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ABSTRACT

In this study we investigate coding artifacts in H.264
baseline profile. A psychophysical experiment was conducted
that collected data about the subjectively perceived an-
noyance of short video sequences as well as the perceived
strength of three coding artifacts. The data provided by 52
subjects is analyzed with respect to bitrate and intra period
of the encoded sequences. A new data analysis method is
presented which is based on a granular data representation
and enables the detection of multidimensional functional de-
pendencies in data sets. This method is employed to estab-
lish a model for the perceived annoyance as a function of
artifact strength.

1. INTRODUCTION

H.264 is the latest video compression standard of the ITU
Video Coding Experts Group. It has drawn a lot of attention
lately as it outperforms existing standards considerably with
respect to compression efficiency [2, 4]. In a video transmis-
sion chain several factors influence and impair the quality
of the resulting imagery. One of these factors is the source
coding algorithm itself. As a consequence of lossy coding a
noticeable degradation of the video quality may be observed.
It is thus important to have a video quality metric to opti-
mally trade off compression ratio against quality. As digital
video usually addresses a human observer it is of particular
importance to develop video quality metrics that closely re-
flect the perceived quality. In many cases it is furthermore
desirable that the employed metric does not utilize any infor-
mation about the original video (no reference metric). Re-
cent research efforts have therefore strived to develop metrics
of a limited number of features of the impaired video [1]. A
perceptual feature of an impairment in a video sequence is
called an ‘artifact’ [1]. Our main objective is to develop a
model that describes the perceived annoyance of a compres-
sion impaired video as a function of the perceived strength
of the most dominant coding artifacts in H.264 baseline pro-
file. For this purpose an experiment was carried out that
measured the perceived strength of ‘blurring’, ‘blocking’ and
‘flickering’ artifacts, as well as the perceived overall annoy-
ance caused by these impairments. Furthermore we study
how these four quantities depend on two coding parameters:
Bitrate and intra period (IP ).

2. METHODOLOGY

2.1 Videos and Coding Parameters

The test sequences were produced using the four videos
‘foreman’, ‘flower’, ‘bus’ and ‘football’. The H.264 reference
software JM9.6 was used to encode these videos at sixteen
different bitrate-IP combinations. Hence the whole test
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set comprised 64 sequences. In particular we used the four
bitrates 100, 160, 230 and 300 Kbps respectively, because
the greatest variations in terms of artifact emergence were
found in this interval. The format of the employed videos
was CIF . The intra period (IP) was set to 10, 25, 40 and
∞ respectively. By ‘IP = ∞’ we mean that only the first
frame of the sequence was an I-frame and all following
frames were P -frames. All relevant information regarding
the videos employed are as follows:

• Format: CIF (288 × 352)
• Employed videos: Foreman, Flower, Bus, Football
• Frame rate: 25 fps
• Bitrates: 100, 160, 230, 300 Kbps
• IP: 10, 25, 40, ∞
• Duration of each sequence: 5 sec.

2.2 Description of the Experiment

A single stimulus experiment was conducted in two stages.
During the first stage the annoyance caused by all visible im-
pairments in the entire sequence was assessed. The strength
of the single artifacts was then rated in the second stage.
‘Strength’ should also be understood in terms of ‘How no-
ticeable is an artifact with respect to the whole sequence?’.
We also offered a fourth artifact category labeled as ‘Other’
which was to be used in case the subject was not able to clas-
sify the detected impairment as proposed. Both stages were
structured equally and split into three parts. During part
one of each stage a reference level for the requested judg-
ment was set which was defined by a reference sequence.
The subjects were instructed to make all their judgments
with respect to the reference level at any time. In part two
the subjects were given five practice trials before data was
recorded during the actual experiment in part three. An
LCD-monitor with a resolution of 1080 × 1024 was used as
a display. The subjects were seated in the distance of 60 cm
in front of the display which was adjusted on eye level. The
same viewing distance for all subjects was assured by the use
of a chin-rest.

3. DATA ANALYSIS METHODS

The most relevant columns of our data table can be seen in
Table 1. This is the basis for the analysis as presented in
the following. For each subject s from the set of 52 sub-
jects and each video sequence v from the set of 64 differ-
ently encoded sequences the subjective scores of subject s
for video sequence v with respect to the measurement func-
tions Annoyance, Blurring, Flickering and Blocking are
recorded in a row of the data table with N := 52×64 = 3328
rows. The N pairs (s, v) are coded by the elements k of an
artificial key K, understood as the set K := {1, ..., N}. For
each of the measurement functions the subjective scores are
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K s v Annoyance(k) Blurring(k) Flickering(k) Blocking(k)

1 1 1 80 19 20 14

2 1 2 71 22 1 13
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64 1 64 23 33 4 17

65 2 1 60 5 1 22
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N 5264 0 0 0 0

Table 1: Data Table

elements of the set

M = {m ∈ R | 0 ≤ m ≤ 100}. (1)

3.1 Mean Observer Score

First we introduce the mean observer score
for every video sequence v and task Z ∈
{Annoyance, Blurring, F lickering, Blocking}:

MOSZ(v) = 52−1
52

∑

s=1

Z(s, v). (2)

Z(s, v) denotes the subjective score of subject s assigned
to video v at task Z. In the case of the annoyance task
the MOS is called mean annoyance value (MAV ) and in
the case of a strength task we refer to the MOS as mean
strength value (MSV ).

3.2 A Granularity based Approach for Analyzing
Multidimensional Data

In this section a new data analysis method is described that
enables the detection of multidimensional functional depen-
dencies in data sets. The basic two dimensional procedure
as well as the four dimensional generalization were first pre-
sented in [3].

3.2.1 Scaling of the Data

The measured data is scaled by a granularity mapping

Qg : M → {1, . . . , g}, (3)

where g is an integer number, greater or equal to one, that
denotes the granularity chosen for the representation of the
data. In particular this mapping is achieved by a uniform
quantizer:

Qg(m) =

{

p( g·m

100
)q, for m 6= 0,

1, for m = 0.
(4)

The data may now be represented in any desired granularity
prior to the analysis described next.

3.2.2 The Basic Two Dimensional Procedure

Let I and J be integers, interpreted as the number I of rows
and the number J of columns of a contingency table. Let

X : K → {1, . . . , I} and Y : K → {1, . . . , J}, (5)

be two discrete functions interpreted as granular measure-
ment functions. They map each key element k to a value
X(k) = i and Y (k) = j respectively. The number

nij = |{k ∈ K | X(k) = i, Y (k) = j}|. (6)

is called the absolute frequency in the cell (i, j) of a contin-
gency table C(i, j). The observed relative frequencies Oij are
then obtained by normalizing each entry of the contingency
table by the number N = |K| of key elements:

Oij =
nij

N
. (7)

From this table we process the the elements of the marginal
distributions:

Oi =
J

∑

j=1

Oij , and Oj =
I

∑

i=1

Oij . (8)

As usual the two mappings X and Y are called statistically
independent if Oi · Oj = Oij for all cells (i, j). If X and
Y are not statistically independent then there are cells such
that the ‘expected value’

Eij = Oi · Oj , (9)

differs from the observed value Oij . Therefore

Dij =















(
Oij−Eij

Eij
), for (Eij 6= 0) and

(Oij ≥ T or Eij ≥ T ),

0, else,

(10)

is computed, where T denotes a threshold. Dij is understood
as the relative deviation from statistical independency in cell
(i, j). Finally, a second threshold P defines what percentage
is considered to be significant:

Sij =

{

Dij , for (Dij ≤ −P ) or (Dij ≥ P )

0, else.
(11)

A negative Sij tells us that the observed rate in cell (i, j)
is significantly smaller (with respect to the chosen threshold
P ) than the expected rate, whereas a positive Sij indicates
that the observed rate in cell (i, j) exceeds our expectation
significantly.

3.2.3 Estimation

In case there is a dependency between X and Y , we get
an idea of a partial meaning of this dependency by looking
at those cells that show the highest positive deviation from
statistical independence. For every row i, we select the set of
those j for which Sij is maximal with respect to all cells of
the i-th row:

µ(i) := {j | Sij > Slj , Sij 6= 0, ∀ l, l ∈ {1, . . . , J}}. (12)

In order to obtain an estimate for the original unscaled quan-
tity which had been represented in Yg(k), we first introduce
an ‘inverse’ scaling operation Q′

g as:

Q′

g(x) = (x − 1) ·
100

g
+

100

2g
. for x = 1 to g (13)

A unique value H(i) is then assigned to each i by averag-
ing the inverse scaled elements of µ(i). This may be an
estimate for an annoyance value with respect to the i-th
artifact-strength combination for instance. Let Γi := |µ(i)|
be the number of elements in µ(i). Since the mapping Q′

J is
injective, we also get Γi = |Q′

J(µ(i))| and hence

H(i) = Γ−1
i ·

∑

x ∈ µ(i)

Q′

J(x) (∀ i | µ(i) 6= ∅), (14)

is the average of the inverse scaled values of µ(i).
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3.2.4 Four Dimensional Generalization

As the inspection of a four dimensional relation is of partic-
ular interest in this study, the contingency table C(i, j) is
extended to four dimensions. It should be noted that we are
not constraint to four dimensions. At first we define three
additional granular measurement functions:

X1: K → {1, . . . , I1} (15)

X2: K → {1, . . . , I2} (16)

X3: K → {1, . . . , I3}. (17)

These will be used to represent the strengths of the three
artifacts in their respective granularities I1, I2 and I3. The
tuple

X(k) := (X1(k), X2(k), X3(k)) (18)

is now considered as one measurement. Thus the prod-
uct of X and Y , hence X1 × X2 × X3 × Y , is used as
our representation of the four measurements. This yields
the four dimensional contingency table, where every cell
C(i, j) = (i1, i2, i3, j) is assigned the absolute number of
elements in the respective pre-image of X1×X2×X3× Y :

ni1i2i3j = |{k ∈ K | X1(k) = i1, X2(k) = i2,

X3(k) = i3, Y (k) = j}|. (19)

The basic two dimensional procedure as described previously
can now be applied to X and Y without any further modifi-
cations.

4. RESULTS

4.1 Mean Annoyance and Mean Strength

The MAVs and MSVs in the ‘foreman’ video mainly show a
monotonically decreasing course in both dimensions, except
for the average flickering strength (see Figure 1(a)). Es-
pecially at IP = 40 the average strength of the flickering
increases with bitrate and furthermore dominates the com-
position of artifacts. Blurring dominates over blocking for
all sixteen bitrate - intra period combinations.

The MSVs in the ‘flower’ video show that flickering is
clearly perceived as the strongest artifact as can be seen from
Figure 1(b). All three artifacts are assigned rather low MSVs
at IP = ∞. Again the parameter combination 300 Kbps and
IP = 40 emerges from the other parameter combinations,
and the slight trend propagates into the MAVs.

Studying the MSVs for the ‘bus’ sequence in Figure 1(c)
we find that the blocking artifact is perceived as the most
dominant phenomenon in this video. Again we observe an
increasing trend in the MSVs towards the highest bitrate
with respect to the flickering. The impact of the intra pe-
riod within this video is rather small when compared to the
impact of the bitrate.

The data for the ‘football’ video exhibits that blocking
and blurring are assigned approximately the same MSVs and
moreover they dominate over flickering. Figure 1(d) shows
that the MSVs of the two effects decrease towards higher
data rates at a generally high level. The MAVs and MSVs
further on tell us that the intra period has almost no impact
on the obtained averages, which is in contrast to the bitrate.
It seems that 300 Kbps is not sufficient to encode this se-
quence such that the majority of observers is not annoyed
by the coding artifacts.

Hence the obtained data shows that the video content has
a great influence on the emergence of artifacts. For the same
coding parameters completely different results are obtained.
Roughly speaking we can say that the results for the different
sequences share one trait: The mean annoyance values as
well as the mean strength values decrease with increased
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Figure 1: MAVs and MSVs for the four videos: (a): Fore-
man, (b): Flower, (c): Bus and (d): Football.

bitrate and increased intra period. The ‘football’ video has
the highest MAVs when compared to the other sequences.
The ‘foreman’ video is found to exhibit the least annoying
artifacts. The proposed classification of artifacts found broad
acceptance among the participants since the category ‘Other’
was selected only three times.

4.2 Granularity Based Analysis

In this section the results from the granularity based analysis
as described in Section 3.2 are presented and discussed. The
data is analyzed on a global level, without distinguishing
video content or any other attributes. We analyze the data
on different levels of granularity and use algebraic models as
brief descriptions of the obtained results. All curve fitting is
done using the ‘Nelder Mead Simplex Algorithm’.

To gain a better understanding how the strength of an
artifact relates to the perceived annoyance, we first analyze
the data by looking at the marginal relations between an-
noyance and each artifact strength. Then the second dimen-
sion is unfolded, which gives insights to how the perceived
annoyance relates to both blurring and blocking strengths.
Finally the whole four dimensional relation between annoy-
ance and the strength of the three artifacts is investigated
in different granularities. The following denotations will be
used throughout this section:

X1I1(k) := QI1(Blurring(k)), (20)

X2I2(k) := QI2(Blocking(k)), (21)

X3I3(k) := QI3(Flickering(k)), (22)

YJ(k) := QJ(Annoyance(k)). (23)

4.2.1 Marginal Relations between Annoyance and Artifact
Strengths

The marginal relations between annoyance and the strength
of a single artifact are investigated by setting the granulari-
ties, used to represent the other two artifacts, to one. When
I1 = I3 = 1 is chosen for instance, the relation between an-
noyance and blocking strength is analyzed. The respective
2-tuples (Q′

I2(i2), HJ(i)) describe the relation of interest
with respect to the chosen granularities and thresholds. The
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granularity J and the resolution for the respective artifact
strength are tied and then varied from 6 to 11. P = 0.3 and
T = 4/N are used as thresholds. This analysis is performed
for all three marginal relations. The results show that an-
noyance relates to each single artifact in a logistic manner.
Therefore the logistic function:

y(x) =
100

1 − e−(x−xmid)G
. (24)

is fitted to the resulting 2-tuples. The root mean squared
errors (RMSEs) as well as all resulting parameters of the
fits are tabulated in Tables 3, 4 and 5. The best fits are
obtained for the mapping between annoyance and blurring.
The annoyance-blocking relation yields consistent parame-
ters across different granularities too, and the obtained pa-
rameters are furthermore similar to those for annoyance and
blurring, though the errors are a little higher. The mapping
between annoyance and flickering results in the highest er-
rors, but the logistic trend can still be observed. Hence we
note three marginal logistic mappings whereas the blurring-
annoyance mapping gives us the highest confidence in the
detected relation. Figure 2(a) shows the best fit from this
analysis.

4.2.2 Annoyance as a Function of Blurring and Blocking

The next step of the granularity analysis is to explore how
different combinations of blocking and blurring strength con-
tribute to the perceived annoyance. For I3 = 1, P = 0.5 and
T = 4/N we obtain results that correspond to our intuitive
idea of the nature of this relation. Based on these observa-
tions and on the knowledge about logistic marginal relations
between annoyance and artifact strength, the following two-
dimensional model is formulated:

y(x1, x2) = 100

[1−e−(c1(x1−x1mid) + c2x2)G1 ]

1

[1−e−(c1x1 + c2(x2−x2mid))G2 ]
. (25)

Hence the relation is modelled by the product of two logis-
tic mappings whereas the weights c1 and c2 for the artifact
strength are introduced to quantify to what extent an arti-
fact contributes to the perceived annoyance. The sums in
the exponents are based on the assumption that the annoy-
ance should remain constant as long as the weighted sum of
artifact strength is constant. For the analysis the granulari-
ties I1 and I2 are fixed to I1 = I2 = 5 and the granularity
J for the annoyance is varied. The model in Eq. (25) is thus
fitted to the 3-tuples (Q′

I1=5(i1), Q′

I2=5(i2), HJ(i)). The
resulting parameters of these fits are tabulated in Table 6.
Figure 2(b) shows the resulting model for the best fit (I = 6).
The obtained weights c1 and c2 for blurring and blocking do
not show distinct differences. Hence blocking and blurring
seem to contribute to the annoyance to approximately the
same extent.

4.2.3 Annoyance as a Function of Blurring, Blocking and
Flickering

The model in Eq. (25) describes the perceived annoyance as
a monotonically increasing function. This assumption should
hold when flickering is considered as the third artifact dimen-
sion. For symmetry reasons and because it is the most intu-
itive next modelling step, the model in Eq. (25) is extended
as follows:

y(x1, x2, x3) = 100

[1−e−(c1(x1−x1mid) + c2x2 + c3x3)G1 ]

1

[1−e−(c1x1 + c2(x2−x2mid) + c3x3)G2 ]

1

[1−e−(c1x1 + c2x2 + c3(x3−x3mid))G3 ]
. (26)
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Figure 2: (a): Annoyance as a function of blurring: Their
relation can be described by a logistic mapping. (b): An-
noyance as a function of blurring and blocking.

Hence we assume a logistic dependency for the new dimen-
sion as well, though the marginal relation between annoy-
ance and flickering is the one the least pronounced in our
data. For the analysis we proceed as in the previous sec-
tion and fix all three artifact resolutions to I1 = I2 =
I3 = 5, whereas the granularity for the annoyance is var-
ied. Then the model in Eq. (26) is fitted to the 4-tuples
(Q′

5(i1), Q′

5(i2), Q′

5(i3), HJ(i)). Table 7 shows the results
of these fits. We recognize almost the same goodness of fit
for all granularities, whereas the RMSEs are relatively high
when compared to the marginal annoyance-blurring fit for
instance. Except for J = 6 the blocking artifact has the
highest weight (c2), which however does not conform to the
values in Table 6.

The RMSE is a measure for the goodness of the fit, but
it does not give us further evidence about the validity of
the model with respect to our data set. To test whether the
model in Eq. (26) reflects the average responses, it is used to
predict the MAVs from the MSVs. It should be noted that
neither the MAV s nor the MSV s have been used during
the modelling process. To quantify the goodness of these
predictions we use the square of the correlation coefficient
R between the result of the prediction and the MAV s their
selves as well as the RMSE between both. In Table 2 the
R2 values and RMSEs for all considered parameter settings
are tabulated.

J 6 7 8 9 10 11

RMSE 5.35 7.54 7.07 6.25 6.79 7.21

R2 0.9560 0.9217 0.9319 0.9425 0.9360 0.9358

Table 2: Goodness of MAV prediction.

Thus the model in Eq. (26) can be considered to be a
good estimator for the mean annoyance values for all ob-
tained parameter sets.

The result indicates that the model is indeed reasonable
for our data set and that the granularity analysis yields useful
results. Moreover the confidence in all previous results ob-
tained through the granularity based approach is increased
considerably as they led to the formulation of the model.
Though J = 6 did not yield the best fit, it turns out that the
parameters for this case result in the best predictor. The re-
spective comparison of the predicted MAV s and the MAV s
their selves is therefore presented in Figure 3.

5. CONCLUDING REMARKS

Four different videos were used in a psychophysical exper-
iment. An artifact classification has been proposed. It
could be confirmed experimentally that blurring, blocking,
and flickering artifacts can be considered to be the most
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relevant coding impairments in the baseline profile. It has
been shown that the content of a video has a major impact
on the emergence of coding artifacts. Nevertheless global
content-independent dependencies were found by means
of a new data analysis method. The perceived annoyance
of an H.264 encoded video sequence was related to the
strength of three coding artifacts using a model based on
logistic mappings. It has been shown that the model can
be used to predict the mean annoyance values from the
mean strength values which emphasizes that the granularity
based approach yields reasonable results. The model can
potentially be used to estimate the subjectively perceived
annoyance which should be subject to minimization during
encoding and/or postprocessing. Future work should
therefore focus on the development of artifact metrics for
all three investigated artifacts.

(I, J1) (6, 6) (7, 7) (8, 8) (9, 9) (10, 10) (11, 11)

RMSE 7.14 4.50 2.48 13.85 8.03 6.45

xmid 43.14 48.23 42.62 35.16 38.60 36.86

G 0.0557 0.0557 0.0629 0.0686 0.0564 0.0620

Table 3: Fitting parameters for the blurring-annoyance
relation.

(I, J2) (6, 6) (7, 7) (8, 8) (9, 9) (10, 10) (11, 11)

RMSE 7.14 5.93 11.16 12.86 5.43 10.16

xmid 43.14 42.93 42.05 44.16 38.27 42.65

G 0.0557 0.0575 0.0509 0.0441 0.0668 0.0565

Table 4: Fitting parameters for the blocking-annoyance
relation.

(I, J3) (6, 6) (7, 7) (8, 8) (9, 9) (10, 10) (11, 11)

RMSE 10.57 10.87 13.08 13.21 12.77 16.30

xmid 33.70 44.89 37.17 37.33 32.82 37.02

G 0.0991 0.0656 0.1392 0.0674 0.0443 0.0503

Table 5: Fitting parameters for the flickering-annoyance
relation.

I 6 7 8 9 10 11

RMSE 8.97 10.43 10.76 10.58 10.14 9.87

c1 1.14 0.97 1.01 1.06 1.04 1.04

c2 0.91 1.01 0.91 0.90 0.96 0.89

x1mid 40.30 29.06 12.75 21.71 33.62 34.68

x2mid 44.08 53.28 52.57 48.92 47.58 47.33

G1 0.0189 0.0190 0.0166 0.0178 0.0185 0.0118

G2 0.0398 0.0578 0.0586 0.0475 0.0448 0.0454

Table 6: Fitting parameters for the model in Eq. (25).

I 6 7 8 9 10 11

RMSE 13.95 13.76 14.54 13.21 12.68 12.51

c1 1.14 0.74 0.82 0.76 0.82 1.10

c2 1.14 1.41 1.29 1.12 1.24 1.32

c3 0.92 0.67 0.73 0.86 0.72 0.62

x1mid 75.48 64.22 70.41 73.58 75.74 80.27

x2mid 14.85 27.56 34.29 21.75 26.54 25.40

x3mid 17.25 26.07 28.65 20.43 24.30 20.46

G1 0.0149 0.0137 0.0142 0.0166 0.0171 0.0177

G2 0.0275 0.0315 0.0352 0.0292 0.0311 0.0306

G2 0.0388 0.0458 0.0486 0.0410 0.0442 0.0409

Table 7: Fitting parameters for the model in Eq. (26).
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