU-based operation chain opportu-
nities have been found in it. Furthermore, these operation
chaining opportunities can be extended by allowing the same
computation to be performed simultaneously in more than
one computational segment of the RAU. This feature is fully
supported by our architecture and enabled in all benchmarks.
Accordingly, the lowest performance gains are reported for
the FIR4 and FIR7 filter mainly because of the tight data
dependencies between multiplication and ALU operations,

Latency Reduction Comparing RAU Datapath With

Primitive Resources One

0

5

10

15

20

25

30

FIR4 FIR7 IIR7 Lattice DCT Elliptic FFT

C

y
c

l
e

s

Primitive Resources
 RAU

Figure 7: Latency reduction using the RAU datapath

©2007 EURASIP 1007

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

Table 1: Latency and usage result comparison
DFG DFG Reconf. Usage Usage

nodes Arith. Unit ratio A ratio B
Fir4 7 8 62.5 66.5
Fir7 17 10 67.5 70
Iir7 18 10 71 75

Lattice 24 19 58 61
DCT 44 11 84.5 97

Elliptic 39 16 48 64.6
FFT 41 20 65 69

minimizing the operation chaining in RAU.
Table 1 shows the number of DFG nodes extracted from

each benchmark, the clock cycles needed for execution onto
the proposed reconfigurable architecture and finally its usage
ratios. The usage ratio metric depicts the utilization of
RAU’s computational segments. Usage Ratio A considers
all the four computational segments along with the last non-
configurable segment, while Usage Ratio B comprises only
the utilization of the three reconfigurable ones. In both cases,
usage ratio is calculated according to the type:

RAUUsage �
�
#Cycles � PEs ��
 Idle PEs

#Cycles � PEs
� 100% (4)

The PEs is the number of available computational seg-
ments while the #Cycles refers to the number of cycles re-
quired to schedule each DFG onto RAU. The Idle PEs is the
sum of the idle computational segments in each cycle.

Usage Ratio A ranges from 48% to 84.5%, with an av-
erage value of 65.2%. Respectively, Usage Ratio B ranges
from 61% to 97%, with an average value of 71.9%. In gen-
eral, the utilization degree of the RAU’s resources is high in
both cases. All the computational segments have been uti-
lized in every DFG example. The difference between the av-
erage values of Usage Ratio A and Usage Ratio B is reason-
able enough, since the last non-configurable computational
stage is used only at multiplication operations.

The Elliptic filter performed the lowest value of Usage
Ratios among all benchmarks, in one case even below 50%
(48% Usage Ratio A). This happens because the Elliptic fil-
ter’s DFG is dominated by node sequences of low paral-
lelism. This fact along with the high operation chaining op-
portunities revealed by the structure of the specific DFG limit
the number of reconfigurable PEs used in parallel per cycle.
However, considering all other cases the Elliptic filter can be
considered as an exception to the general rule of high utiliza-
tion degrees.

6. CONCLUSION AND FUTURE WORK

In this paper a technique to generate a reconfigurable archi-
tecture with a canonical interconnection scheme has been
presented. The resulting architecture achieves significant
performance gains over a set of DSP benchmarks. Our fu-
ture work will focus on the development of an automated
mapping methodology for efficient operation scheduling and
binding onto our architecture, taking into consideration the
RAU’s specific features.

REFERENCES

[1] CDFG toolset, http://poppy.snu.ac.kr/CDFG/cdfg.html.
[2] L. Chiou, S. Bhunia, and K. Roy. Synthesis

of Application-Specific Highly Efficient Multi-mode
Cores for Embedded Systems. ACM Transactions on
Embedded Computing Systems (TECS), 4(1):168–188,
2005.

[3] Chiricescu, Schuette, Glinton, and Schmit. Morphable
Multipliers. In Proc. of the International Conference
on Field Programmable Logic and Applications, pages
647–656, 2002.

[4] K. Compton and S. Hauck. Reconfigurable Computing:
A Survey of Systems and Software. ACM Computing
Surveys, 34(2):171–210, 2002.

[5] M. Galanis, G. Theodoridis, S. Tragoudas, and
C. Goutis. A High Performance Data-Path for Synthe-
sizing DSP Kernels. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 25(6):1154–
1163, June 2006.

[6] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nico-
lau. Using Global Code Motions to Improve the Qual-
ity of Results for High-Level Synthesis. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems, 23(2), Feb. 2003.

[7] R. Hartenstein. A Decade of Reconfigurable Comput-
ing: A Visionary Retrospective. In Proc. of ACM/IEEE
Design Automation and Test in Europe Conference,
pages 642–649, 2001.

[8] S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chi-
maera Reconfigurable Functional Unit. In Proc. of the
IEEE Symposium on FPGAs for Custom Computing
Machines, pages 87–96, 1997.

[9] K. Hwang. Computer Arithmetic. In John Wiley and
Sons, 1979.

[10] R. Kastner, S. Ogrenci-Memik, E. Bozorgzadeh, and
M. Sarrafzadeh. Instruction Generation for Hybrid Re-
configurable Systems. ACM Transactions on Design
Automation of Electronic Systems, 7(4):605–627, 2002.

[11] M.Lee, H. Singh, G. Lu, N. Bagherzadeh, and F. Kur-
dahi. Design and Implementation of the MorphoSys
Reconfigurable Computing Processor. in Journal of
VLSI Signal Processing Systems, Kluwer, 24:147–164,
2000.

[12] A. Olugbon, S. Khawam, T. Arslan, I. Nousias, and
I. Lindsay. An AMBA AHB-based Reconfigurable SoC
Architecture using Multiplicity of Dedicated Flyby
DMA Blocks. In Proc. of ASP-DAC, pages 1256–1259,
2005.

[13] H. Singh, M. Lee, F. K. G. Lu, N. Bagherzadeh,
and E. Filho. Morphosys: An Integrated Reconfi-
gurable System for Data-Parallel and Computation-
Intensive Applications. in IEEE Trans. on Computers,
49(5):465–481, May 2000.

[14] S. Wallner. A configurable System-on-Chip Architec-
ture for Embedded and Real-Time Applications: Con-
cepts, Design and Realization. Elsevier Journal of Sys-
tems Architecture, 51(6-7):350–357, 2005.

©2007 EURASIP 1008

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

