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ABSTRACT

The covariance kernel of an almost periodically corre-
lated process{X(t) : t ∈ R}, also called almost cyclo-
stationary process, admits a Fourier-Bohr decomposition:
cov[X(t),X(t + τ)] ∼ ∑λ a(λ ,τ)eiλ t .

This paper deals with the estimation of the spectral co-
variance a(λ ,τ) from a discrete time observation of the pro-
cess{X(t) : t ∈R}, whenever jitter and delay phenomena are
present in conjunction with periodic sampling.

1. INTRODUCTION

Almost periodically correlated processes (also called al-
most cyclostationary processes) belong to the class of second
order processes with periodicity (more precisely almost peri-
odicity) properties for the covariance kernel. These processes
have been subject to an intensive research for their applica-
tions among others in signal analysis (see [9, 5, 7]).

A spectral theory that is understandable and manageable,
has been developed for this class of processes although they
are not necessarily stationary : the shifted covariance kernel
(t,τ) 7→ cov[X(t),X(t + τ)] of such a process{X(t) : t ∈ R}
admits a Fourier-Bohr decomposition [2]:

B(s,τ) ∼ ∑
λ∈Λ

a(λ ,τ)eiλ t .

In the literature, the estimation of the spectral covariance
a(λ ,τ) has been studied whenever the process is observed
along a continuous time interval[0,T], as T tends to in-
finity [8]. For practical applications, it is more interesting
to consider discrete time sampling. In this case, two kinds
of specific issues arise. The well known spectrum aliasing
(or folding) phenomenon appears with periodic discrete time
sampling. Furthermore, the presence of perturbations in the
timing which can be due to imperfections in the sampling
mechanism introduce random timing jitter (see [1, 11, 12])
and delay (see [10]). This problem is less commonly studied.

For example, in signal processing the jitter and delay phe-
nomena appear in passing from the continuous time to the
discrete time by using real samplers, that is the analog-to-
digital convertors. For more details on this subject the reader
is referred to [11, 12, 10].

This work concerns with understanding the effect of the
jitter and delay phenomena for APC processes. Futhermore
we study the asymptotic behaviour of the empirical estima-
tor ãn(λ ,τ) of the spectral covariancea(λ ,τ) constructed in
§ 5.1 from a discrete time sampling of the processX = {X(t) :

t ∈ R} whenever the sampling times(tk)k have additive ran-
dom perturbations due to delays, to noises or to indefinite
locations. We state the asymptotic behavior of the estimator
ãn(λ ,τ) whenever the sampling periodnh tends to infinity,
and for solving the spectrum aliasing problem we assume at
the same time that the sampling steph goes towards 0.

For strictly stationary process and constant sampling step
h > 0, Akaike [1, p.153-154] has pointed out that the effect
of the timing perturbations on the power spectral distribution
function of the time sampled data can be described as afilter
with an inner white noise source(see also [11]). A similar
phenomenon appears for almost periodically correlated pro-
cess, the timing perturbations cause the limit of the estimator
ãn(λ ,τ) to beã(λ ,τ) the spectral covariance of the process
smoothed by the law of these perturbations. Nevertheless
whenever the timing perturbations tends to 0 with adequate
rate, the limit is the very spectral covariancea(λ ,τ).

The asymptotic study is done under mixing conditions.
These conditions allow control of the covariance between
the values of the process at widely separated times, that are
asymptotically independent in this case. These mixing con-
ditions can be replaced by conditions on the cumulants of the
process.

2. UAPC PROCESSES

First, recall some definitions and properties about al-
most periodically correlated processes. More precisely, from
Gladyshev [6]

Definition 1. A zero-mean real-valued process X=
{X(s) : s ∈ S} is uniformly almost periodically correlated
(UAPC) wheneverE

[
X(s)2

]
< ∞, for any s∈ S, and the

shifted covariance kernel B(s,τ) = cov
[
X(s),X(s+ τ)

]
=

E
[
X(s)X(s+τ)

]
is almost periodic in s uniformly inτ. Here

S = R or Z.

Thespectral covariance a(λ ,τ) is defined by :
i) wheneverS = Z, for λ ∈ [0,2π)∼R/2πZ, τ ∈Z andt ∈Z,

a(λ ,τ)
∆
= lim

n→∞

1
n

n+t

∑
k=t

B(k,τ)e−iλk

ii) wheneverS = R, for λ ∈ R, τ ∈ R andt ∈ R,

a(λ ,τ)
∆
= lim

T→∞

1
T

∫ T+t

t
B(s,τ)e−iλsds.

The frequency set of the processX, defined byΛ ∆
= {λ :

a(λ ,τ) 6= 0 for someτ }, is at most countable.
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Examples

1) A very simple example of such a non-stationary
process is provided by the so-calledamplitude modulated
signal X(t) = X1(t)cost + X2(t)cos(πt), t ∈ R, where{

Xi(t), t ∈ R
}

, i = 1,2, are two independent zero-mean
and stationary processes

{
Xi(t), t ∈ R

}
, i = 1,2, with uni-

formly continuous covariance functionsr i( ·), i = 1,2, re-

spectively. Then the amplitude modulated signalX(t)
∆
=

X1(t)cost + X2(t)cos(πt), t ∈ R, is an UAPC process.
MoreoverΛ = {−2π,−2,0,2,2π}, a(0,τ) = 1

2 r1(τ)cosτ +
1
2r2(τ)cos(πτ), a(2,τ) = a(−2,τ) = 1

4 r1(τ)eiτ , and
a(2π,τ) = a(−2π,τ) = 1

4 r2(τ)eiπτ .

2) Another example is given by the processX(t)
∆
=

Z(t)cost, t ∈ R, whereZ is an Ornstein Uhlenbeck process.
Then

B(s,τ) = e−|τ | cosscos(s+ τ)

= a(−2,τ)e−i2s+a(0,τ)+a(2,τ)ei2s

with Λ =
{
−2,0,2

}
, a(0,τ) = 1

2 e−|τ | cosτ, a(2,τ) =

a(−2,τ) = 1
4 e−|τ |eiτ . This process is UAPC and more pre-

cisely it is periodically correlated(PC), that is the function
s 7→ E

[
X(s)X(s+ τ)

]
is periodic for anyτ ∈ R, see [6, 7].

3) Now let X(t)
∆
= Z(t)cost + Z(t − 1)cos(πt), t ∈ R,

whereZ is an Orstein Uhlenbeck process. Then the processX
is UAPC withΛ =

{
−2π,−1−π,1−π,−2,0,2,π −1,π +

1,2π
}

. We illustrate the spectral covariances by the follow-
ing graphic.
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3. DISTURBED SAMPLING TIMES

For fixed h > 0, we assume that the periodic sampling
schemekh, k ∈ Z should be disturbed, Thus the continuous
time processX = {X(t) : t ∈ R} is observed at discrete times
tk = kh+Uk, k∈Z, where{Uk : k∈Z} is a family of indepen-
dent random variables with the same lawν on R and which
are independent onX. The random variablesUk, k ∈ Z, can
be considered as random errors, jitter or delay.

Furthermore, the shift timeτ ∈R is not always a multiple
of h, we approximateτ by the nearest multiple ofh. This
introduces the deterministic deviationτ − kτh, wherekτ =

kτ(h) is the nearest integer to the ratioτ/h, for instanceτ
h −

1
2 ≤ kτ < τ

h + 1
2.

ThenUk,τ
∆
= Uk+kτ + kτh− τ is the timing perturbation

for the deterministic timekh+ τ. For fixed τ, the ran-
dom variablesUk,τ , k ∈ Z, has the same lawντ : ντ(A) =
ν(A−kτh+τ) for any Borelian setA. Denote byµτ the com-
mon law of the random vectors(Uk,Uk,τ), k ∈ Z. If kτ = 0,
then the lawµτ is concentrated on the lineu2 = u1− τ, and
µτ(A1×A2) = ν

(
A1∩ (A2 + τ)

)
for all Borelian setsA1 and

A2. Otherwise, ifkτ 6= 0 thenµτ = ν ⊗ντ since the random
variablesUk,τ andUk are independent for anyk.

Moreover for anyτ ∈ R, the lawντ weakly converges to
ν ash tends to 0. On the other hand, wheneverτ 6= 0 the law
µτ weakly converges toν ⊗ν . The lawµ0 does not depend
onh, µτ(A×A∗) = ν(A∩A∗).

Effect of the timing perturbations

Since the timing perturbations are independent on the
zero-mean UAPC processX = {X(t) : t ∈ R}, the observed
process{X(kh+Uk) : k∈ Z} is UAPC, and

ãh

(
λh,

τ
h

)

∆
= lim

n→∞

1
n

n

∑
k=1

E
[
X
(
kh+Uk

)
X
(
kh+ τ +Uk,τ

)]
×e−iλkh

=





∫∫

R2
ah,u

(
λh,kτ +

u2−u1

h

)
ν(du1)ν(du2)

if kτ 6= 0∫

R

ah,u
(
λh,0

)
ν(du) if kτ = 0,

for h > 0 fixed. Here

ah,u

(
λ ,

τ
h

)
∆
= lim

n→∞

1
n

n

∑
k=1

E
[
X(kh+u)X(kh+τ +u)

]
×e−iλkh.

Whenever, for anyλ ∈ Λ, the function τ 7→ a(λ ,τ)
is Lebesgue integrable onR, the spectral density function
f (λ , ·) exists and fulfills

a(λ ,τ) =
∫

R

f (λ ,α)eiατ dα τ ∈ R.

Notice that forλ /∈ Λ we havea(λ , ·) ≡ 0 and f (λ , ·) ≡ 0. If
in addition the functionα 7→ ∑λ∈Λ

∣∣ f (λ ,α)
∣∣ is integrable on

R, that is, if the processX is strongly harmonizable [3], then
we can readily state that

ah

(
λh,

τ
h

)
=
∫

R
∑
j∈Z

f
(

λ +
2 jπ
h

,α
)

eiατ dα

ãh

(
λh,

τ
h

)
=
∫

R
∑
j∈Z

f
(

λ +
2 jπ
h

,α
)

ϕ
(

λ −α +
2 jπ
h

)

×ϕ
(
α
)

eiαkτ h dα if kτ 6= 0

and

ãh

(
λh,

τ
h

)
=

(∫

R
∑
j∈Z

f
(

λ +
2 jπ
h

,α
)

dα

)
ϕ
(

λ +
2 jπ
h

)

if kτ = 0,
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whereϕ( ·) is the common characteristic function of the ran-
dom vectorsUk, k∈ Z, ϕ(α) = E

[
eiαUk

]
.

Whenever the processX is stationary then all the spectral
density functionsf (λ , ·), λ ∈ R except forλ = 0, are iden-
tically null [3], and we find Akaike’s results [1, p.153] as a
particular case of the previous equalities.

This effect is quite different to the one due to noise for
the values of the observed process. For instance assume
that we observeYk = X(kh) + Zk, k ∈ Z, where the noise
{Zk : k ∈ Z} is a zero-mean stationary process with covari-
ancerk = E

[
Z0Zk

]
, k ∈ Z, and which is independent of the

process
{

X(kh) : k ∈ Z
}

. Then the process{Yk : k ∈ Z} is
UAPC with spectral covariance

aY(λ ,k) =

{
ah(λ ,k) if λ 6= 0

ah(0,k)+ rk if λ = 0.

This last relation has been applied in signal theory for the
detection in a noisy environment of an UAPC signal with
some known spectral information, see [5].

4. HYPOTHESES

4.1 Hypotheses on the timing perturbations

From now on, for any integern we assume that we
observe the continuous time processX at discrete times
khn +Un,k, 0≤ k ≤ n, where for simplicityhn = n−δ with
0 < δ < 1. The family

{
Un,k : 0 ≤ k ≤ n

}
is formed by in-

dependent random variables with the same law onR denoted
by νn, and which are independent on the processX.

Notice that|kn,τhn− τ| ≤ hn/2. On the other hand, since
hn → 0 asn→ ∞, for anyτ 6= 0 there existsnτ ∈ N such that
for anyn≥ nτ we havekn,τ 6= 0.

In this work we need the forthcoming conditions.

(PB) . supp(νn) ⊂ K whereK is some compact subset ofR

(PW0) . The sequence of laws(νn)n weakly converges to a
probability measureν onR, that is, for anyf ∈ C (K) ,

lim
n→∞

∫

K
f (u)νn(du) =

∫

K
f (u)ν(du),

whereC (K) denotes the space of the continuous functions
f : K → R.

(PWη ) . The condition (PW0) is satisfied and forη > 0

lim
n→∞

nη
∫∫

R2
a(λ ,τ +u2−u1) eiλu1

×
(

µn,τ(du1,du2)−µτ(du1,du2)
)

= 0,

whereµτ
∆
= ν ⊗ ν for τ 6= 0, andµ0 is defined byµ0(A×

A∗)
∆
= ν(A∩A∗) for all Borelian subsetsA andA∗ of R.

Remarks

1) Note that the sampling stephn tends to 0 and the sam-
pling periodnhn tends to infinity asn goes to infinity.

2) Whenever the sequence of laws(νn)n∈N converges in
total variation toν , then the condition (PW0) is fulfilled.

However a sequence of zero-mean gaussian laws whose vari-
ances converge to 0, weakly converges to Dirac measure at
0, but does not converge in total variation.

3) In the conditions (PW0), (PB) and (PWη ), the case
whenν = δ{0} is the Dirac measure at 0, corresponds to the
convergence of the timing perturbations towards 0. However,
it is not the only case of interest, some jitter or delay may not
diminish asymptotically, for instance see [10, 12].

4) Assume thatν = δ{0} and supp(νn) ⊂ [−βn,βn], with
lim
n→∞

βn = 0. Then (PW0) is satisfied. In addition, under the

condition (H2) (see below§ 4.2) we have for sufficiently large
n,

∣∣∣
∫∫

R2
a(λ ,τ +u2−u1)µn,τ(du1,du2)−a(λ ,τ)

∣∣∣

≤ c(βn +hn)
κ2.

Thus whenever lim
n→∞

nη β κ2
n = lim

n→∞
nηhκ2

n = 0, the condi-

tion (PWη ) is fulfilled. In particular, this is the case whenever
βn = hn = n−δ with δκ2 > η .

5) Instead of the condition (PWη ) with the spectral co-
variancea(λ ,τ) we could consider the following more gen-
eral condition
(PW∗

η ) . For any f ∈ Cb(R
2)

lim
n→∞

nη
∫∫

R2
f (u1,u2)

(
µn,τ(du1,du2)−µτ(du1,du2)

)
= 0.

However this condition is much more stringent than (PWη ).
In fact, for the example exposed in the remark 6, we can state
that the condition (PW∗η ) is satisfied for any function which
satisfies the regularity condition (H2) with exponentκ2 such
that lim

n→∞
nη β κ2

n = lim
n→∞

nηhκ2
n = 0. But there is no reason that

the condition (PW∗η ) is satisfied by any functionf in Cb(R
2).

4.2 Hypotheses on the process

All along this work we also use the following conditions
on the zero-mean processX = {X(t) : t ∈ R}.

(LB) . Almost every trajectory of the processX is locally
bounded.

(PP2) . The functions 7→ E
[
X(s)X(s+τ)

]
is almost periodic

uniformly with respect toτ. That is the processX is UAPC.

(PP4) . The functions 7→ E
[
X(s)X(s+ τ1)X(s+ τ2)X(s+

τ3)
]

is almost periodic uniformly with respect to(τ1,τ2,τ3).

(S). ∑λ∈Λ\{0} λ−2 < ∞, where Λ ∆
=
{

λ ∈ R , a(λ ,τ) 6=
0 for someτ ∈ R

}
.

(H2) . There areκ2,η ,c > 0 such that for|si −ti | ≤η , i = 1,2
∣∣∣E
[
X(s1)X(s2)

]
−E
[
X(t1)X(t2)

]∣∣∣≤ c
(
|s1− t1|+ |s2− t2|

)κ2
.

(H4) . There areκ4,η ,c > 0 such that for‖s− t‖ ≤ η
∣∣∣E
[
X(s1)X(s2)X(s3)X(s4)

]
−E
[
X(t1)X(t2)X(t3)X(t4)

]∣∣∣

≤ c
(
‖s− t‖

)κ4
,
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wheres = (s1,s2,s3,s4), t = (t1, t2, t3, t4), and‖s‖ = |s1|+
|s2|+ |s3|+ |s4|.

The processX is said to bestrongly mixingwhenever
lim
t→∞

α(t) = 0 where the mixing coefficient is defined by

α(t)
∆
= sup

{
|P[A∩B]−P[A]P[B]|

}

where the supremum is taken over alls> 0 and all theA ∈
σs
−∞(X) andB∈σ∞

s+t(X), andσs2
s1 (X) stands for theσ−fields

generated by{X(s) : s1 ≤ s≤ s2}.
Remarks

1) Condition (LB) is technical. The almost periodicity
conditions (PP2) and (PP4), and the Ḧolderian regularity ones
(H2) and (H4) are satisfied by the processes defined in the
examples 1, 2 and 3. The regularities conditions (H2) and
(H4) are used for the study of the rate of convergence of the
estimators.

2) The condition (S) is satisfied by any periodically cor-
related process and also by the UAPC processes defined in
the examples 1, 2 and 3. This condition is well known in the
theory of almost periodically correlated processes [5]. This
condition is an identifiability condition. In fact it implies that
the frequency setΛ of the process has no cluster point.

3) The mixing coefficient function is an indicator of the
asymptotic independence of the process, i.e. of the asymp-
totic independence between

{
X(u) : u≤ s

}
and

{
X(u) : u≥

s+ t
}

ast → ∞ (see [4] and references therein).

In order to justify the construction of our estimators and
some Lebesgue integrals which will appear in the paper, from
now on, we consider only a measurable version of the pro-
cessX. Such a version always exists for any mean square
continuous process, and in particular for any UAPC process.

5. MAIN RESULTS

5.1 Estimators

For continuous time observations of an UAPC process
X, Hurd and Léskow [8] establish the consistency and the
asymptotic normality of the following continuous time esti-
mator ofa(λ ,τ)

âT(λ ,τ)
∆
=

1
T

∫ T

0
X(t)X(t + τ) e−iλ t dt.

From now on, we assume that we have observed a sampling{
X(khn +Un,k) : 0≤ k≤ n

}
and we study the following dis-

crete time version of̂aT(λ ,τ)

ãn(λ ,τ)
∆
=

1
n

n

∑
k=1

b̃n,k(λ ,τ)

whereb̃n,k(λ ,τ)
∆
=

X
(
khn +Un,k

)
X
(
(k+kn,τ)hn +Un,k+kn,τ

)
e−iλkhn,

whenever 0≤ k≤ n and 0≤ k+kn,τ ≤ n, andb̃n,k(λ ,τ)
∆
= 0,

otherwise.

5.2 Smoothed spectral covariance

Now we can define thesmoothed spectral covariance of the
process Xby:

ã(λ ,τ)

∆
= lim

n→∞

∫∫

R2
ahn,u

(
λhn,

τ +u2−u1

hn

)
µn,τ(du1,du2)

=





∫∫

R2
a
(
λ ,τ +u2−u1

)
eiλu1 ν(du1)ν(du2) if τ 6= 0

a(λ ,0)ϕν(λ ) if τ = 0.

Notice that ifν = δ{0}, that is, there is no timing perturbation,
thenã(λ ,τ) = a(λ ,τ).

5.3 Consistency

We can establish that̃an(λ ,τ) is an asymptotically unbi-
ased estimator of the smoothed spectral covarianceã(λ ,τ).
This is a straightfoward consequence of the asymptotic un-
biasedness of the continous time estimatorâT(λ ,τ), see [8].
Next under mixing conditions we control the behaviour of the
variance of the estimator̃an(λ ,τ) asn→∞ and we deduce its
convergence. Hence we obtain the mean square convergence
of the estimator̃an(λ ,τ)

Theorem 2. Assume that the process X and the timing per-
turbations satisfy the following conditions

1. (LB) and (PP2);

2. there existsη > 0 such thatsupt E
[
|X(t)|4+η] < ∞ and

α(t) = o(1) as t→ ∞;

3. (PB) and (PW0).

Then for anyλ and anyτ we have the following convergence
in quadratic mean (q.m.)

lim
n→∞

ãn(λ ,τ) = ã(λ ,τ) q.m. .

5.4 Asymptotic normality

The goal of this section is the statement of the asymptotic
normality of

√
nhn
(
ãn(λ ,τ)− ã(λ ,τ)

)
.

In the general case, the spectral covariancea(λ ,τ) is a
complex number, and its estimatorãn(λ ,τ) is a complex-
valued random variable. As usual in such a situation, for the
statement of the asymptotic normality of the estimator we
consider the vectorial versions ofa(λ ,τ) and ã(λ ,τ). For
simplicity we will keep the same notations for the complex
numbers and their vectorial forms. Since the processX is
real-valued, the vectorial form of the spectral covarianceis
written as

a(λ ,τ)
∆
= lim

T→∞

1
T

∫ T

0
E
[
X(s)X(s+ τ)

]
S(λkhn)ds,

and

ãn(λ ,τ)
∆
=

1
n

n

∑
k=1

b̃n,k(λ ,τ)

wherẽbn,k(λ ,τ)
∆
= X(khn+Un,k)X(khn+τ +Un,k,τ)S(λkhn),

for 0 ≤ k ≤ n and 0≤ k+ kn,τ ≤ n, andb̃n,k(λ ,τ) = (0,0)†

otherwise, and whereS(λkhn))
∆
=
(
cos(λkhn) , sin(λkhn)

)†
.
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Here( · , ·)† denotes the transpose column vector of the row
vector( · , ·).

Then from conditions (PP2) and (PP4) we can define

B∗(λ1,λ2,τ1,τ2
) ∆

= lim
n→∞

nhnCov
[
ãn(λ1,τ1), ãn(λ2,τ2)

]

=
∫∫∫∫

R4
S1(λ1u1)B(λ1,λ2,τ1−u1 +u∗1,τ2−u2 +u∗2)

×S1(λ2u2)
† µτ1(du1,du∗1)µτ2(du2,du∗2)

where

B(λ1,λ2,τ1,τ2)
∆
=

1
2

∫

R

(
bc
(
λ1−λ2,τ1, t, t + τ2

)
S1(λ2t)+

+bs
(
λ1−λ2,τ1, t, t + τ2

)
S2(λ2t)+bc

(
λ1 +λ2,τ1, t, t + τ2

)

× S3(λ2t)+bs
(
λ1 +λ2,τ1, t, t + τ2

)
S4(λ2t)

)
dt

with

bc
(
λ ,u,v,w

) ∆
= lim

T→∞

1
T

∫ T

0
cov
[
X(s)X(s+u),X(s+v)X(s+

w)
]
cos(λs)ds

bs
(
λ ,u,v,w

) ∆
= lim

T→∞

1
T

∫ T

0
cov
[
X(s)X(s+u),X(s+v)X(s+

w)
]
sin(λs)ds

S1(θ)
∆
=

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]

S2(θ)
∆
=

[
sin(θ) −cos(θ)
cos(θ) sin(θ)

]

S3(θ)
∆
=

[
cos(θ) sin(θ)
sin(θ) −cos(θ)

]

S4(θ)
∆
=

[
−sin(θ) cos(θ)

cos(θ) sin(θ)

]
.

Then we state the asymptotic normality of the estimator
ã(λ ,τ).

Theorem 3(Asymptotic normality).
Assume that the process X and the timing perturbations sat-
isfy the following conditions
1. (H2), (PP2), (H4) and (PP4);
2. there isη > 0 such that

sup
t

E
[
|X(t)|4+η]< ∞ and α( ·) ∈ L

η
4+η (R+);

3. α(t) = o(t−4) as t→ ∞;
4. (PW0), (PB).

Then for anyλ and anyτ we have

√
nhn

(
ãn(λ ,τ)−E

[
ãn(λ ,τ)

]) L−→ N2
(
0,B∗(λ ,τ)

)
,

where B∗(λ ,τ) = B
(
λ ,λ ,τ,τ

)
.

From Slusky lemma we readily deduce the following
corollary.

Corollary 4. In addition of the hypotheses of Theorem 3,
assume that the conditions (S) and (PW(1−δ )/2) are fulfilled

and hn = n−δ , for someδ such thatmax
{

1
3, 1

1+2κ2

}
< δ < 1.

Then for anyτ and anyλ in R we have
√

nhn

(
ãn(λ ,τ)− ã(λ ,τ)

)
L−→ N2

(
0,B∗(λ ,τ)

)
.

6. CONCLUSION

In this paper we have studied the effect of jitter and time
delay in the discrete sampling of an almost periodically cor-
related process. Moreover we have defined an estimator of
the spectral covariances of the process constructed from such
a sampling. Then, we have established the consistency and
the asymptotic normality of this estimator.

REFERENCES

[1] H. Akaike (1960), ”Effect of timing error on the power
sectrum of sampled-data”,Ann. Inst. Stat. Math., vol.
11 (3), pp. 145–165, (1960).

[2] C. Corduneanu,Almost periodic functions. New-York:
Wiley, 1968.

[3] D. Dehay, ”Spectral analysis of the covariance of
almost periodically correlated processes”,Stochastic
Process. Appl., vol. 50, pp. 315–330, 1994.

[4] P. Doukhan,Mixing: properties and examples, Lecture
Notes in Statistics 85. Berlin: Springer, 1984.

[5] W.A. Gardner, ”An introduction to cyclostationary sig-
nals”, in W.A. Gardner, editor,Cyclostationarity in
communications and signal processing. New York:
IEEE Press, 1994, pp. 1–90.

[6] E. Gladyshev, ”Periodically and almost periodically
correlated random processes with continous time pa-
rameter”, Th. Probability Appl.vol. 8, pp. 173–177,
1963.

[7] H.L. Hurd, ”Correlation theory for the almost periodi-
cally correlated processes with continuous time param-
eter”, J. Multivariate Analysis, vol. 37 (1), pp. 24–45,
1991.
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