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ABSTRACT
The commonly used discrete-time analytic signal for discrete
time–frequency distributions (DTFDs) contains spectral en-
ergy at negative frequencies which results in aliasing in the
DTFD. A new discrete-time analytic signal is proposed that
approximately halves this spectral energy at the appropri-
ate discrete negative frequencies. An empirical comparison
shows that aliasing is reduced in the DTFD using the pro-
posed analytic signal rather than the conventional analytic
signal. The time domain characteristics of the two analytic
signals are compared using an impulse signal as an exam-
ple, where the DTFD of the conventional signal produces
more artefacts than the DTFD of the proposed analytic sig-
nal. Furthermore, the proposed discrete signal satisfies two
important properties, namely the real part of the analytic sig-
nal is equal to the original real signal and the real and imag-
inary parts are orthogonal.

1. INTRODUCTION
TFDs are two dimensional representations of signal energy
in the joint time–frequency (t, f ) domain [1]. A commonly
used class of TFDs is the quadratic shift-invariant TFD class
(henceforth referred to as simply TFDs). The most basic
TFD of this class is the Wigner-Ville distribution (WVD) de-
fined, for a real signal s(t), as

Wz(t, f ) =
∫ ∞

−∞
z(t + τ

2 )z∗(t − τ
2 )e− j2πτ f dτ

where z(t) is the analytic associate of s(t) [1, pp. 13]. The
reason the analytic associate, z(t), is used rather than real
signal s(t) is twofold: firstly it eliminates the crossterms be-
tween the positive and negative frequency components in the
(t, f ) domain and secondly it makes an alias-free discrete-
time representation possible [2]. The general form of this
class of TFDs can be expressed using the (t, f ) kernel γ(t, f )
as follows:

ρz(t, f ) = Wz(t, f )∗
t
∗
f

γ(t, f ) (1)

where ∗ represents the convolution operation.

1.1 Discrete Time–Frequency Distributions
The implementation of TFDs for digital signal processing
purposes requires a discrete version of the continuous TFD
defined in (1). This requires that both the time t and fre-
quency f arguments in ρz(t, f ) be discretised. As TFDs are
obtained from mapping a time domain signal s(t), then like-
wise discrete-time, discrete-frequency TFDs need to be ob-

tained from the finite discrete-time signal s(nT ) of length N,
where T represents the sampling period.

The requirements for an alias-free discrete-time, discrete-
frequency TFDs are as follows: a discrete-time TFD requires
that a signal with half the Nyquist bandwidth is used, which
is the case for the analytic signal [2]. A discrete-frequency
TFD requires that a signal with half the time duration is
used, that is s(nT ) is zero for N < n ≤ 2N − 1 [3]. Thus
these two conditions must be combined to produce a discrete-
time, discrete-frequency TFD (simply referred to as a dis-
crete TFD, (DTFD)). As the (t, f ) kernel γ is independent of
the signal, the formation of the discrete WVD (DWVD) will
now be examined.

The DWVD for a signal s(nT ) can be represented as [4]

Wzc(
nT
2 , k

2NT )

=
N−1

∑
m=0

zc(mT )z∗c((n−m)T )e− j2π(m−n/2)k/N (2)

for n = 0,1, . . . ,2N −1 and k = 0,1, . . . ,N −1. This particu-
lar DWVD, based on the one proposed in [3], is presented
here as it satisfies more desirable mathematical properties
than the more common DWVD definition proposed in [5].
The implications, however, arising from the choice of ana-
lytic signal are the same regardless of the DWVD definition.
The signal zc(nT ), periodic in 2NT , is defined as

zc(nT ) =

{

z(nT ), 0 ≤ n ≤ N −1
0, N ≤ n ≤ 2N −1 (3)

where z(nT ) represents the discrete-time analytic associate
of s(nT ), which will be discussed in more detail in the next
section. The same DWVD can also be expressed in terms of
the discrete-frequency domain signal Zc(

k
2NT ),

WZc(
nT
2 , k

2NT )

=
1

2N

2N−1

∑
l=0

Zc(
l

2NT )Z∗
c ( 2k−l

2NT )e jπ(l−k)n/N (4)

where WZc =Wzc and Zc is obtained from the discrete Fourier
transform (DFT) of zc.

1.2 Discrete-Time Analytic Signals
The discrete-time analytic signal z(nT ) used in (3) is formed
using a frequency domain method described in [6]. The
method zeros all the discrete frequency domain samples
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at negative frequencies. This is achieved by multiplying
S( k

NT ), the DFT of s(nT ), by H( k
NT ). That is, Z( k

NT ) =

H( k
NT )S( k

NT ), with H( k
NT ) defined as

H( k
NT ) =











1, k = 0 and k = N
2 ,

2, 1 ≤ k ≤ N
2 −1,

0, N
2 +1 ≤ k ≤ N −1.

(5)

The analytic signal z(nT ) is then obtained by taking the in-
verse DFT (IDFT) of Z( k

NT ).
The justification for using this method is now exam-

ined, with alternative methods presented. Preceding this, two
properties inherent to the continuous-time analytic signal are
introduced in the discrete-time context.

The properties were proposed in [6] in order for z(nT ) =

z(r)(nT ) + jz(i)(nT ) to be an “analytic-like” discrete-time
signal. First, the real part of the discrete-time analytic sig-
nal is exactly equal to the original real signal s(nT ), i.e.

z(r)(nT ) = s(nT ) for 0 ≤ n ≤ N −1 (6)

and second, the orthogonality between the real and imaginary
components of the signal is maintained, i.e.

N−1

∑
n=0

z(r)(nT )z(i)(nT ) = 0. (7)

Alternative methods to creating the discrete-time analytic
signal z(nT ) of length N include using dual quadrature FIR
filters to jointly produce the real and imaginary components
of z(nT ), as described in [7]. This approach preserves the
orthogonality property (7) but will not preserve the original
real signal (6) [6]. Another approach is to approximate the
Hilbert transform operation H [·] with an FIR filter [7], as
the analytic signal is related to the real signal by the rela-
tion z(nT ) = s(nT )+ jH [s(nT )]. This approach preserves
the original real signal (6) but not the orthogonality property
(7). Both of these approaches are implemented in the time
domain.

A more recent approach has been proposed in [8], which
combines the frequency domain method of [6] with the zero-
ing of a single value of the continuous spectrum in the nega-
tive frequency range. This method preserves the original real
signal (6) but not the orthogonality property (7).

In comparison, the frequency domain method [6] is par-
ticularly attractive for three reasons. Firstly, as the formation
of the DWVD requires a latency of N samples, real-time im-
plementation of the analytic signal is not required. Therefore
the analytic signal is not constrained to a time domain only
realisation. Thus this method has the advantage of exactly
zeroing all the samples in the negative frequency range of the
discrete spectrum, i.e. Z( k

NT ) = 0 for N
2 < k ≤ N −1, which

is not guaranteed using a time domain FIR approach. Sec-
ondly, this method uniquely satisfies the two aforementioned
properties [6]. Thirdly, this method has a simple implemen-
tation [6] in comparison to the other methods, as no filter has
to designed or arbitrary frequency point selected [8].

For these reasons, this method has remained a popular
approach for forming a discrete-time analytic signal for use
in a DWVD (see, e.g. [2]). However, it is worth noting that
although z(nT ) is completely zero in the negative half of the

discrete spectrum (implicit from its definition [6]), zc(nT ) is
not. This is because the Fourier transform of the the discrete-
time signal z(nT ), Z( f ), is only zero at the sample points
f = k/NT for N < k ≤ 2N − 1. As zc(nT ) is of length 2N,
then Zc( f ) will be nonzero for the odd negative frequency
sample points f = (2k +1)/2NT . Thus the DWVD in (2) is
not entirely alias-free. In an effort to reduce this aliasing, a
new discrete-time analytic signal will now be introduced.

2. PROPOSED ANALYTIC SIGNAL
The proposed analytic signal is defined as

zp(nT ) =

{

za(nT ), 0 ≤ n ≤ N −1
0, N ≤ n ≤ 2N −1 (8)

for n = 0,1, . . . ,2N − 1. The signal za(nT ) is defined as
the analytic associate of zc(nT ), obtained using the fre-
quency domain method described in [6]. That is, Za(

k
2NT ) =

H( k
2NT )Zc(

k
2NT ), where H( k

2NT ) is described in (5) with N
replaced by 2N. Taking the IDFT of Za(

k
2NT ) results in

za(nT ). The proposed discrete analytic signal is then ob-
tained by forcing za(nT ) to zero for N ≤ n ≤ 2N −1.

The two analytic signals can be described completely in
the time domain as a function of the real signal s(nT ) (of
length N) as

zc(nT ) =
[

s̃(nT )u1(nT )~ ĥ(nT )
]

u1(nT ) (9)

zp(nT ) =
[

s̃(nT )u1(nT )~h(nT )
]

u1(nT ) (10)

where s̃(nT ) is equal to s(nT ) periodically extended to length
2N and where ~ represents circular convolution. The func-
tion u1(nT ) is defined as a time-reversed and time-shifted
step function, described as u1(nT ) = u((N−1−n)T ), where
u(nT ) represents the unit step function. Thus the term
s̃(nT )u1(nT ) is equal to zero padding s(nT ) to 2N. h(nT ),
of length 2N, is the IDFT of the transfer function H( k

2NT )
defined in (5), which equates to

h(nT ) =

{

δ (nT ), n even,
j

N cot( πn
2N ), n odd.

(11)

where δ (nT ) is the Kronecker delta function, i.e. δ (nT ) = 1
if n = 0 and 0 for n 6= 0. ĥ(nT ) can be expressed in terms of
h(nT ) as

ĥ(nT ) = h(nT )+h((n+N)T ). (12)
Note the neither analytic signals are formed from the output
of a time-invariant system, assuming that s̃(nT ) is the input
to the system. In other words both systems are time-variant,
as shown in (9) and (10).

The two properties discussed in the previous section for
discrete-time analytic signals are satisfied by zp(nT ). First,
as zp(nT ) = za(nT ) for 0 ≤ n ≤ N − 1 and as za(r)(nT ) =

s(nT ) (from its definition [6]), then zp(r)(nT ) = s(nT ). Thus
the proposed analytic signal preserves the original signal (6).
Second, as za(nT ) satisfies the orthogonality property [6],
and as za(r)(nT ) = 0, for N ≤ n ≤ 2N − 1, then the summa-
tion of real and imaginary parts is only over 0 ≤ n ≤ N − 1
for za(nT ) . From the definition of zp(nT ) (8), as zp(nT ) =
za(nT ) for this range, it can then be concluded that this or-
thogonality property also holds for zp(nT ).
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3. DISCRETE SPECTRAL ANALYSIS
As the two analytic signals, zc(nT ) and zp(nT ), will be com-
pared in terms of energy in the negative frequency half of the
discrete spectrum, it may be beneficial to describe them in
the discrete-frequency domain. Thus (9) and (10) are formu-
lated in the discrete-frequency domain as follows:

Zc(
k

2NT ) =
[

S( k
2NT )Ĥ( k

2NT )
]

~U1(
k

2NT ) (13)

Zp(
k

2NT ) =
[

S( k
2NT )H( k

2NT )
]

~U1(
k

2NT ). (14)

Ĥ can be expressed in terms of H, with H defined in (5), as

Ĥ( 2k
2NT ) = 2H( 2k

2NT )

Ĥ( 2k+1
2NT ) = 0.

(15)

U1(
k

2NT ) is the IDFT of the step function u1(nT ) presented
in the previous section. S( k

2NT ) is the interpolated version of
S( k

NT ) using the DFT method described in [6]
The difference in the definition of the spectral functions

Zc and Zp (in (13) and (14)) is between Ĥ and H. The “im-
pulsive” nature of Ĥ differs from the more constant H, as il-
lustrated in Fig. 1. The convolution with U1 is due to setting
the discrete-time signals zc(nT ) and zp(nT ) to zero between
N ≤ n ≤ 2N −1, as stated in (10) and (8) respectively.
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Figure 1: Comparisons of two functions Ĥ, used in the for-
mation of the conventional analytic signal, and H, used in the
formation of the proposed analytic signal. This illustrates the
simple relationship between the functions described in (15).

The spectral energy at discrete negative frequencies is
now examined. Ideally, the analytic signal should be ex-
actly zero in this region. Zc(

k
2NT ) is zero for even values

of k in this region, which is consistent with the definition of
z(nT ), as Zc(

2k
2NT ) = Z( k

NT ). However, for the odd values of
k, Zc(

k
2NT ) is nonzero. It is proposed that the energy in the

negative half of the spectrum for Zp is approximately half
that of Zc, that is

2N−1

∑
k=N+1

∣

∣

∣
Zp(

k
2NT )

∣

∣

∣

2
≈

1
2

2N−1

∑
k=N+1

∣

∣

∣
Zc(

k
2NT )

∣

∣

∣

2
. (16)

It can be shown (the proof will appear in a future publication
and is omitted here for brevity) that for the odd values of k in
Zp(

k
2NT ) the energy, in terms of Zc(

k
2NT ), is

(2N−1)/2

∑
k=(N+1)/2

∣

∣

∣
Zp(

2k+1
2NT )

∣

∣

∣

2
=

1
4

2N−1

∑
k=N+1

∣

∣

∣
Zc(

k
2NT )

∣

∣

∣

2
. (17)

That is, the sum of the spectral energy at negative frequencies
for odd values of k only for Zp(

k
2NT ) is exactly equal to a

quarter of the total spectral energy at negative frequencies for
all values of Zc(

k
2NT ) in this region. An expression relating

Zp(
2k

2NT ) in terms of Zc(
k

2NT ), at negative frequencies, has
not been found. However, it will be shown numerically in
the next section using a number of signal examples, that the
following approximation holds:

(2N−1)/2

∑
k=(N+1)/2

∣

∣

∣
Zp(

2k
2NT )

∣

∣

∣

2
≈

(2N−1)/2

∑
k=(N+1)/2

∣

∣

∣
Zp(

2k+1
2NT )

∣

∣

∣

2
.

This approximation, coupled with the expression in (17), is
required to justify the proposed relationship in (16). It is
worth noting that this would not be a valid assumption for Zc,
as it is know that Zc(

2k
2NT ) = 0, whereas Zc(

2k+1
2NT ) is usually

nonzero, at negative frequencies.

3.1 Empirical Comparison of Analytic Signals
In order to justify the proposed statement in (16) some ex-
amples using different signal types will be given. Five dif-
ferent signals types with varied spectral characteristics of
different lengths will be used, namely an impulse function,
a step function, a sinusoidal signal, a nonlinear frequency
modulated signal (NLFM) signal and white Gaussian noise
(WGN). The results will be measured in terms of an energy
ratio defined as

er =
∑2N−1

k=N+1

∣

∣

∣
Zp(

k
2NT )

∣

∣

∣

2

∑2N−1
k=N+1

∣

∣

∣
Zc(

k
2NT )

∣

∣

∣

2 . (18)

These results are displayed in the second column in Table 1.
For these test signals it is shown that the energy in the neg-
ative half of the spectrum of the proposed analytical signal
zp(nT ) is approximately half of that for the conventional ana-
lytic signal zc(nT ), justifying the proposed statement of (16).

Signal Type er enr
Impulse 0.4601 0.6071
Step 0.4675 0.3946
Sinusoid 0.5000 0.5123
NLFM 0.4945 0.4945
WGN 0.4382 (0.042) 0.4425 (0.0413)

Table 1: Ratio of total spectral energy er (and normalised
spectral energy enr) in the negative half of the spectrum for
the two analytic signals Zp and Zc. The length for each signal
was arbitrarily set to values between 15 and 2048. For the
WGN a 1000 realisations were used and the value is in the
form, mean (standard deviation).

To illustrate the differences between the two analytic
signals’ spectra, the example for the test impulse signal,
s(nT ) = δ (nT ), is shown in Fig. 2. Note that |Zc(

2k
2NT )| =

H( 2k
2NT ) (see (5)), as S( k

2NT ) = 1, for all k. Thus |Zc(
2k

2NT )|2

conforms to the ideal spectrum for this particular signal. The
problems lies with |Zc(

2k+1
2NT )|2, which appears (as illustrated
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in Fig. 2) to deviate significantly from the more constant (and
ideal) values at |Zc(

2k
2NT )|2. Although the proposed magni-

tude spectrum for Zp does not attain the ideal either, it pro-
duces a more constant, “smoother” magnitude spectrum in
comparison to |Zc(

k
2NT )|2 . It is clear in this example that the

spectral energy at negative frequencies for Zp is less than that
for Zc.

 0
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Figure 2: Discrete spectrum of proposed analytic signal
zp(nT ) compared with conventional zc(nT ) analytic signal,
formed from s(nT ) = δ (nT ) of length N = 64.

As already stated, the idea of the proposed analytic sig-
nal is to reduce the spectral energy at negative frequencies
compared with the conventional method. Thus the preceding
results justified the approximation in (16). However, as the
two analytic signals may have different total energy values,
it should also be shown that the normalised spectral energy
in this region is likewise reduced, where the normalisation
factor is the total signal energy. Thus the new ratio term, in
terms of er as defined in (18), is

enr =
EZc

EZp
er (19)

where EZp represents the total energy for Zp, e.g. EZp =

∑2N−1
k=0 |Zp(

k
2NT )|2 and likewise for EZc . The results are dis-

played in the third column of Table 1 for the same set of sig-
nals. Most of the results adhere closely to the values for er, as
the difference in total energy for the two signals is typically
small, with the notable exception being the impulse function.
The reason for this is highlighted in Fig. 2, where Zc appears
highly oscillatory in nature compared with Zp, thus resulting
in a larger total energy value.

4. REDUCED ALIASED DWVD
The proposed analytic signal zp(nT ) can be used for the for-
mation of the DWVD. As mentioned previously, one of the
requirements for an alias-free DWVD is that the analytic sig-
nal is completely zero in the negative frequency range of
the spectrum [2]. Thus as both the conventional zc(nT ) and
proposed zp(nT ) analytic signals are not exactly zero in this
range, some aliasing will occur. To emphasis the advantage
of using zp(nT ) over zc(nT ), the extent of this aliasing will
be measured and compared.

To assess the aliasing in the DWVD, the two-dimensional
spectral “leakage” will be examined in the doppler-frequency
(ν , f ) domain. The DWVD can be formed from the (ν , f )
function, where this function is defined as

KZc(
l

2NT , k
2NT ) = Zc(

l
2NT )Z∗

c ( 2k−l
2NT ).

This asymmetrical 2D function is summed over l =
0,1, . . . ,2N − 1 in (4) to form the DWVD. Ideally
KZc(

l
2NT , k

2NT ) should be zero for N < l ≤ 2N − 1, which
would be the case if Zc(

k
2NT ) was zero for N < k ≤ 2N − 1.

In this region, the further away from zero K deviates the
more aliasing will occur in the DWVD, as this nonzero con-
tent will be spread about the DWVD after the DFT on K (as
described in (4)). Thus the squared error, summed over this
region, should give an indication of the amount of nonzero
content present. The following ratio squared error measure,
normalised to the total signal’s energy, will be used to com-
pare the two analytic signals:

eK =
EZc ∑N−1

k=0 ∑2N−1
l=N+1

∣

∣

∣
KZp(

l
2NT , k

2NT )
∣

∣

∣

2

EZp ∑N−1
k=0 ∑2N−1

l=N+1

∣

∣

∣
KZc(

l
2NT , k

2NT )
∣

∣

∣

2 .

The same five test signals used in Section 3.1 are used to
calculate values for eK , the results of which are shown in
Table 2. For these test signals is it clear that the amount
of nonzero content in the negative doppler half of the (ν , f )
function is significantly less for KZp compared with KZc .
Thus the amount of aliasing present in the DWVD WZp will
be less than the DWVD WZc .

Signal Type eK

Impulse 0.4774
Step 0.4480
Sinusoid 0.4351
NLFM 0.5077
WGN 0.4822 (0.0859)

Table 2: Ratio of total squared error leaked into the negative
doppler half of the (ν , f ) function K , using the two different
analytic signals. The measure is normalised to the signal’s
energy. For the WGN a 1000 realisations were used and the
value is in the form, mean (standard deviation).

4.1 DTFD Example for Impulse Signal
The proposed analytic signal will be compared with the con-
ventional one in the time domain, using the example of the
impulse test signal defined in Section 3.1.

The differences between the time domain signals, as de-
fined in (9) and (10), is described by the relationship in (12).
That is, the ĥ(nT ) function is defined as a folded version of
h(nT ), which results in undesirable artefacts (or aliasing) in
zc(i)(nT ). For s(nT ) = δ (nT ), the two analytic signals are
represented as

zc(nT ) = ĥ(nT )u1(nT )

zp(nT ) = h(nT )u1(nT )

with zc(r)(nT ) = zp(r)(nT ) = δ (nT ). The imaginary part of
h(nT ), as defined in (11), tends to zero around n = N and
towards ±∞ at n = 0 and n = 2N − 1 respectively (for the
odd n terms only and therefore does reach these singular-
ities). Thus for zp(i)(nT ), the main time domain energy
is concentrated around n = 1 and decreases as n increases.
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This is not the case for zc(i)(nT ), as the folded function
ĥ(nT ) = h(nT )+h((N +n)T ) within 0≤ n≤N−1, contains
energy around n = 1 and n = N −2. Thus for zc(i)(nT ), two
significant “components” are present, the effects of which
will now be illustrated in the (t, f ) domain.

The two DWVDs Wzp and Wzc are displayed in Fig. 3.
For Wzc , this second component can be seen as an impulse-
type component centred around n = N −1. Due to the pres-
ence of two components, a cross-term will be present in the
DWVD (due to the quadratic nature of the WVD, see, e.g.
[1]). This is evident in Fig. 3a where an extra component
centred around n = N/2 is displayed. In contrast to this, Wzp
more closely resembles the ideal DTFD, as shown in Fig. 3b,
where the impulse component appears centred around n = 0
whilst the remaining area remains empty, or close to zero, as
n increases.
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(a) DWVD Wzc
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(b) DWVD Wzp
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(c) MB distribution ρzc
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(d) CW distribution ρzc

Figure 3: DWVD using conventional analytic signal (a) and
proposed analytic signal (b). DTFDs for the conventional
analytic signal: (c) MB distribution with β = 0.1 and (d)
CW with σ = 10.

The ability of the DTFD to suppress these unwanted arte-
facts in Wzc will now be examined. Two different types of
DTFDs, namely the modified B (MB) distribution and the
Choi-Williams (CW) [1] will be used. Both of these dis-
tributions have different (t, f ) kernel types γ(·) and a dif-
ferent performance is to be expected. As the MB distribu-
tion smooths the DWVD by convolving in the time direction
only, the oscillatory (in the frequency direction) cross-term
is still present, as shown in Fig. 3c. As the CW distribution
convolves in both time and frequency, it does a better job at
removing the cross-term, as shown in Fig. 3d. However both
DTFDs still have a component centred around n = N − 1.
Thus it can be concluded that although the DTFD may sup-
press these unwanted artefacts, it is dependent on the distri-
bution used and may not always be effective at doing so.

5. CONCLUSION
Any nonzero content at negative frequencies in the discrete
spectrum of a discrete analytic signal will introduce alias-
ing into the DTFD. A new discrete-time analytic signal was
proposed, zp(nT ), which was based on a commonly used
frequency domain approach [6], zc(nT ). It was shown that
zp(nT ) contains approximately half of the total energy at
negative frequencies in the discrete spectrum compared with
zc(nT ). The amount of aliasing in the DTFD was measured
as the amount of spectral leakage in the doppler half of the
asymmetrical (ν , f ) function. It was empirically shown, in
the mean squared error sense, that the amount of spectral
leakage for Wzp is approximately half of that for Wzc . The
structure of the two analytic signals were also compared in
the time domain using the impulse signal as an example. It
was observed in the (t, f ) domain, for this signal, that ρzc
contained several artefacts not present in ρzp .

Unlike other filter based approaches for generating
discrete-time analytic signals, the proposed approach satis-
fies two important properties and has a simple implementa-
tion.

It can also be noted that the discrete-time analytic signal
zp(nT ), defined only for 0 ≤ n ≤ N−1, produces an analytic
signal for the particular class of signals specified in [8], for
which the frequency domain approach of [6] fails. zp(nT )
has the advantage over the approach in [8] in that it satisfies
both properties.
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