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ABSTRACT

Mathematical/statistical modeling of biological systemsis a
desired goal for many years. It aims to be able to accurately
predict the operation of such systems under various scenarios
using computer simulations. In this paper we revisit Gille-
spie’s Stochastic Simulation Algorithm for biochemical sys-
tems and we suggest an equivalent Markov Model for it. We
show that under certain conditions it is a 1st order homoge-
nous Markov process and we analyze these conditions. Our
suggested model can be used to simulate the probability den-
sity function of a biochemical processes which, in turn, can
be used for applying statistical signal processing and infor-
mation theory tools on them.

1. INTRODUCTION

A comprehensive understanding of biochemical processes
is equivalent to having a mathematical model that can en-
counter and predict the experimental results of the biolog-
ical system under different conditions. The stochastic ap-
proach [4, 5] is a model which describes by stochastic equa-
tions the dynamic of a biochemical system. The Stochastic
Simulation Algorithm (SSA) is an algorithm that results in
a single realization of the stochastic process, based on that
model. As such, Monte Carlo approach is required in order
to study the statistics of the process.

Statistical signal processing and information theory tools
are based on availability of the statistics of the system or the
process in hand. By approximating the stochastic approach
model as a 1st order Markov process, we provide a conve-
nient formalism for the probability density function (pdf)of
the stochastic approach, to be used for modeling and simu-
lating biochemical processes. Moreover, while the stochas-
tic approach is based on modeling the process in continuous
time, discrete representation is more appropriate for simula-
tion and signal processing. The equivalent Markov modeling
describes the evolution of the process from one state to the
other, over time samples which are design parameters. There
choice is discussed in the sequel.

In [2] we study DNA repair processes in theE. Coliusing
an approximated Markov model [8]. The result of this work
can be used to enable to simulate our suggested model, and to
validate our suggested hypothesis regarding the optimization
of the genetic information flow process.

The paper is organized as follows: In section 2, the sto-
chastic approach and the SSA are reviewed. It is followed
by a presentation and discussion of the equivalent Markov
model (section 3). Section 4 provides summary and conclu-
sions of the paper.

2. REVIEW OF THE STOCHASTIC APPROACH &
SIMULATION

2.1 The time-evolution problem

The goal of many biologists at present time is to simulate the
exact behavior of a biochemical system [1, 7]. Such simula-
tions are used in order to predict actual results, understand
the influence of specific chemical species in the system, and
validating certainin vivobehaviors.

Definition 1 The time-evolution problem:Assume a well-
stirred mixture of N molecular species{S1,S2, . . . ,SN}
in a fixed volume V at a constant temperature. These
N species can chemically interact through M reactions
{R1,R2, . . . ,RM}. Given the initial number of molecules of
each of the N species, what will be the molecular population
at any time t?

Define: Xi(t) ∀i ∈ {1,2, . . . ,N} represents the number
of molecules of theith species at timet and x(t) =
(X1(t),X2(t), . . . ,XN(t)), then, the question of “what will be
the molecular population at any time t” is identical to asking
“what isx(t) for all t”.
There are two formalisms for mathematically describing
x(t): The deterministic approach, and the stochastic ap-
proach.

2.2 The deterministic approach

The deterministic approach is the traditional way of solving
x(t) for all t. It begins by translating the chemical system
into a set of differential equations:

dXi(t)
dt

= fi(X1(t), . . . ,XN(t)) ∀i ∈ {1, . . . ,N} (1)

This set of equations is called the “reaction-rate equations”
(RRE). Analytic solutions for the RRE can be found only for
simple systems, thus the RRE set is usually solved numeri-
cally.
The deterministic approach is based on the assumptions that
a chemical system is continuous in time and is deterministic.
As explained by Gillespie in [5], both assumptions are not
correct for a biochemical system. In particular, while there
are cases where the deterministic formalism can be used, this
is never the case for molecular systems, where even small
fluctuations in the molecular populations can have large ef-
fects on the process outcomes.
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2.3 The stochastic approach

2.3.1 The fundamental hypothesis of the stochastic formu-
lation

In [5] Gillespie has shown that one can rigorously calculate
the probability of a collision occurring in the volumeV in any
infinitesimal time interval. Thus, he asserts the following:

Definition 2 The fundamental hypothesis of the stochastic
formulation:cµdt = the average probability that a particular
combination of the reactant molecules of reactionµ (Rµ ) will
react accordingly in the next infinitesimal time interval dt.

That is, by multiplyingcµdt by the total number of distinct
combinations ofRµ reactant molecules in volumeV at time
t, one obtains the probability that the reactionRµ will occur
in the time interval(t,t +dt).
As intuition suggests, the stochastic reaction constantcµ is
proportional to the reaction ratekµ :

cµ =
kµ · l !

Vn−1 (2)

where l is the number of identical reactants in reactionRµ , V
is the volume of the system andn is the order of the reaction
[9].

2.3.2 The master equation

In the center of the stochastic approach stands the “chem-
ical master equation” (CME). The CME is the traditional
approach of calculating the stochastic time evolution of a
chemically reacting system. The key element in the CME is
P(X1,X2, . . . ,XN; t) - the probability that at timet there will
be inV: X1 molecules of the molecular speciesS1, X2 mole-
cules of the molecular speciesS2, . . . , andXN molecules of
the molecular speciesSN.
We will use the following definitions [6]:
1. aµ(x)dt is cµdt times the number of distinctRµ re-

actants molecular combinations in a specific statex =
(X1,X2, . . . ,XN). This is exactly the probability that the
reactionRµ will occur in V at time(t,t + dt) given that
the system is in statex = (X1,X2, . . . ,XN) at timet.

2. vµ is the state-change vector for reactionRµ . Its entries
are defined byvµ, j , the change in the number ofSj mole-
cules as a result of a singleRµ reaction.

The time evolution of the probability ofx can therefore de-
scribed by:

P(x; t +dt|x0; t0) =

P(x; t|x0; t0) · [1−
M

∑
µ=1

aµ(x)dt]+

M

∑
µ=1

aµ(x−vµ)dt ·P(x−vµ; t|x0; t0)

(3)

The probability is constructed of two parts:
1. P(x; t|x0; t0) · [1−∑M

µ=1aµ(x)dt] is the probability that at
time t the system is in the same statex times the proba-
bility that none of theM possible reactions occur.

2. ∑M
µ=1aµ(x−vµ)dt ·P(x−vµ ; t|x0; t0) is a sum of proba-

bilities. Each element in the sum is the probability that
at timet the system is in a state that is one reaction away

from statex, times the probability that, given that the sys-
tem is one state away from statex the desired reaction,
that will bring us to statex, will occur.

It is simple to see that (3) leads to the following relation,
which is the canonical form of the “master equation”:

∂
∂ t

P(x; t|x0; t0) =
M

∑
µ=1

aµ(x−vµ) ·P(x−vµ; t|x0; t0)

−aµ(x) ·P(x; t|x0; t0)
(4)

Although the “master equation” is exact, there are very
few cases in which it can be solved analytically.

2.3.3 The reaction probability density function

In [5] Gillespie considered the question of simulating the sto-
chastic time evolution. In order to do so, two critical ques-
tions need to be answered:Given that the system is in state x
at time t, when will the next reaction occur, and what kind of
reaction will it be?Since the system is of a stochastic nature,
the answer to these two questions is stated by a probability
function,P(τ,µ), the probability that the next reaction inV
will occur in the infinitesimal time interval(t,t + τ), and it
will be the reactionRµ , given the statex at time t. In [5]
Gillespie claims the following:

1. DefineP0(τ) as the probability that no reaction will oc-
cur in the time interval(t,t + τ), given that at timet the
system is in statex. Then,P0(τ ′ + dτ ′) = P0(τ ′) · [1−
∑M

µ=1aµdτ ′] ⇒ P0(τ ′) = exp[−∑M
µ=1aµτ ′].

2. P(τ,µ)dτ = P0(τ) · aµdτ, that is, the probability
P(τ,µ)dτ can be calculated as the probability that noth-
ing will happen in the time interval(t,t +τ), timesaµdτ -
the probability that the reactionRµ will occur in the time
interval(t + τ,t + τ +dτ)

From these two claims, Gillespie has derived the joint prob-
ability of P(τ,µ):

P(τ,µ) =

{
aµexp(−a0τ) i f 0≤ τ < ∞ and

µ = 1, . . . ,M
0 otherwise

(5)

wherea0 = ∑M
µ=1aµ .

From (5) the marginal distributions can be evaluated [4]:

P(µ) =

∫ ∞

0
aµexp(−a0τ)dτ =

aµ

a0
, µ = 1, . . . ,M (6)

P(τ) =
M

∑
µ=1

aµexp(−a0τ) ·u(τ) = a0 ·exp(−a0τ) ·u(τ) (7)

As such, the two random variablesτ andµ are statistically
independent, and one can write the joint provability function
as a product of the two marginal distributions:

P(τ,µ)= P(τ)·P(µ)= a0·exp(−a0τ)·u(τ)·
M

∑
i=1

δ (µ− i)·
aµ

a0

(8)
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2.4 Implementation of the stochastic approach

In [4] and [5] Gillespie introduced two methods to simulate
a stochastic process, described by the joint probability func-
tion P(τ,µ): ”The direct Method” and ”The first-reaction
Method”. By carrying either one of these methods, one ob-
tains a possible realization of the stochastic process defined
by the joint probability functionP(τ,µ). As such, by us-
ing Monte Carlo techniques,P(τ,µ) can be estimated. Both
methods are exact and are equivalent to the “master equa-
tion” (4), in the sense that they are both rigorous conse-
quences of the fundamental hypothesis (2). In 2.4.1 we will
describe “The direct method”. “The first-reaction Method”
differs only slightly from “The direct method” as detailed
in [4], and it was later improved by Gibson and Bruck [3].

2.4.1 The Direct Method

This method is based on the fact that the joint probability
P(τ,µ) can be written as a product of the two marginal dis-
tribution P(τ) andP(µ), as described in (8). The algorithm
outputs the following results: a states vector that holds the
sequence of states the system has gone through, and a time
vector that holds the time each reaction occurred in. The al-
gorithm is constructed of the following steps:
1. Initialization - Set the total time of the simulation asT.

Set the time variablet = 0 and update the time vector.
Specify the initial statex0(t) (the initial amount of all the
chemical reacting speciesX1,X2, . . . ,XN) and update the
states vector. Specify the reaction constantsci for all M
reactions as defined in (2).

2. Calculate the set ofaµ for all M possible rections, based
on the current statex(t) and the set of reaction constants
cµ (as defined in subsection 2.3.2).

3. Generate two random variables according to the joint dis-
tributionP(τ,µ). Define these variables asτµ andµ (for
the generation of these two random variables see appen-
dix A).

4. Using the two random variablesτµ andµ , one can tell
which reaction occurred first and at what time:
• According to the reactionµ , change the state:

x(t + τµ) = x(t)+vµ and update the states vector.
• Update the time variablet = t + τµ and update the

time vector.
5. If the time variablet ≥ T - finish the simulation. Other-

wise, go back to step 2.
The “direct method” is simple to implement and is exact.

Its most visible drawback is the fact that one needs to go
through each and every reaction, so its complexity is linear
in the amount of reaction occurring in the time interval[0,T].

3. THE STOCHASTIC APPROACH AS A MARKOV
MODEL

Based on the fact that for a stochastic chemical system at
statex at timet, the questions:what will the next reaction be,
and when will it happen?are independent (subsection 2.3.3),
we suggest the following:

Theorem 1 The stochastic chemical system is a first order
Markov process:given that the stochastic chemical system
is currently in state xi , the probability that the next state will
be xj depends only on the current state xi , and not on past
states.

The proof of 1 lies in equation (6), which describes the
probability that reactionRµ will be the next reaction to occur.
This probability,P(µ), does not dependent on the question:
when will the next reaction occur?. It depends only on the
values ofaµ , which is a function of the constant reaction
ratescµ and of the current state of the systemx (through the
number of reactant combinations for each of theM possible
reactions). Therefore, as the next reaction to occur will de-
termine the change in state, we can conclude that the process
is a Markov order I process.

In order to describe the Markov model as a Markov chain,
it must be a homogenous process, having a finite set of states
and transfer probabilities that are time invariant. Given an
initial state,x0, the system has a finite set of states, limited
by the initial amount of molecular species, and by theM pos-
sible reactions that can occur.

The transfer probabilities are given by:

P(reactionµ occurs before timet from last reaction)
= P(µ) ·P(next reaction will occur before timet) (9)

To ensure homogenously, we need to grantee that the
transfer probabilities, and− in particular the probability that
the next reaction will occur before timet is time invariant.
Assume we are currently in statex. We define the time seg-
ment∆tx (depends on the current statex). The set of transi-
tion probabilities from statex is then given by:

P(µ ,τ ≤ ∆tx) = P(µ) ·P(τ ≤ ∆tx)

=
aµ

a0
·

∫ ∆tx

0
a0 ·exp(−a0τ)dτ

=
aµ

a0
· (1−exp(−a0∆tx)) (10)

Thus, the probability to transfer to statexi given that the sys-
tem is currently in statex j in the next time segment of∆txj ,
is time invariant.

We have shown that the stochastic chemical reacting sys-
tem can be described as an ergodic homogenous Markov or-
der I process. However, the question of choosing the para-
meter∆tx is still open.

Our goal is not only to find the transfer probabilities that
describe the probability for each of theM possible reactions,
but also to give an approximation of the time each reaction
occurred.

The choice of the∆tx parameters determines the quality
of our approximation, and thus requires delicate handling.
The following issues concern such an approximation:
1. Can we sample the biochemical random process, while

keeping the ability of reconstructing the original process?
2. Assuming that no reaction occurred in a specific time

segment, will the transfer probabilities change?
3. What is a “good approximation” of the continuous ran-

dom process? What is the effects of the∆tx parameters
on it?

4. How should we define the event of an error, when ana-
lyzing an approximation model? Can we bound it?

3.1 Can we sample the biochemical random process,
while keeping the ability of reconstructing the original
process?

The biochemical process is a continuous random process. In
order to present it as a Markov order I process, one must
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sample the process. Assume for simplicity that all statesx
have equal values of the parametera0. We define the process
ti as the time in which reactioni took place.

As we saw in (7),τ, the random variable that represents
the time from the last reaction to the next one, is exponen-
tially distributed with the appropriate constanta0. Thus, we
can look at the set of random variablesτi , each representing
the time from the reactioni − 1 to the reactioni, such that
ti = ∑i

j=1 τ j . Under our simplifying assumption,τi are i.i.d.,
exponentially distributed with parametera0. Thus,ti is an
arrival process, that describes the arrival times of aPoisson
process (with parametera0). Putting all together, we can see
that in order to describe the time in which reactions occurred,
we need only to look at the derivativePoissonprocess. This
process is a pure white process, with autocorrelation func-
tion:

R(l) = a0 ·δ (l)+ (a0)
2 (11)

The Nyquist sampling theorem applies to wide-sense station-
ary (WSS) processes, with the spectrum of intrest being the
power spectral density (PSD) function. Thus, a stationary
process can be sampled without loss of information iff its
PSD function is band-limited. We can conclude that for any
set of∆tx parameters, it is impossible to sample the random
biochemical process without loss.

3.2 Assuming that no reaction occurred in a specific
time segment, will the transfer probabilities change?

In (10) we derive the probabilities

P(µ ,t ≤ ∆tx from the last reaction to occur)

Assuming that none of the reactions occurred, the state has
not changed, so we use the same set of transition probabilities
for the next time segment. We test if:

P(µ ,t ≤ 2 ·∆tx from the last reaction|
no reaction occurred∆tx since the last) =

P(µ ,t ≤ ∆tx from the last reaction)

In order to prove this equality holds, we will use the fact that
an exponentially distributed random variable is amemoryless
random variable, thus:

P(X > t +s|X > t) = P(X > s) (12)

which, in our case leads to the desired result:

P(µ ,t ≤ n ·∆tx | t > (n−1) ·∆tx) =

P(µ) ·P(t ≤ n ·∆tx | t > (n−1) ·∆tx) =

P(µ) · (1−P(t > n ·∆tx | t > (n−1) ·∆tx)) =

P(µ) · (1−P(t > ∆tx)) =

P(µ) ·P(t ≤ ∆tx) =

P(µ ,t ≤ ∆tx)

(13)

3.3 What is a “good approximation” of the continuous
random process? What is the effects of the∆tx parame-
ters on it?

The Markov chain we defined depends on the choice of the
∆tx parameters that divide the time line. Each realization will
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Figure 1: A “good approximation”: every reaction time,ti
(the full lines) falls in a separate time segment,∆tx (the dotted
lines). If foralmost allrealization this is the case - the model
is a “good approximation” of the process.

result in a different partitioning of the time line, since the∆tx
parameters are state dependent.

Our goal is to receive a “good approximation” of the
continuous process using the Markov model, but first we
must definewhat is a “good approximation”?We refer to
a model as a “good approximation” of the continuous ran-
dom process if foralmost allrealizations of the continuous
random process the error for each reaction-time is limited to
±∆tx.

The choice of the∆tx parameters will determine the qual-
ity of our model. Assume that∆tx is a large time segment.
In such a case, the probabilityP(τ ≤ ∆tx) will be very close
to 1, meaning that it is highly probable that the next reac-
tion will occur before the end of the time segment∆tx. For a
very large∆tx, the probability that more than a single reaction
will occur in this time segment increases, and thus results in
a model that, most probably, will not be a “good approxi-
mation”. Sufficiently small∆tx segments are more likely to
result in a “good approximation”, and to give an estimate of
the reaction time that is about±∆tx. Figure 1 illustrates a re-
alization for which the model gives a “good approximation”
of the reaction, since each reaction-time falls into a separate
time segment, and thus the model approximation for such a
realization will have an error of±∆tx for each reaction-time.

Now, lets assume a very small∆tx. Such a choice re-
sults in P(τ ≤ ∆tx) < 1, so the∑M

ν=1P(µ ,τ ≤ ∆tx) < 1,
meaning there is a probability larger than zero to stay in
the current statex. If we choose a∆tx that is very small,
∑M

ν=1P(µ ,τ ≤ ∆tx) � 1, and the probability to stay in the
current state will→ 1. Such a case is problematic since it
will lead to multiple simulation steps before the next reac-
tion takes place - unnecessary burden that will effect the ef-
ficiency of computations based on such a model. Moreover,
choosing a small∆tx, such that∑M

ν=1P(µ ,τ ≤ ∆tx) < 1 (but
not close to 1), ensures a non-periodic, ergodic Markov chain
which converges to the stationary probability of the process.

3.4 How should we define the event of an error, when
analyzing an approximation model? Can we bound it?

As we saw in subsection 2.3.3, the next reaction to occur
and the time of the occurrence are independent events. Thus,
the time of the next reaction to occur is independent of the
specific reaction and is simply an exponentially distributed
random variable:

P(τ) = a0 ·exp(−a0τ) ·u(τ) (14)

As an exponential random variable,τ has mean1
a0

and vari-

ance of 1
(a0)2 . Thus, taking into account all our knowledge of
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τ and the effects of the different choices of∆tx, our choice
for ∆tx will be 1

S·a0
, whereS is a positive constant larger than

one. We would like to emphasize that the∆tx parameters
are state dependent since the value ofa0 is state dependent.
Such a choice takes into account the fastest reaction possible
in each state of the chemical system, since the fastest reac-
tion possible in a specific state will have the largestaµ that
will have the largest effect ina0. The fastest reaction will
determine how small∆tx must be to ensure a “good approx-
imation”, minimum simulation steps and an ergodic Markov
chain.

In order to choseS we will look at a simplified case,
where all states have equal values ofa0 and thus there is a
single possible partition of the time line (all∆tx are equal).
We will define an error as a realization of the continuous ran-
dom process thatcan notresult from our model. In this sim-
plified case, we will give an upper bound for the probability
of an error. Note that the simplified case is realistic since the
Markov model can be built with equal time segments based
on the largest possiblea0 of the biochemical system.

Pr(error) < Pr( there is at least a single case of
consecutive reactions occurring

within a time frame≤
1

S·a0
)=̂P (15)

This is an upper bound on the probability of error since not all
cases of consecutive reactions occurring within a time frame
smaller than or equal to1

S·a0
will lead to an error.

Let us assume now that we wish to simulateN reactions.
We can write the bound (15) as:

P = 1−Pr(the time difference between every two

consecutive reactions>
1

S·a0
)

= 1−
N

∏
i=2

Pr(τi >
1

S·a0
)

= 1−exp(−
N−1

S
) (16)

The second transition makes use of the fact that the reaction-
time of the next reaction depends only on the previous re-
action. The last transition makes use of the fact that all
reaction-times are exponentially distributed, and using our
simplifying assumption, with the same parametera0.

As expected, the larger the number of reactions (N) is,
the higher the possibility that at least one case of consecutive
reactions will lead to an error. On the other hand, increasing
Sreduces∆tx and reduces the probability of an error.

4. SUMMARY & CONCLUSIONS

Starting by presenting the stochastic approach for the time-
evolution of biochemical systems, and the SSA by Gillespie
as a tool for analyzing the statistics of a biochemical process
using Monte Carlo simulations, we suggest an alternative
road. Our analysis of the stochastic approach, allows us to
approximate the time-evolution (or, the continuous random
process) using a Markov Order I model. Such a model re-
duces the complexity of the pdf evaluation, and thus allows
us the usage of a large variety of signal processing tools, that

require the knowledge of the pdf. Using the Markov model
in a straight forward manner, as an algorithm that replaces
the SSA, is currently not feasible: the amount of states for
even the simplest biochemical system is massive. There is
a time-memory trade-off: the main problem in the SSA’s is
the time factor of the simulation, since they must go through
each and every reaction. On the other hand, trying to use
a Markov approximation, will theoretically reduce the time
factor (since it can allow us any resolution we choose), but
the amount of states requires a massive amount of memory.

A. THE GENERATION OF RANDOM VARIABLES
IN THE SSA

Step 3 of the “Direct Method” algorithm requires the gener-
ation of two random variables according to the joint distrib-
ution P(τ,µ). Since the two random variables are indepen-
dent, one can simply generate two random variable, the first
based on the exponential distributionP(τ), and the second
based on the distributionP(µ). These two variables can be
constracted using random variables,r1 and r2, independent
and uniformly distributed in the range[0,1], in the following
manner:

τ =
1

∑M
i=1ai

ln(
1
r1

) (17)

µ−1

∑
i=1

ai < r2

M

∑
i=1

ai ≤
µ

∑
i=1

ai (18)
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