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ABSTRACT
In pattern recognition one usually relies on measuring a set
of informative features to perform tasks such as classifica-
tion. While the accuracy of feature measurements heav-
ily depends on changing environmental conditions, study-
ing the consequences of this fact has received relatively little
attention to date. In this work we explicitly take into ac-
count uncertainty in feature measurements and we show in
a rigorous probabilistic framework how the models used for
classification should be adjusted to compensate for this ef-
fect. Our approach proves to be particularly fruitful in multi-
modal fusion scenarios, such as audio-visual speech recog-
nition, where multiple streams of complementary features
are integrated. For such applications, provided that an es-
timate of the measurement noise uncertainty for each feature
stream is available, we show that the proposed framework
leads to highly adaptive multimodal fusion rules which are
widely applicable and easy to implement. We further show
that previous multimodal fusion methods relying on stream
weights fall under our scheme if certain assumptions hold;
this provides novel insights into their applicability for vari-
ous tasks and suggests new practical ways for estimating the
stream weights adaptively. Preliminary experimental results
in audio-visual speech recognition demonstrate the potential
of our approach.

1. INTRODUCTION

Motivated by the multimodal way humans perceive their en-
vironment, complementary information sources have been
successfully utilized in many pattern recognition tasks. Such
a case is AudioVisual Automatic Speech Recognition (AV-
ASR) [19], where fusing visual and audio cues can lead to
improved performance relatively to audio-only recognition,
especially in the presence of audio noise.

However, successfully integrating heterogeneous infor-
mation streams is challenging. Different streams provide
complementary information and multimodal schemes should
properly elevate the discriminative abilities of each of the
modalities. Such schemes should adapt to the effective en-
vironmental conditions, which can dissimilarly affect the re-
liability of the separate modalities by contaminating feature
measurements with noise. For example, the visual stream
in AV-ASR should be discounted when the visual front-end
loses track of the speaker’s face.
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A common theme in many stream integration methods
is the utilization of stream weights to equalize the differ-
ent modalities. These operate as exponents to each stream’s
probability density and have been employed in fusion tasks
of different audio streams [2] and audio-visual integration
[7, 17]. Such stream weights have been applied not only in
conventional Hidden Markov Models, but also in conjunc-
tion with Dynamic Bayesian Network architectures which
better account for the asynchronicity of audio-visual speech
[15]. Although stream weighting has indisputable benefits
as shown experimentally, it requires determining the weights
for the different streams; various methods have been pro-
posed for this purpose [9] but a rigorous approach to dynam-
ically adapt the stream weights is still missing.

We choose to explicitly take observation uncertainty of
the different modalities into account. Modeling observation
noise has proven fruitful in the framework of single modality
ASR [5], and has been further pursued for applications such
as speech enhancement [22], speaker verification [23], multi-
band ASR [8, 14], soft decoding for wireless ASR [18], and
recently in more advanced enhancement techniques based
on noise modeling [4]. In our work, given an estimate of
the feature measurement uncertainty, we show in a rigor-
ous probabilistic framework how the models used for clas-
sification should be adjusted to compensate for this effect.
The proposed scheme leads to highly adaptive multimodal
fusion rules which are widely applicable and easy to im-
plement. We also demonstrate that previous stream weight-
based multimodal fusion formulations fall under our scheme
under certain assumptions; this unveils their probabilistic un-
derpinnings and provides novel insights into their applicabil-
ity for various tasks. In this context, we further suggest new
practical ways for estimating the stream weights adaptively.
Preliminary experimental results in AV-ASR demonstrate the
potential of our approach.

2. FEATURE UNCERTAINTY, ADAPTIVE
COMPENSATION, AND INFORMATION FUSION

Let us consider a pattern classification scenario. We measure
a property (feature) of a pattern instance and try to decide
to which of N classes ci, i = 1 . . .N it should be assigned.
The measurement is a realization x of a random variable X ,
whose statistics differ for the N classes. Normally, for each
class we have trained a model that captures these statistics
and represents the class-conditional probability distributions
pX (x|ci), i = 1 . . .N. Our decision is then based on the so
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called Maximum A Posteriori (MAP) rule:

ĉ = argmaxP(ci|x) = argmax pX (x|ci) ·P(ci) (1)

One may identify three major sources of uncertainty that
could perplex classification:

• Inherent model ambiguity due to improper modeling or
limited capability of the feature to discriminate among
the various classes. For instance, we cannot expect visual
cues to help us distinguish between members of the same
viseme class (e.g. /p/ and /b/), [19]. Proper choice of
features and modeling schemes may lead to significant
reduction of this kind of uncertainty [6].

• Parameter estimation uncertainty that mainly originates
from insufficient training. Use of the Bayesian Predictive
Classification rule instead of the MAP is a possible way
to compensate for it [11].

• Observation uncertainty due to errors in the measure-
ment process or contamination of the measured property
with noise. This is the kind of uncertainty we mainly
address in this paper.

We may represent observation uncertainty as a random vari-
able E independent of any class i. For simplicity, it is re-
garded to be an additive, zero-mean Gaussian variable with
probability distribution pE(e) = N(e;0,Σe). In this case, the
measurement y is actually a realization of the random vari-
able Y :

Y = X +E (2)

So, for the MAP rule (1) it would be desirable to use the dis-
tributions pY (·|ci) in order to account for observation uncer-
tainty. However, we only have pX (·|ci), i = 1 . . .N available.
In this framework, we may refer to the measurements of the
variable X as clean training data.

2.1 Adaptive Compensation
To determine these distributions we assume that X and E are
independent. Then the probability pY (y|ci) of the uncertain
observation y given the class i may be expressed as convolu-
tion of pX (x|ci) and pE(e): pY (y|ci) =

∫ ∞
−∞ pX (x|ci)pE(y−

x)dx. If pX (x|ci) = N(x; µi,Σi), then pY (y|ci) is also a nor-
mal distribution with the same mean µi and variance Σi+Σe:

pY (y|ci) =
∫ ∞

−∞
N(x; µi,Σi)N(y− x;0,Σe)dx (3)

pY (y|ci) = N(y; µi,Σi +Σe) (4)

The above result indicates that it is possible to compen-
sate for the observation uncertainty. The variances Σi of
the trained models, namely the class-conditional probability
distributions of the clean training data may be adjusted by
adding the variance Σe of the measurement noise. A similar
approach has been previously followed in [4, 23].

To further illustrate this point, we discuss how observa-
tion uncertainty influences decision in a simple 2-class clas-
sification task. The two classes are modeled by 2D spherical
Gaussian distributions, N(µ1,σ 2

1 I), N(µ1,σ 2
2 I) and they have

equal prior probability. If our observation y is corrupted by
zero mean spherical Gaussian noise with covariance matrix
σ 2

e I then the modified decision boundary is described by the
following equation [6]:

log
N(y; µ1,σ 2

1 I +σ 2
e I)

N(y; µ2,σ 2
2 I +σ 2

e I)
= 0 (5)

If σ 2
e is zero, the decision should be made as in the clean case.

If σ 2
e is comparable to the variances of the models then the

modified boundary significantly differs from the original one.
So, neglecting uncertainty in the decision may easily lead
to misclassifications. As uncertainty increases, decision be-
comes even more difficult since the observation is even less
informative. For infinite uncertainty we have just to pick the
class whose mean is closer to the observation, which is also
intuitively expected. The above example is demonstrated in
Fig. 1.

σ
e
=0

σ
e
=σ

1 σ
e
=∞

Figure 1: Decision boundaries for classification of a noisy obser-
vation (square marker) in two classes, shown as circles, for vari-
ous observation noise variances. Classes are modeled by spherical
Gaussians of means µ1, µ2 and variances σ 2

1 I, σ2
2 I respectively.

The decision boundary is plotted for three values of noise variance
(a) σe = 0, (b) σe = σ1, and (c) σe = ∞.

2.2 Multimodal Fusion
For many applications one can get improved performance by
exploiting complementary features, stemming from a single
or multiple modalities. Let us assume that one wants to in-
tegrate S information streams which produce feature vectors
xs,s = 1, . . . ,S. If the features are statistically independent
given the class label c, the conditional probability of the full
observation vector x1:S ≡ (x1; . . . ;xS) is given by the product
rule

p(x1:S|c) = p(x1, . . . ,xS|c) =
S

∏
s=1

p(xs|c). (6)

Application of Bayes’ formula yields the class label proba-
bility given the features:

p(c|x1:S) ∝ p(c)
S

∏
s=1

p(xs|c) (7)

This probability can then be used in classification, e.g. by the
MAP rule ĉ = argmaxc∈C p(c|x1:S).

In an attempt to improve classification performance, sev-
eral authors have introduced stream weights ws as exponents
in 7, resulting to the modified score

b(c|x1:S) = p(c)
S

∏
s=1

p(xs|c)ws , (8)

which can also be seen in a logarithmic scale as a weighted
average of individual stream log-probabilities. Such schemes
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have been motivated by potential differences in reliability
among different information streams, and larger weights are
assigned to information streams with better classification
performance. Using such weighting mechanisms has exper-
imentally been proven beneficial for feature integration in
both intra-modal (e.g. multiband audio [2]) and inter-modal
(e.g. audio-visual speech recognition [7, 9, 15]) scenarios.

However we find the stream weights formulation unsat-
isfactory in many respects. From a theoretical viewpoint, the
weighted score b in (8) ceases having the probabilistic inter-
pretation of (7) as class label probability given the full obser-
vation vector x1:S. Therefore it becomes unclear how to con-
ceptually define, let alone implement, standard probabilistic
operations, such as integrating-out a variable xs (in the case
of missing features), or conditioning the score on some other
available information. From a more practical standpoint, it is
not straightforward how to optimally select stream weights.
Most authors set them discriminatively for a given set of en-
vironment conditions (e.g. audio noise level in the case of
audio-visual speech recognition) by minimizing the classifi-
cation error on a held-out set, and then keep them constant
throughout the recognition phase. However, this is insuffi-
cient, since attaining optimal performance requires that we
dynamically adjust the share of each stream in the decision
process, e.g. to account for visual tracking failures in the AV-
ASR case. Although there have been some efforts towards
dynamically adjustable stream weights [9], they are not rig-
orously justified and are difficult to generalize.

We will now show that our approach for model adjust-
ment in the presence of feature uncertainty naturally leads
to a novel adaptive mechanism for fusion of different infor-
mation sources. Since in our stochastic measurement frame-
work we do not have direct access to the features xs, our de-
cision mechanism depends on the noisy version ys = xs + es
of the underlying quantity. The probability of interest is thus

p(c|y1:S) ∝ p(c)
S

∏
s=1

∫

p(xs|c)p(ys|xs)dxs, (9)

which is just a generalization of the convolution rule of
Sec. 2.1 to the independent multiple streams case. In the
common case that the clean feature emission probability is
modeled as a mixture of gaussians (MOG), i.e. p(xs|c) =

∑Msc
m=1 ρscmN(xs; µscm,Σscm), and the observation noise at each

stream is considered gaussian, i.e. p(ys|xs) = N(ys;xs,Σes), it
directly follows from the analysis of Sec. 2.1 that Eq. (9) can
be written as

p(c|y1:S) ∝ p(c)
S

∏
s=1

Msc

∑
m=1

ρscmN(ys; µscm,Σscm +Σes), (10)

which simply means that we can proceed by considering our
features ys clean, provided that we increase the model co-
variances Σscm by Σes. Note that, although the measurement
noise covariance factor Σes of each stream is the same for all
classes c and all mixture components m, noise particularly af-
fects the most peaked mixtures, for which the measurement
noise uncertainty represented by Σes is substantial relative to
the modeling uncertainty due to Σscm.

Although Eq. (10) is conceptually simple and easy to im-
plement, provided that a good estimate of the measurement
noise variance Σes of each stream is available, it actually con-
stitutes a highly adaptive rule for multisensor fusion. To ap-
preciate this, and also to show how our scheme is related

to the stream weights formulation of Eq. (8), we examine
a particularly illuminating special case of our result. More
specifically, we make two simplifying assumptions:
1. The measurement noise covariance is a scaled version of

the model covariance, i.e. Σes = rscmΣscm for some posi-
tive constant rscm which can be considered as the relative
measurement error. The simplest case that this is true is
when all covariances are spherical.

2. For every stream observation ys the gaussian mixture re-
sponse of that stream is dominated by a single component
m or, equivalently, there is little overlap among different
gaussian mixtures.

Under these two conditions Eq. (10) can be approximated by

p(c|y1:S) ∝ p(c)
S

∏
s=1

ρscmN(ys; µscm,(1+ rscm)Σscm). (11)

Using the power-of-gaussian identity N(x; µ ,Σ)w ∝
N(x; µ,w−1Σ) we can write the last equation as

p(c|y1:S) ∝ p(c)
S

∏
s=1

[

ρ̃scmN(ys; µscm,Σscm)

]wscm

, (12)

where
wscm = 1/(1+ rscm) (13)

is the effective stream weight and ρ̃scm is a properly modified
mixture weight which is independent of the observation ys

(the sum of these modified stream weights ∑Msc
m=1 ρ̃scm needs

not necessarily equal 1). Note that these effective stream
weights are between 0 (for rscm � 1) and 1 (for rscm ≈ 0)
and discount the contribution of each stream to the final re-
sult by properly taking its relative measurement error into
account; however they do not need to satisfy a sum-to-one
constraint ∑S

s=1 wscm = 1, as is conventionally considered by
other authors.

This is an appealing result. Our framework unveils the
probabilistic assumptions under stream weight-based formu-
lations; furthermore, Eq. (13) provides a rigorous mecha-
nism to select for each new measurement value-bias-variance
triplet (ys,µes,Σes) all involved stream weights fully adap-
tively, i.e. with respect to both class label c and mixture com-
ponent m.

3. AUDIO-VISUAL SPEECH RECOGNITION

To demonstrate the applicability of the proposed fusion
scheme we apply it in a practical problem for which proper
information fusion is of critical importance. We show that
Audiovisual Speech Recognition can clearly benefit from the
suggested approach.

3.1 Visual Front-end
The role of the visual front-end in audiovisual speech recog-
nition systems is to track the speaker’s face and extract a low-
dimensional feature vector which summarizes visual speech
information in video. Salient visual speech information can
be obtained from the shape and the texture (intensity/color)
of the speaker’s visible articulators, mainly the lips and the
Region Of Interest (ROI) around the mouth [19].

We use Active Appearance Models (AAM) [3] of faces to
accurately track the speaker’s face and extract visual speech
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Figure 2: Left: Mean shape s0 and the first eigenshape s1. Right:
Mean texture A0 and the first eigentexture A1.

features from it, capturing both shape and texture of the face.
AAM, which were first used for AV-ASR in [13], are gen-
erative models of object appearance and have proven partic-
ularly effective in modeling human faces for diverse appli-
cations, such as face recognition or tracking. In the AAM
framework an object’s shape is defined by a set of land-
mark points {xi, i = 1 . . .N}, whose coordinates constitute a
shape vector s of length 2N. We allow for deviations of the
shape s from the mean shape s0 by letting s lie in a low-
dimensional manifold. Typically a linear n-dimensional sub-
space is utilized, yielding s = s0 +∑n

i=1 pisi. The deformation
of the mean shape s0 to another shape s defines a mapping of
the landmark points. This mapping can be extended to the
whole face area by imposing regularity constraints, utilizing
e.g. thin plate splines. This procedure yields a deformation
W (x; p) mapping each pixel of the face template to a pixel
on the exemplar face. The spatial deformation W (x; p) brings
the face exemplar I into registration with the face template A.
After factoring out shape deformation, the face color texture
I(W (x; p)) of a novel face image I registered with the mean
face can be modeled as a weighted sum of “eigenfaces” {Ai}
as: A(x) = A0(x)+∑m

i=1 λiAi(x), where A0 is the mean texture
of faces. The mean shape and eigenshapes {si} and their tex-
ture counterparts {Ai} are learned during a training phase, us-
ing a representative set of hand-labelled face images [3]. The
training set shapes are first aligned by means of Procrustes’
Analysis and then a PCA of the aligned training set shapes
yields the main modes of shape variation {si}. Similarly, the
leading principal components of the training set texture vec-
tors constitute the eigenface set {Ai}. The first eigenshape s1
and eigenface A1 extracted by such a procedure are depicted
in Fig. 2.

Given a trained AAM and a novel image I, model fit-
ting amounts to finding for each new image the parameters
p̃ ≡ {p,λ} which minimize a measure of the discrepancy
between the registered image I(W (x; p)) and the AAM ap-
pearance reconstruction, such as:

E(p̃) = argmin
p,λ

∑
x∈s0

1
σ 2

[

A0(x)+
m

∑
i=1

λiAi(x)− I(W (x; p))
]2

,

(14)
where σ 2 is the noise variance. A global similarity transform
on the shape and a linear brightness correction on the texture
(not included in eq. (14)) are also used to allow for scale and
brightness invariance. Although this is a non-linear least-
squares optimization problem if attacked straightforwardly,
there are efficient real-time approximate algorithms for itera-
tively solving it [3] to obtain the visual feature vector p̃. The
fitting procedure uses the output of a face detector as initial
shape estimate for the first video frame and it is repeated for
each new video frame using the converged solution at the
previous frame as starting point. The variance of the visual
features is computed as the uncertainty in estimating the pa-
rameters of the corresponding non-linear least squares prob-

lem [20]. This method generally yields satisfactory variance
estimates; however, it tends to under-estimate the tracking er-
ror in case the AAM instantaneously mistracks the face; we
are currently exploring alternatives to alleviate this problem.

Ultimately a sequence of visual speech features Vt ≡
{pt ,λt}, along with their respective variances ΣVt , is ex-
tracted for each frame t.

3.2 Audio Front-end
Exploiting audio information is crucial for speech recogni-
tion. However, contamination of speech with noise can de-
grade ASR performance dramatically [1]. In this case apart
from robust feature extraction methods [10], the role of the
visual cues becomes prominent. Adaptive fusion of multiple
modalities in the presence of uncertainty in the audio obser-
vations requires methods that account for the audio observa-
tion error, as shown in Sec. 2.

Standard methods employed for the representation of the
audio stream do not include explicitly the description of
the measurement error. This error can be estimated in the
case of noisy speech by noise estimation methods. These
include spectral subtraction and speech enhancement tech-
niques [23], or statistical modeling of the error e.g. by expec-
tation maximization and iterative Taylor series [4] or by in-
tegrated speech/noise HMMs [21]; other implicit techniques
include the use of voicing criteria [8] and sub-band ASR [14].

3.3 Audio-Visual Speech Recognition Experiments
The novel fusion approach proposed above is evaluated
via classification experiments on the CUAVE audiovisual
database [16]; the considered task is word classification of
isolated digits. By contaminating the clean audio signal with
babble noise from the NOISEX database we extended the
database including its noisy version. Mel frequency cepstral
coefficients (MFCC) have been utilized as observations for
the audio stream, constructing a 13-dimensional vector. In
our preliminary experiments, we have utilized the squared
differences between clean and noisy features as uncertainty
variances of the audio cues. As far as the visual front-end is
concerned, we form a visual feature vector by concatenating
6 shape and 12 texture features along with their variances,
computed as discussed in Section 3.1. Mean Normalization
has been applied to both the audio and visual features.

For the acoustic and visual modeling of the observa-
tions we constructed 8-state left-right word multistream
HMMs [19] with a single mutlidimensional Gaussian obser-
vation probability distribution per stream at each state. The
models were trained on clean data. Incorporation of feature
uncertainty in the testing phase has been implemented in the
HMM framework by increasing the observation variance as
presented in Section 2 (Eq. 10).

Our experimental results summarized in Fig. 3 show that
accounting for uncertainty in the case of audiovisual fusion
(AV-UC, Audiovisual with Uncertainty Compensation) im-
proves AV-ASR performance. For the baseline audiovisual
setup we used multistream HMMs with stream weights equal
to unity for both streams. For comparison, we also provide
results with stream weights as exponents (AV-W) fixed at cer-
tain values that maximize classification accuracy in a held out
data set for each noisy condition. For this scheme we assume
that the audio and visual weights sum to unity and the applied
audio stream weights for various SNRs are given in Table 1.
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Figure 3: Classification Word Accuracy (%) on the CUAVE
database; Audio (A), Visual (V), baseline Audio-Visual (AV), base-
line Audio-Visual with Stream Weights as Exponents (AV-W) and
the proposed Audio-Visual Fusion with Uncertainty Compensation
(AV-UC) scores in various levels of babble noise.

The proposed approach (AV-UC) seems particularly effective
at lower SNRs. In higher SNRs the fact that the variance of
the visual features is underestimated is possibly responsible
for the slightly lower results than those of the AV-W scheme.

SNR (dB) -5 0 5 10 15 20 clean
wA 0.2 0.5 0.7 0.8 0.8 0.9 1

Table 1: Audio stream weight as applied in the AV-W (Au-
diovisual with Stream Weights as Exponents) scheme.

4. PERSPECTIVE

The paper has shown that taking the feature uncertainty into
account constitutes a fruitful framework for pattern analysis
tasks. This is especially true in the case of multiple com-
plementary measurement streams, where having a good es-
timate of each stream’s uncertainty at a particular moment
allows for fully adaptive stream integration schemes, greatly
facilitating information fusion.

However, in order this approach to reach its full potential,
reliable methods for dynamically estimating the feature ob-
servation uncertainty are needed. Ideally, the methods that
we employ to extract features in pattern recognition tasks
should accompany feature estimates with their respective er-
rorbars. Although various authors have done progress in the
area, much remains to be done before we fully understand the
quantitative behavior of popular features commonly used in
speech recognition under various environmental conditions.

Considering possible asynchronicity between informa-
tion streams may also be beneficial to multistream fusion
[7, 12]. Early experimentation with product HMMs in the
proposed Uncertainty Compensation framework has demon-
strated additional improvement of ASR performance.
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