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ABSTRACT t € R} whenever the sampling timét )y have additive ran-
. I dom perturbations due to delays, to noises or to indefinite
Igt]gd cg;/oiréasr;?)a((gerr}ele c]:é}analggmcc)zh e%er;?ﬂ'ggt"ycy%?ge' Igcations. We state the asymptotic behavior of th_e gs_timato
stationary process admits a Fourier-Bohr decomposition'a”()"r) whenever the sampling periath tends to infinity,
' it ‘and for solving the spectrum aliasing problem we assume at

coviX(t),X(t+T)] ~ 3, aA, 1)e". the same time that the sampling stegoes towards 0.

This paper deals with the estimation of the spectral co- o srictly stationary process and constant sampling step
variance A, 7) from a discrete time observation of the pro- i -, o Akaike [1, p.153-154] has pointed out that the effect
cess(X(t) :t € R}, whenever jitter and delay phenomena are of the timing perturbations on the power spectral distidut

present in conjunction with periodic sampling. function of the time sampled data can be described fiten
with an inner white noise sourggsee also [11]). A similar
1. INTRODUCTION phenomenon appears for almost periodically correlated pro

- cess, the timing perturbations cause the limit of the edtima

Almost periodically correlated processes (also called algn()\ 7) to bea(A, 1) the spectral covariance of the process
most cyclostationary processes) belong to the class oh8lecogmqathed by the law of these perturbations. Nevertheless
order processes with periodicity (more precisely almost pe \yhenever the timing perturbations tends to 0 with adequate
odicity) properties for the covariance kernel. These pss€e8 |4t the limit is the very spectral covariarai@ , 7).
have been subject to an intensive research for their applica the asymptotic study is done under mixing conditions.
tions among others in signal analysis (see [9, 5, 7]). These conditions allow control of the covariance between

A spectral theory that is understandable and manageablge values of the process at widely separated times, that are
has been developed for this class of processes although th§¥ymptotically independent in this case. These mixing con-

are not necessarily stationary : the shifted covarianceeter itions can be replaced by conditions on the cumulants of the
(t,T) — cov[X(t),X(t+ 1)] of such a procesgX(t) : t € R} process.
admits a Fourier-Bohr decomposition [2]:

2. UAPC PROCESSES

First, recall some definitions and properties about al-
most periodically correlated processes. More preciseiyn f

In the literature, the estimation of the spectral covaranc Gladyshev [6]
a(A, 1) has been studied whenever the process is observetLciniion 1. A zero-mean real-valued process X
along a continuous time intervgd, T}, asT tends to in- 1y g s¢ S} is uniformly almost periodically correlated

finity [8]. For practical applications, it is more interasji 3
to consider discrete time sampling. In this case, two kindéUAPC) WhenevelE[X(s) } < o, for any s€ §, and the

of specific issues arise. The well known spectrum aliasinghifted covariance kemel 8 1) = cov[X(s),X(s+1)] =
(or folding) phenomenon appears with periodic discretetim E[X(s)X(s+ T)] is almost periodic in s uniformly in. Here
sampling._ Furthermore, the presence pf pe.rturbationsa'r] thS =R or Z.

timing which can be due to imperfections in the sampling Thespectral covariance@, 1) is defined by :

mechanism introduce random timing jitter (see [1, 11, 12] _ e
and delay (see [10]). This problem is less commonly studie ?WheneveS =2,forA €[0,2m) ~R/2mZ, T € Zandt € Z,

For example, in signal processing the jitter and delay phe- AL n+t .
nomena appear in passing from the continuous time to the a(A,7) = lim — 5 B(k,T)e
discrete time by using real samplers, that is the analog-to- k=t
digital convertors. For more details on this subject theleea ) wheneverS = R, for A € R, 7 € R andt € R,
is referred to [11, 12, 10].

BisT)~ Y a, 7).
AeEN

This work concerns with understanding the effect of the a1 /Tth —iAs
jitter and delay phenomena for APC processes. Futhermore A, 1) = Tllnoo Tk B(sT)e"as.
we study the asymptotic behaviour of the empirical estima- A
tor a,(A, 1) of the spectral covarianaA , 1) constructed in The frequency set of the procedsdefined byA = {A :

§ 5.1 from a discrete time sampling of the prockss {X(t):  a(A, ) # 0 for somert }, is at most countable.
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Examples kr(h) is the nearest integer to the ratigh, for instancef, —
1) A very simple example of such a non- statlonaryz <k <j Jr2

process is provided by the so-calladhplitude modulated ThenUy; = Uk+|<, + kch— 1 is the timing perturbation

signal X(t) = Xi(t)cost + Xp(t)cognt), t € R, where for the deterministic timekh+ 1. For fixed 7, the ran-

{X(t),t € R}, i = 1,2, are two independent zero-meandom variabledJy r, k € Z, has the same law; : v (A) =

and stationary processé(t),t € R}, i = 1,2, with uni-  V(A—kh+1) forany Borelian sef. Denote by, the com-

formly continuous covariance functiomg(-), i = 1,2, re-  mon law of the random vecto(&)i, Ui r), k € Z. If ky =

. . . A then the lawy; is concentrated on the ling = u; — 7, and
spectively. Then the amplitude modulated sigXat) = 1z (Ag x Ag) = V(AL N (A + 7)) for all Borelian setsy; and

Xq(t)cost +Xp(t)cogrm), t € R, is an UlAPC Process. a,  Otherwise, ifk; # 0 thenpi; = v @ v; since the random
MoreoverA = {—2m,—2,0,2,2mt}, a(0,T) = 3r1(T)COST+  variablesUy ; andUy are independent for arky
iry(t)cogmr), a(2,1) = a(-2,1) = iry(1)€7, and Moreover for anyr € R, the lawv; weakly converges to
a(2m1) =a(—2m1) = Lry(1) €™, v ash tends to 0. On the other hand, whenevet O the law
Ur weakly converges to @ v. The lawpp does not depend

i
2) Another example is given by the procexgt) 2  ONN Hr(AXA") =Vv(ANAT).

Z(t)cog,t € R, whereZ is an Ornstein Uhlenbeck process.

Then Effect of the timing perturbations

Since the timing perturbations are independent on the
B(s, 1) = e Il cosscogs+ 1) zero-mean UAPC procesé= {X(t) : t € R}, the observed
—a(-2,1)e 5+ a(0,1) +a(2,1)e% procesg X (kh+Uy) : ke Z} is UAPC, and

- T
with A = {-2,02), a(0,1) = Ye cost, a2,1) = ah()\h»ﬁ)

a(—2,1) = ;e I, This process is UAPC and more pre- A Cikh
cisely it is periodically correlated(PC), that is the function = Ml: Z E[X(kh+U) X (kh+T+Uyr)] x e’
s— E[X(s)X(s+1)] is periodic for anyr € R, see [6, 7].

Uz — Uy

3) Now let X(t) £ Z(t)cost + Z(t — 1)cogt), t € R, / [, 3hu (/‘ h ke + ) v(du)v(du)
whereZ is an Orstein Uhlenbeck process. Then the proxess = if ki#0
is UAPC withA = {—-2m,—1—m,1—m,—2,0,2, 1— 1,71+ /ah Ah,0) v(du) it Kk —0
1,2m}. We illustrate the spectral covariances by the follow- e T
ing graphic. for h > 0 fixed. Here

Re( a(lambda,tau)) igyjcrfs"(fﬁzs(’:)efc‘;as'f .d-?)'z(u) 1 n iAkh

. ahu< 7)_&162 X(kh-+u)X(kh+T1+u)] x e ",

Whenever, for anyA € A, the functiont — a(A,1)
is Lebesgue integrable dR, the spectral density function
f(A,-) exists and fulfills

a()\,r):/f(/\,a)emda TER.
= R

7 7 Notice that forA ¢ A we havea(A,-) =0andf(A,-)=0. If
1 I P I = in addition the functioro — z)\e,\| f(A, a)| is integrable on

tamida-5 R, that is, if the procesX is strongly harmonizable [3], then
we can readily state that

lambda=pi-1

Real parts of the spectral covariances . i .
for X(t) = Z(t) cost + Z(t — 1) cog 7). ah()\hyﬁ) :/ >3 f(}\ n :1 )e"”da

R fez,
3. DISTURBED SAMPLING TIMES

For fixedh > 0, we assume that the periodic sampling T _/ 2jm L 2jm
schemekh, k € Z should be disturbed, Thus the continuous ah</\ h, h) R Jezzf(/\ + h ,a) ¢()\ at h )

time procesX = {X(t) :t € R} is observed at discrete times akch )

te = kh-+Uy, ke Z, where{Uy : k € Z} is a family of indepen- xp (o)™ "da  if ke #£0

dent random variables with the same lavon R and which

are independent oM. The random variabledy, k € Z, can

be considered as random errors, jitter or delay. _ T 207 2i7T
Furthermore, the shift time< R is not always a multiple @ ()\ h, H) = / > f (f\ + :] ) da) ¢ (7\ + :1 )

of h, we approximater by the nearest multiple df. This R jez

introduces the deterministic deviatian— k;h, wherek; = if kr=0,

and
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where@ (- ) is the common characteristic function of the ran-

dom vectorsy, k€ Z, ¢ (a) = E[%].

Whenever the processis stationary then all the spectral
density functionsf(A,-), A € R except forA =0, are iden-
tically null [3], and we find Akaike’s results [1, p.153] as a
particular case of the previous equalities.

This effect is quite different to the one due to noise for;

the values of the observed process. For instance assu
that we observé = X(kh) + Z, k € Z, where the noise

{Z« : k€ Z} is a zero-mean stationary process with covari-

ancery = E[ZyZ], k € Z, and which is independent of the

process{ X (kh) : k € Z}. Then the proces§Y : k € Z} is
UAPC with spectral covariance

av(MO{

an(Ak)  if A#£0

an(0,K) +rg if A=0.

"G

However a sequence of zero-mean gaussian laws whose vari-
ances converge to 0, weakly converges to Dirac measure at
0, but does not converge in total variation.

3) In the conditions (P\), (PB) and (PVY), the case
whenv = Jyq, is the Dirac measure at 0, corresponds to the
convergence of the timing perturbations towards 0. However
it is not the only case of interest, some jitter or delay maty no
inish asymptotically, for instance see [10, 12].

4) Assume thav = d;gy and suppvn) C [—Bn, Bn], With
I|m Bn = 0. Then (PW) is satisfied. In addition, under the

condltlon (H) (see below 4.2) we have for sufficiently large
n!

[ 800 Tt = un) i (dun, di) — (A )
< c(Bn+hn)*?

This last relation has been applied in signal theory for théhus whenever Imm”,BK2 = I|m nThk2 = 0, the condi-

detection in a noisy environment of an UAPC signal with
some known spectral information, see [5].

4. HYPOTHESES
4.1 Hypotheses on the timing perturbations

From now on, for any integen we assume that we
observe the continuous time proceXsat discrete times
khn+Unk, 0 < k< n, where for simplicityh, = n=% with
0<d< 1. The family{Umk :0 <k <n} is formed by in-
dependent random variables with the same lalRaenoted
by vy, and which are independent on the procéss

Notice that|kn ;hn — 7| < hy/2. On the other hand, since
hn, — 0 asn — oo, for anyt # 0 there exist#; € N such that
for anyn > n; we havekn ; # 0.

In this work we need the forthcoming conditions.
(PB) . supfvn) C K whereK is some compact subset&f

(PWo) . The sequence of lawwn)n, weakly converges to a
probability measure onR, that is, for anyf € € (K),

[ (0 vo(au) = /f

lim

n—oo

tion (PW) is fuIﬁIIed In partlcular this is the case whenever
Bn = hy =n~% with dk> > n.

5) Instead of the condition (PYY with the spectral co-
variancea(A, T) we could consider the following more gen-
eral condition

(PW;) . Foranyf € %,(R?)

lim n"

Nn—oo

J L F(us.02) (im0t du) — e, du)) =0

However this condition is much more stringent than (PW

In fact, for the example exposed in the remark 6, we can state
that the condition (PW) is satisfied for any function which
satisfies the regularity condition giHwith exponent, such
thatnILngo n1Bk2 = r!i”l, nThk2 = 0. But there is no reason that

the condition (PVY) is satisfied by any functiofiin Gb(R?).

4.2 Hypotheses on the process

All along this work we also use the following conditions
on the zero-mean proceXs= {X(t) : t € R}.

(LB) . Almost every trajectory of the procedsis locally
bounded.

where%'(K) denotes the space of the continuous functiongPP,) . The functions— E[X(s)X(s+ )] is almost periodic

f:K—=R.
(PWp) . The condition (PW) is satisfied and fon > 0

//Rza(/\,rJruz—ul) ghu

% (Hin e (duy, du) — e (du, di) ) = 0,

lim n"

n—oo

where U; SZvgvfort # 0, andp is defined bypg(A x
AY) 2 V(AN A¥) for all Borelian subseté andA* of R.

Remarks

1) Note that the sampling stép tends to 0 and the sam-
pling periodnh, tends to infinity as goes to infinity.

2) Whenever the sequence of lafg)nen CONverges in
total variation tov, then the condition (P is fulfilled.

©2007 EURASIP 603

uniformly with respect ta. That is the proces® is UAPC.

(PPs) . The functions — E[X(s)X(s+ T1)X(s+ T2)X(s+
13)} is almost periodic uniformly with respect (a1, 12, 73).

(S) TacayoA 2 < o, where A £ {A € R,a(A,T) #
0 for somer € R}.

(H2) . There arexz,n,c > 0suchthatfots —tj| <n,i=1,2

K2
EX(sX(22)] ~E[X(t)X ()] < ¢ (I~ +]s2— ] )
(Hs) . There arexa,n,c > 0 such that fofjs — t|| < n

[E[X (50X (82)X (s3)X ()] — E[X(t) X (t2)X ()X (1)

Ka
<c(lls—ll) ",
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wheres = (s1,%,3,%), t = (t,t2,t3,t4), and||s|| = [sy|+ 5.2 Smoothed spectral covariance

|2/ + s3] + |sul. Now we can define themoothed spectral covariance of the
. . L process Xby:
The processX is said to bestrongly mixingwhenever
tIim a(t) = 0 where the mixing coefficient is defined by aa,1)
A T+Ux—Up
:nm// Ay, TE92 Uy, du
a(t) £ sup{|PlANB] — PIA| P[B]|} no | Jg2 a“”*“< " >”"’T< 1, dz)
where the supremum is taken over st 0 and all theA € // a(A, T+ —uy) €My (duy)v(duy) i T#£0O
08, (X) andB € 0. (X), andos? (X) stands for ther —fields — R2

generated by X(s): 51 <s< 9}. aA,0)dy(A) if T=0.
Remarks

1) Condition (LB) is technical. The almost periodicity Notice thatifv = 5,0y, thatis, there is no timing perturbation,
conditions (PR) and (PR), and the Hlderian regularity ones thena(A,r) =a(A, ).
(H2) and (H;) are satisfied by the processes defined in the )
examples 1, 2 and 3. The regularities conditions)(ghd ~ °-3 Consistency
(Ha) are used for the study of the rate of convergence of the We can establish tha (A, 7) is an asymptotically unbi-
estimators. ased estimator of the smoothed spectral covariaiiger).

2) The condition (S) is satisfied by any periodically cor-ThiS is a straightfoward consequence of the asymptotic un-

related process and also by the UAPC processes defined ’l‘i\)f]asedness of the continous time estimaig(A, 1), see [8].
the examples 1, 2 and 3. This condition is well known in the ext under mixing conditions we control the behaviour of the

theory of almost periodically correlated processes [5lisTh Variance of the:sﬂmatcan()g,tr_) atshn — o and we deduce its
condition is an identifiability condition. In fact itimplithat ~ CONVErgence. rience we obtain the mean square convergence

the frequency seh of the process has no cluster point. of the estimatoén(A, T)

3) The mixing coefficient function is an indicator of the Theorem 2. Assume that the process X and the timing per-
asymptotic independence of the process, i.e. of the asymflrbations satisfy the following conditions
totic independence betwedi (u) :u< s} and{X(u):u> 1. (LB)and (PB);
s+t} ast — « (see [4] and references therein). 2. there exists] > 0 such thatsup E[|X(t)[*"] < « and
o _ . a(t) =0(1) ast— oo;
In order to justify the construction of our estimators and
X ; . . 3. (PB) and (PW).
some Lebesgue integrals which will appear in the paper, from _
now on, we consider only a measurable version of the prol hen for anyA and anyr we have the following convergence
cessX. Such a version always exists for any mean squart? quadratic mean (q.m.)
continuous process, and in particular for any UAPC process. . ~
limay(A,7)=a(A,1) g.m.

Nn—oo

5. MAIN RESULTS

5.4 Asymptotic normality
. . . The goal of this section is the statement of the asymptotic
For continuous time obseryatlons of an UAPC proces§lorma"t?, OfM(ﬁn(/\ T)—a(A T))_ ymp
X, Hurd and Lé&kow [8] establish the consistency and the In the general casé the spéctral covariaage, T) is a
asymptotic normality of the following continuous time esti complex number, and its estimatag(A,7) is a complex-

mator ofa(A, 7) valued random variable. As usual in such a situation, for the
Al (T . statement of the asymptotic normality of the estimator we
ar(A, 1) = —/ X()X(t41) etk consider the vectorial versions afA,7) anda(A,1). For
TJo simplicity we will keep the same notations for the complex
mbers and their vectorial forms. Since the procéss
réal-valued, the vectorial form of the spectral covariaisce
written as

5.1 Estimators

From now on, we assume that we have observed a sampli
{X(khy+Ung) : 0< k < n} and we study the following dis-
crete time version ot (A, T)

1T
no_ a)\,r:I|m—/EXsXs+r Akhy)ds,
2002 L5 B0 (A0 Jim = [CEX(9X(s+1)] SAktw)
K= and
~ A N AlD
whereby, (A, T) = an(A, 1) = = Z bnk(A,T)
K=1

—iAKhy _
X(krh+unk>x((k+ kn,r)hn+Un,k+kn,r)e ) Wherebn’k(/\f[) éX(kh}‘i‘Unk)X(kh’]‘i‘T‘f’Unk‘r)S(A kh]),

whenever 0< k < nand 0< k+kq r < n, andbyx(A,T) £ 0, for0<k<nand 0<k+knr SAn. andbnk(A,7) = (0,0)
otherwise. otherwise, and wher§(Akh,)) = (cogAkhy), sin(Akhy)) .

a
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Here(-, -)" denotes the transpose column vector of the rowCorollary 4. In addition of the hypotheses of Theorem 3,
vector(-, -). assume that the conditions (S) and (RVY),2) are fulfilled

Then from conditions (PP2) and (PP4) we can define  5nqh —n=3, for somed such thamax{% 1+12 l<o<1
] ) K2 .

Then for anyr and anyA in R we have
()\1,/\2,1’1,1’2) = I|m nhnCov{ ()\1,T1) (/\2,'[2)} d y

Vi (E(A, 1)~ 8, 1)) 2 45(0,B%(A,1)).
=////RASl(MUl)B(M,)\z,Tl—U1+U’LT2—U2+U§) ( ) ( )
XSL()\ZUZ)T e, (dul, dUI)IJTz (du2, dué) 6. CONCLUSION
In this paper we have studied the effect of jitter and time
where delay in the discrete sampling of an almost periodically cor

Al related process. Moreover we have defined an estimator of
B(A1,A2,T1,T2) = 5 / (bc (A1 =22, T1,t,t+12) Si(Ast) +  the spectral covariances of the process constructed from su

R a sampling. Then, we have established the consistency and
+bs(A1— A2, T1,t,t +T2) Sp(Ast) +be(A1+ A2, Ta,t,t+T2)  the asymptotic normality of this estimator.
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