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ABSTRACT 2. REVIEW OF THE STOCHASTIC APPROACH &

. - . . : . SIMULATION
Mathematical/statistical modeling of biological systeima

desired goal for many years. It aims to be able to accuratelg.1 The time-evolution problem

predict the operation of such systems under various s@mari ] ) o )

using computer simulations. In this paper we revisit Gille-The goal of many biologists at present time is to simulate the
spie’s Stochastic Simulation Algorithm for biochemicassy €xact behavior of a biochemical system [1, 7]. Such simula-

tems and we suggest an equivalent Markov Model for it. Wdions are used in order to predict actual results, undetstan

show that under certain conditions it is & arder homoge- the influence of specific chemical species in the system, and
nous Markov process and we analyze these conditions. O¥@lidating certairin vivo behaviors.

suggested model can be used to simulate the probability den-

sity function of a biochemical processes which, in tum, carhefinition 1 The time-evolution problemAssume a well-

be used for applying statistical signal processing andrinfo stired mixture of N molecular specie§Sy, S, ..., S}

mation theory tools on them. in a fixed volume V at a constant temperature. These
N species can chemically interact through M reactions

1. INTRODUCTION {Ry,R2,...,Rw}. G_iven the ini_tial number of molecules Qf

each of the N species, what will be the molecular population

A comprehensive understanding of biochemical processes any time t?

is equivalent to having a mathematical model that can en-

counter and predict the experimental results of the biologpgfipe- X(t) Vi e {12,...,N} represents the number

ical system under different conditions. The stochastic apz:™ 1 iacules of theiﬂ’, 7spe’cies at timet and x(t) —

proach [4,5] is a model which describes by stochastic equ X1 (1), Xa(t), ..., Xn(t)), then, the question of “what will be

tions the dynamic of a biochemical system. The Stochasti ; : P ; :
Simulation Algorithm (SSA) is an algorithm that results in “W%Q?éiczg;e;gfgﬁ)g!atlon atany time t"is identical to agkin

a single realization of the stochastic process, based an th"f‘here are two formalisms for mathematically describing

model. As such, Monte Carlo approach is required in orde{ - “rhe " deterministic approach, and the stochastic ap-
to study the statistics of the process. proach

Statistical signal processing and information theorygool
are based on availability of the statistics of the systenmer t
process in hand. By approximating the stochastic approach2 The deterministic approach
model as a ¥ order Markov process, we provide a conve-

nient formalism for the probability density function (paf) The deterministic approach is the traditional way of sajvin

the stochastic approach, to be used for modeling and simgf{t) for all t. It begins by translating the chemical system

lating biochemical processes. Moreover, while the stochadnto @ set of differential equations:

tic approach is based on modeling the process in continuous

time, discrete representation is more appropriate for lsimu dX(t) '

tion and signal processing. The equivalent Markov modeling  ~ gt fiXa(t),.... xn(0))  vie{l...,N} (1)

describes the evolution of the process from one state to the

other, over time samples which are design parameters. Thefgis set of equations is called the “reaction-rate equation

choice is discussed in the sequel. (RRE). Analytic solutions for the RRE can be found only for
In [2] we study DNA repair processes in tReColiusing  simple systems, thus the RRE set is usually solved numeri-

an approximated Markov model [8]. The result of this workcally.

can be used to enable to simulate our suggested model, anditRe deterministic approach is based on the assumptions that

validate our suggested hypothesis regarding the optiiaizat a chemical system is continuous in time and is deterministic

of the genetic information flow process. As explained by Gillespie in [5], both assumptions are not
The paper is organized as follows: In section 2, the stoeorrect for a biochemical system. In particular, while ther

chastic approach and the SSA are reviewed. It is followe@re cases where the deterministic formalism can be used, thi

by a presentation and discussion of the equivalent Markois never the case for molecular systems, where even small

model (section 3). Section 4 provides summary and concluluctuations in the molecular populations can have large ef-

sions of the paper. fects on the process outcomes.
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2.3 The stochastic approach

2.3.1 The fundamental hypothesis of the stochastic formu-

lation

In [5] Gillespie has shown that one can rigorously calculate

the probability of a collision occurring in the volurien any
infinitesimal time interval. Thus, he asserts the following

Definition 2 The fundamental hypothesis of the stochastic 5; P(xtXo;to)

formulation:c,dt = the average probability that a particular
combination of the reactant molecules of reactio(R,,) will
react accordingly in the next infinitesimal time interval dt

That is, by multiplyingc,dt by the total number of distinct
combinations oR;, reactant molecules in volumé at time
t, one obtains the probability that the react®pnwill occur
in the time intervalt,t + dt).

As intuition suggests, the stochastic reaction constang
proportional to the reaction rakg:

Cu = yn1

()

where | is the number of identical reactants in reacRonV
is the volume of the system amds the order of the reaction

[9].

2.3.2 The master equation
In the center of the stochastic approach stands the

from statex, times the probability that, given that the sys-
tem is one state away from statehe desired reaction,
that will bring us to statex, will occur.

It is simple to see that (3) leads to the following relation,
which is the canonical form of the “master equation”:

<

au (X —vy) - P(X—Vy;tXo;to)
u=1

—a,(x) - P(xt|Xo; to)

(4)

Although the “master equation” is exact, there are very
few cases in which it can be solved analytically.

2.3.3 The reaction probability density function

In [5] Gillespie considered the question of simulating ttee s
chastic time evolution. In order to do so, two critical ques-
tions need to be answere@iven that the system is in state x
at time t, when will the next reaction occur, and what kind of
reaction will it be?Since the system is of a stochastic nature,
the answer to these two questions is stated by a probability
function,P(t, 1), the probability that the next reactionVh

will occur in the infinitesimal time interva(t,t + 7), and it

will be the reactionRy, given the statex at timet. In [5]

,.Chenqs_illespie claims the following:

ical master equation” (CME). The CME is the traditional 1. DefinePy(1) as the probability that no reaction will oc-

approach of calculating the stochastic time evolution of a
chemically reacting system. The key element in the CME is

cur in the time intervalt,t + 1), given that at time the
system is in stata. Then,Py(17’ +d1r’) = Py(7/) - [1—

P(X1,X,...,Xn;t) - the probability that at timé there will
be inV: X; molecules of the molecular specigg X, mole-
cules of the molecular speci&s, ..., andXy molecules of
the molecular speciely.

We will use the following definitions [6]:

1. ay(x)dt is cydt times the number of distindR, re-
actants molecular combinations in a specific state
(X1,X2,...,Xn). This is exactly the probability that the
reactionRy, will occur inV at time (t,t 4+ dt) given that
the system is in state= (X1, Xp,...,Xn) at timet.

2. vy is the state-change vector for reactigq. Its entries
are defined by, j, the change in the number §f mole-
cules as a result of a singhy, reaction.

The time evolution of the probability of can therefore de-

scribed by:

P(x;t +dt|xo;to) =

M
P(X;t|Xo;to) - [1— dt
(X% t[xo;to) - [ “;au(X) ]+ )
M
Z ay (x—vy)dt- P(x—vy;t|Xo;to)
u=1

The probability is constructed of two parts:

1. P(xt[xo;to) - [1— Y11 au(x)dt] is the probability that at
timet the system is in the same statéimes the proba-
bility that none of theVl possible reactions occur.

2. yh1au(x—vy)dt- P(x—vy;t|Xo;to) is @ sum of proba-

bilities. Each element in the sum is the probability that
at timet the system is in a state that is one reaction away

)1y dt] = Py(T') = expd— 3 auT].

2. P(t,u)d1 = Py(1) - a,dt, that is, the probability
P(t,u)dt can be calculated as the probability that noth-
ing will happen in the time intervat,t+ 1), timesa, dt -
the probability that the reactidR, will occur in the time
interval (t + 7,t + 74 d1)

From these two claims, Gillespie has derived the joint prob-
ability of P(t, u):

auexp—apr) if 0<T<o and
P(r,u)z{ p=1...M (5)
0 otherwise

whereap = y)_; ay.
From (5) the marginal distributions can be evaluated [4]:

o a
P :/ agexpg—aT)dr ==+, p=1,....M
(H) , 2w A(—aoT) a M

M
P(1) = ) auexp(—aoT)-u(1) = ao-exp(—aoT) - u(t) (7)
u=1

As such, the two random variablesand u are statistically
independent, and one can write the joint provability fuorcti
as a product of the two marginal distributions:

M
P(1)-P(u) =ag-exp—aoT) - u(T)-

P(t,u)
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2.4 Implementation of the stochastic approach The proof of 1 lies in equation (6), which describes the

In [4] and [5] Gillespie introduced two methods to simulate ProPability that reactioR,, will be the next reaction to occur.
a stochastic process, described by the joint probabilitgfu 1 His Probability,P(n), does not dependent on the question:

tion P(t,): "The direct Method” and "The first-reaction when will the next reaction occurat depends only on the

Method”. By carrying either one of these methods, one opvalues ofa,, which is a function of the constant reaction
tains a possible realization of the stochastic processetefin 'at€SCu and of the current state of the syster(through the
by the joint probability functiorP(, ). As such, by us- number of reactant combinations for each of khgossible

ing Monte Carlo technique®(t, 1) can be estimated. Both reactions). Therefore, as the next reaction to occur will de

methods are exact and are equivalent to the “master equg_rmine the change in state, we can conclude that the process
IS a Markov order | process.

tion” (4), in the sense that they are both rigorous conse* X .
quences of the fundamental hypothesis (2). In 2.4.1 we will In order to describe the Markov model as a Markov chain,

describe “The direct method”. “The first-reaction Method” 't MUSt be @ homogenous process, having a finite set of states
differs only slightly from “The direct method” as detailed and transfer probabilities that are time invariant. Given a

in [4], and it was later improved by Gibson and Bruck [3]. g;t'tﬁlesiﬁ:glxg}ntgﬁns%sftgglng; gggﬁi ggtaor]: dstja;a?"agg'ted

2 4.1 The Direct Method sible reactions that can occur.

. i o . The transfer probabilities are given by:
This method is based on the fact that the joint probability

P(t,u) can be written as a product of the two marginal dis- P(reactionu occurs before timefrom last reaction

tribution P(1) andP(u), as described in (8). The algorithm = P(u) - P(next reaction will occur before timg ~ (9)
outputs the following results: a states vector that hol@s th

sequence of states the system has gone through, and a time TO ensure homogenously, we need to grantee that the

vector that holds the time each reaction occurred in. The affansfer probabilities, and in particular the probability that
gorithm is constructed of the following steps: the next reaction will occur before tinteis time invariant.

Assume we are currently in state We define the time seg-
mentAty (depends on the current stade The set of transi-
tion probabilities from statg is then given by:

1. Initialization - Set the total time of the simulation &s
Set the time variablé = 0 and update the time vector.
Specify the initial stateg(t) (the initial amount of all the

chemical reacting specie§, Xp, ..., Xn) and update the P(u,T<Aty) = P(u) P(1<At)
states vector. Specify the reaction constanter all M a Aty
reactions as defined in (2). - K. ag-exp(—apT)dT
2. Calculate the set @, for all M possible rections, based 8 Jo
on the current state(t) and the set of reaction constants _ A (1— exp—aghty)) (10)
cy (as defined in subsection 2.3.2). =h)

3. Generate two random variables according to the joint disthys, the probability to transfer to stategiven that the sys-

tribution P(7, p). Define these variables ag andu (for  tem is currently in state; in the next time segment aft,,
the generation of these two random variables see appetime invariant.

dix A). _ We have shown that the stochastic chemical reacting sys-
4. Using the two random variableg and u, one can tell  tem can be described as an ergodic homogenous Markov or-
which reaction occurred first and at what time: der | process. However, the question of choosing the para-
e According to the reactionu, change the state: meterAty is still open.
X(t+ 1u) = X(t) + v, and update the states vector. Our goal is not only to find the transfer probabilities that
¢ Update the time variable=t+ 1, and update the describe the probability for each of thépossible reactions,
time vector. but also to give an approximation of the time each reaction
5. If the time variable > T - finish the simulation. Other- occurred. _ )
wise, go back to step 2. The choice of the\ty, parameters determines the quality

The “direct method” is simple to implement and is exact.Of our approximation, and thus requires delicate handling.

lts most visible drawback is the fact that one needs to gd € following issues concern such an approximation: _
through each and every reaction, so its complexity is linearl- Can we sample the biochemical random process, while

in the amount of reaction occurring in the time inter\air . keeping the ability of reconstructing the original process
2. Assuming that no reaction occurred in a specific time
3. THE STOCHASTIC APPROACH AS A MARKOV segment, will the transfer probabilities change?
MODEL 3. What is a “good approximation” of the continuous ran-

. . dom process? What is the effects of arameters
Based on the fact that for a stochastic chemical system at it?p iz p

statex at timet, the questionswhat will the next reaction be, How should we define the event of an error, when ana-

and when will it happgnare independent (subsection 2.3.3), lyzing an approximation model? Can we bound it?
we suggest the following:

Theorem 1 The stochastic chemical system is a first order>-L Can we sample the biochemical random process,
while keeping the ability of reconstructing the original

Markov processgiven that the stochastic chemical system >
is currently in state x the probability that the next state will PrOCeSS:

be x depends only on the current statg and not on past The biochemical process is a continuous random process. In
states. order to present it as a Markov order | process, one must
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sample the process. Assume for simplicity that all states > > <> >
have equal values of the paramedgrWe define the process « T T — T 177 1
t; as the time in which reactidrtook place. eoo ' ' 'Vl Y AL
As we saw in (7)I, the random variable that represents ¢ ¢ ¢ ot ¢ ¢
the time from the last reaction to the next one, is exponen- 1 2 3 4 5 6 7
-« - -t -

tially distributed with the appropriate constat Thus, we
can look at the set of random variablgseach representing
the time from the reaction— 1 to the reaction, such that
ti= Z'j:l Tj. Under our simplifying assumptiom, are i.i.d., Figure 1. A “good approximation”: every reaction tinte,
exponentially distributed with parametas. Thus,t is an  (the fulllines) falls in a separate time segméity,(the dotted
arrival process that describes the arrival times ofPaisson Iines). If for almost allrealization this is the case - the model
process (with parametep). Putting all together, we can see IS @ “good approximation” of the process.

that in order to describe the time in which reactions ocalrre
we need only to look at the derivatiVissonprocess. This

process is a pure white process, with autocorrelation fund€Sult in a different partitioning of the time line, since i,

tion: parameters are state dependent.
' Our goal is to receive a “good approximation” of the
R() = ao-é(l)+(a0)2 (11) continuous process using the Markov model, but first we

must definewhat is a “good approximation"?We refer to

The Nyquist sampling theorem applies to wide-sense statior Mmodel as a *good approximation” of the continuous ran-
ary (WSS) processes, with the spectrum of intrest being thdom process if foalmost allrealizations of the continuous
power spectral density (PSD) function. Thus, a stationari?a”dom process the error for each reaction-time is limited t
process can be sampled without loss of information iff itsTOlx. , , ,

PSD function is band-limited. We can conclude that for any T he choice of thét, parameters will determine the qual-

set of Aty parameters, it is impossible to sample the randoniy of our model. Assume thalty is a large time segment.
biochemical process without loss. In such a case, the probabili®(r < Aty) will be very close

to 1, meaning that it is highly probable that the next reac-
3.2 Assuming that no reaction occurred in a specific tion will occur before the end of the time segmént. For a

time segment, will the transfer probabilities change? very largefty, the probability that more than a single reaction
will occur in this time segment increases, and thus resuilts i

a model that, most probably, will not be a “good approxi-
mation”. Sufficiently smallAty segments are more likely to
result in a “good approximation”, and to give an estimate of
the reaction time that is abotttAty. Figure 1 illustrates a re-
3ization for which the model gives a “good approximation”
of the reaction, since each reaction-time falls into a s#par
time segment, and thus the model approximation for such a
. realization will have an error afAt, for each reaction-time.
P(“’F < 2Dt from the last reactiof Now, lets assume a very smdity. Such a choice re-
no reaction occurredty since the lagt= sults in P(T < At) < 1, so thezvzlp(u,T <At < 1,
P(u,t < Aty from the last reaction meaning there is a probability larger than zero to stay in
the current state. If we choose aAty that is very small,
In order to prove this equality holds, we will use the facttha M P(u,T < Aty) < 1, and the probability to stay in the
an exponentially distributed random variable imemoryless  current state will— 1. Such a case is problematic since it

In (10) we derive the probabilities

P(u,t < At from the last reaction to occur

not changed, so we use the same set of transition probabiliti
for the next time segment. We test if:

random variable, thus: will lead to multiple simulation steps before the next reac-
tion takes place - unnecessary burden that will effect the ef
P(X>t+sX>t)=P(X>s) (12)  ficiency of computations based on such a model. Moreover,

choosing a smality, such thaty™ | P(u, T < Aty) < 1 (but

which, in our case leads to the desired result: not close to 1), ensures a non-periodic, ergodic Markowthai

P(ut<n-A, | t>(n—1)-At) = which converges to the stationary probability of the praces
y b= X X) —
P(u)-Pt<n-Aty | t>(n-1)-Aty) = 3.4 How should we define the event of an error, when
P(u)-(1—P(t>n-Aty | t>(n—1)-Aty)) = 13 analyzing an approximation model? Can we bound it?
P(u) - (1—P(t > Aty)) = (13) As we saw in subsection 2.3.3, the next reaction to occur
P(u)-P(t < Aty) = and the time of the occurrence are independent events. Thus,
P(ut < At_) the time of the next reaction to occur is independent of the

v = X

specific reaction and is simply an exponentially distrilute

3.3 What is a “good approximation” of the continuous random variable:

random process? What is the effects of thét, parame- P(1) = ap-exp(—aoT) - u(T) (14)
tersonit?

. . 1 .
The Markov chain we defined depends on the choice of th'(g‘S an ex;lJonennaI random variabkehas meark, and vari

Aty parameters that divide the time line. Each realization willance OfW' Thus, taking into account all our knowledge of
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T and the effects of the different choicesatf, our choice require the knowledge of the pdf. Using the Markov model
for Aty will be %, whereSis a positive constant larger than in a straight forward manner, as an algorithm that replaces
one. We would like to emphasize that thﬁ( parameters the SSA, IS currently not fe_asible: the z_imount Of states fOf
are state dependent since the valuegis state dependent_ ev_en the S|mplest biochemical system IS ma_lsswe. There IS
Such a choice takes into account the fastest reaction pessit# time-memory trade-off: the main problem in the SSA’s is
in each state of the chemical system, since the fastest redée time factor of the simulation, since they must go through
tion possible in a specific state will have the larggsthat ~ €ach and every reaction. On the other hand, trying to use
will have the largest effect imy. The fastest reaction will @ Markov approximation, will theoretically reduce the time
determine how Smaﬂtx must be to ensure a “good approx- factor (smce it can allow l_.IS any I'eSO_'UtIOﬂ we ChOOSG), but
imation”, minimum simulation steps and an ergodic Markovthe amount of states requires a massive amount of memory.
chain.

In order to choseS we will look at a simplified case, A. THE GENERATION OF RANDOM VARIABLES
where all states have equal valuesagfand thus there is a IN THE SSA

single possible partition of the time line (dlx are equal).  giep 3 of the “Direct Method” algorithm requires the gener-
We will define an error as a realization of the continuous ranzion of two random variables according to the joint distrib
dom process thatan notresult from our model. In this sim- ion p(r, ). Since the two random variables are indepen-
plified case, we will give an upper bound for the probability yent one can simply generate two random variable, the first
of an error. Note that the simplified case is realistic sithee t 5504 on the exponential distributiét), and the second
Markov model can be built with equal time segments baseaased on the distributioR(). These two variables can be
on the largest possibkg of the biochemical system. constracted using random variablesandr,, independent
and uniformly distributed in the rand@, 1], in the following

Pr(error) < Pr( there is at least a single case of manner:

. . . 1 1
consecutive reactions i)ccurrlng T=—o _I (r_) (17)
within a time frame< ——)=P  (15) EL
S-ag p-1 M u
. . . p<r i < i 18
Thisis an upper bound on the probability of error since rlot al i; & Zi;a - i;a. (18)
cases of consecutive reactions occurring within a time éram
smaller than or equal tg{% will lead to an error. REFERENCES
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