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ABSTRACT 
 

Convergences and divergences among related organisms 

(S.cerevisiae and C.albicans for example) or same organisms 
(healthy and disease tissues for example) can often be traced to the 

differential expression of specific group of genes. Yet, algorithms 

to characterize such differences and similarities using gene ex-

pression data are not well developed. Given two related organisms 

A and B, we introduce and develop a differential biclustering al-

gorithm, that aims at finding convergent biclusters, divergent bi-

clusters, partially conserved biclusters, and split conserved bi-

clusters. A convergent bicluster is a group of genes with similar 

functions that are conserved in A and B. A divergent bicluster is a 

group of genes with similar function in A (or B) but which play 

different role in B (or A). Partially conserved biclusters and split 
conserved biclusters capture more complicated relationships be-

tween the behavior and functions of the genes in A and B. Uncov-

ering such patterns can elucidate new insides about how related 

organisms have evolved or the role played by some group of genes 

during the development of some diseases. Our differential biclus-

tering algorithm consists of two steps. The first step consists of 
using a parallel biclustering algorithm to uncover all valid bi-

clusters with coherent evolutions in each set of data. The second 

step consists of performing a differential analysis on the set of 

biclusters identified in step one, yielding sets of convergent, di-

vergent, partially conserved and split conserved biclusters. 
 

1. INTRODUCTION 

 

Prior computational methodologies for comparative analysis of 
large scale gene expression data have focused primarily on evolu-

tionarily distant model organisms, for which large sets of expression 

data are available [1-4]. A generalization of the singular value de-

composition for example was applied in [1] for a comparative 

analysis of the cell cycle datasets from saccharomyces cerevisiae 

and human. Such studies have primarily emphasized the analysis of 
co-regulated patterns, rather than differences in expression patterns. 

They have demonstrated that conservation of co-expression can 

improve functional gene annotation [2, 3]. On the other hand, algo-

rithms to characterize differences and similarities of related organ-

isms using gene expression data are not well developed. 

In recent years, for example, the C.albicans genome was se-
quenced [5], revealing that almost two-thirds of its ~6000 open 

reading frames are orthologous to S.cerevisiae genes. Microarray 

studies were performed by several groups characterizing the 

C.albicans genome-wide expression program under a range of con-

ditions [6-11]. The availability of large sets of expression data in 
both S.cerevisiae and C.albicans, which are related organisms that 

span a significant evolutionary distance, provides a useful frame-

work to develop and test computational tools for analyzing differ-

ences and similarities of related organism using their gene expres-

sion data. In [12] for example, a differential clustering algorithm 

was developed for comparative analysis of gene expression data.  

In this study, given two related organisms A and B for exam-

ple, we propose and develop a novel methodology called differen-
tial biclustering algorithm that aims at finding convergent bi-

clusters, divergent biclusters, partially conserved biclusters, and 

split conserved biclusters. A convergent bicluster is a group of 

genes with similar functions that are conserved in A and B. A 

divergent bicluster is a group of genes with similar function in A 

(or B) but which play different role in B (or A). Partially con-
served biclusters and split conserved biclusters capture more com-

plicated relationships between the behavior and functions of the 

genes in A and B and are defined below. Uncovering such patterns 

can elucidate new insides about how related organisms have 

evolved or the role played by some group of genes during the 

development of some diseases. When the proposed differential 
biclustering methodology is applied to the gene expression data of 

healthy and disease tissues of the same organism under the same 

set of conditions, it can be used to identify group of genes that are 

related to the development of the disease. More precisely, the 

evolution of a disease into an organism can be traced to a group of 

divergent biclusters, e.g., a group of genes that are functionally 
related in the healthy tissue but which play different functions or 

roles in diseased tissues. Therefore, by analyzing the differences 

and similarities of the genomic properties of such tissues, those 

specific genes and the genetic pathways in which they are in-

volved can be identified. Thus biological analysis and experimen-

tation could then confirm the biological significance of the candi-

date group of genes, and the role they play during the early stage, 

developmental stage, and late stage of the disease. 

Unlike prior comparative gene expression data approaches that 

are based on a global comparison, our methodology provides a 

comprehensive framework for a local comparative analysis of 
gene expression data via a parallel biclustering approach devel-

oped in [13].  

The rest of this paper is organized as follows. In paragraph 2 we 

provide a brief description of the parallel biclustering algorithm. In 

paragraph 3 and 4, we introduce and develop the differential biclus-

tering algorithm. In paragraph 5, we illustrate our methodology by 
performing an analysis on normal and cancer ovarian dataset.  

2. PARALLEL BICLUSTERING ALGORITHM 

2.1 Definition 
 

Let us consider the N x M gene expression matrix A = [aij], with 

set of rows or genes G = {g1, …, gN}, and the set of conditions or 

columns C = {c1, …, cM}. The element aij corresponds to a value 

representing the relation between row i and column j, which is the 

expression level of gene i under condition j. Thus we will also de-

fine the gene expression matrix as: A = {G, C}. Given the gene ex-
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pression matrix A as defined above, we define a bicluster    Bk = {Ik, 

Jk} as a subset of A, with Ik being a subset of G, and Jk a subset of C. 

Therefore, the specific problem addressed by biclustering algo-

rithms is to identify the set of biclusters Bk = {Ik Jk} such that each 

bicluster Bk satisfies some specific characteristics of homogeneity. 

There exist four types of biclusters that have been identified in the 
literature [14]: biclusters with constant values, biclusters with con-

stant values on rows or columns, biclusters with coherent values, 

and biclusters with coherent evolutions. Uncovering such patterns 

from a set of gene expression data can provide a starting point for 

elucidating genetic pathways. 
 

2.2 Parallel Biclustering 
 

Introduced in [13] by Tewfik and Tchagang, the parallel biclus-

tering algorithm aims at finding all biclusters with coherent evolu-

tion (subgroups of genes that are up-regulated or down-regulated 

coherently across subgroups of conditions) from a set of data in a 

timely manner without solving any optimization problem, and all 

the biclusters it identifies have no imperfections. The parallel biclus-
tering algorithm consists of two steps: a pre-processing step fol-

lowed by a bicluster identification step.  

The pre-processing step in particular, starts with a data condi-

tioning routine that strictly speaking is not part of the proposed 

algorithm. Its main purpose is to deal with the noise in the DNA 

microarray data as well as missing values. The actual bicluster 

identification step consists of two sub-steps. For all valid numbers 

K of conditions, where K ≥ K min, and K min is the pre-specified 
minimum number of conditions in a valid bicluster, the procedure 

will enumerate all combinations of K conditions from the given N 

conditions in the DNA microarray data that could potentially ap-

pear in a valid bicluster. For each subset of K conditions, it then 

uses a row sort procedure that allows focusing on the coherent 

evolutions of gene expression levels, rather than the raw or proc-

essed expression levels. The output of this step is a matrix that 

contains the rank of each of the K conditions for each row (gene) 

when the expression levels of each gene are ordered in a non-

decreasing manner. Finally, the main bicluster identification rou-

tine identifies all valid coherent evolution patterns involving all 

genes and a set of K conditions simultaneously through a fast row 

sorting procedure. Note that this allows the algorithm to identify 

all the possible valid biclusters without an exhaustive enumeration 

of all possible K! permutations of the K conditions. The procedure 

will also yield biclusters of genes where a subset of genes are 

coherently up-regulated and another subset coherently down-

regulated across the K conditions. We refer the reader to [13] for 

more information. 

3. DIFFERENTIAL BICLUSTERING ALGORITHM 

3.1 Definition 
 

Two biclusters Bk = {Ik, Jk} and Bl = {Il, Jl} are said to overlap if Bk 

∩Bl ≠ Ø, that is: Ik ∩Il ≠ Ø and Jk ∩Jl ≠ Ø, where Ø is the empty set. 

The cardinality of a set, denoted by the operator Card (.), is the 
number of its elements. Thus Card (Ø) = 0. The overlapping coeffi-

cient Skl of two biclusters Bk = {Ik, Jk} and Bl = {Il, Jl} can be defined 

using the following equation: Skl = Card(Ik∩Il)xCard(Jk ∩Jl). Skl can 

be viewed as the area covered by the intersection of Bk, and Bl. If l = 

k then, Skl = Skk = Card(Ik∩Ik)xCard(Jk∩Jk) = Card(Ik)xCard(Jk) 

which is the area covered by the bicluster Bk. 
 

3.2 Differential Biclustering 
 

The Differential biclustering algorithm consists of two steps. The 

first step consists of using the parallel biclustering algorithm men-

tioned above and fully developed in [13] to uncover all valid bi-

clusters with coherent evolutions in each set of data. The second 

step consists of performing a differential analysis on the set of bi-

clusters identified during step one. The differential analysis step 

allows us to uncover the set of convergent biclusters, the set of di-

vergent biclusters, the set of partially conserved biclusters, and the 
set of split conserved biclusters (Fig. 1). We shall define mathemati-

cally convergent, divergent, partially conserved, and split conserved 

biclusters below in terms of constraints on the size of the intersec-

tions of their corresponding lists of genes and conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Let K be the cardinality of the set of all valid biclusters BAk = 

{IAk, JAk}, discovered in the gene expression data matrix of A, and L 

the cardinality of the set of all valid biclusters BBl = {IBl, JBl}, dis-

covered in the gene expression data matrix of B, using the parallel 

biclustering algorithm, with 1 ≤ k ≤ K, and 1 ≤ l ≤ L. We treat A and 

B as two different entities. They can correspond to the gene expres-
sion datasets of two different or related species (S.cerevisiae and 

C.albicans for example), datasets coming from the same organism 

(healthy and disease tissues, for example), or datasets characterizing 

different types of a disease (epithelial ovarian cancer and clear cell 

ovarian cancer, for example), and etc. The datasets must contain the 
expression level of the same genes under the same experimental 

conditions. 
 

3.1. Convergent Biclusters (full conservation) 
 

A bicluster BAk = {IAk, JAk} in A is said to be fully conserved in B, 
if there exists a bicluster BBl = {IBl, JBl} in B such that the following 

relations are true:  BAk ∩BBl = BAk, that is, IAk ∩IBl = IAk and JAk ∩JBl 

= JAk. Likewise, a bicluster BBl = {IBl, JBl} in B is said to be fully 

conserved in A, if there exists a bicluster BAk = {IAk, JAk} in A such 

that the following relations are true.  BBl ∩BAk = BBl, that is: IBl ∩IAk 

= IBl and JBl ∩JAk = JBl  
As illustrated in figure (2), this set of biclusters corresponds to 

some of the patterns that stay co-regulated in both entities. They 

represent the subsets of genes that continue to work together in A 

and in B under the same subsets of conditions. This can indicate the 

conservation of some biological functions, or of some genetic path-

ways. Therefore, they can be used to understand how both entities 
are related. 

 

 

 

 

 

 

 

 

 

Figure 1: Illustration of the differential biclustering algorithm 
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Figure 2: illustration of the fully convergent biclusters 
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3.2. Divergent Biclusters  

 
A bicluster BAk = {IAk, JAk} in A is said to be fully divergent in B 

if for all biclusters BBl = {IBl, JBl} in B, BAk ∩BBl = Ø, that is: IAk ∩IBl 

= Ø  and JAk ∩JBl = Ø. Likewise, a bicluster BBl = {IBl, JBl} in B is 
said to be fully divergent in A if for all biclusters BAk = {IAk, JAk} in 

A, BBl ∩BAk = Ø, that is: IBl ∩IAk = Ø  and JBl ∩JAk = Ø 

As illustrated in figure (3), the set of divergent biclusters repre-

sents the subsets of genes that are co-regulated in A (or B), and 

completely not co-regulated in B (or A) under the same subsets of 

conditions. This can indicate the absence of some biological func-
tions or the suppression of some genetic pathways. Thus they play a 

significant role in understanding how different the two entities are. 

 

 

 

 

 

 

 

 

 
 

3.3. Partially and Split Conserved Biclusters 
 

The partially conserved biclusters and the split conserved bi-

clusters are illustrated by figure (4) and figure (5) respectively.  

A bicluster BAk = {IAk, JAk} in A is said to be partially conserved 

in B if there exist two distinct subsets of conditions in B: JBl1 and 

JBl2 such that the set of genes IAk in A are still co-regulated under JBl1 
and not co-regulated at all under JBl2 in B, with JBl1 U JBl2 = JAk.. In 

other words, the set of genes IAk in A are conserved under the set of 

conditions JBl1 and diverge under the set of conditions JBl2 in B. 

Also, a bicluster BAk = {IAk, JAk} in A is said to be split conserved 

in B if there exists L1 distinct subsets of genes IBl1 and conditions 

JBl1  in B, such that the set of genes in IBl1 are co-regulated under the 

set of conditions in JBl1 with U IBl1 = IAk,  U JBl1 = JAk,  and 1 ≤ l1 ≤ 

L1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

4. DIFFERENTIAL BICLUSTERING ALGORITHM 

OUTPUT MODELING AND IDENTIFICATION 

 

4.1. Output Modelling 
 

From the above definitions one way to model the relationship 
among the given two sets of biclusters is to construct the bellow 

differential matrix M of size KxL, of equation (1) below. In equation 

(1), the rows of M are the set of valid biclusters in A, and the col-

umns of M the set of valid biclusters in B.  

 

.

11 12 1l 1L

21 22 2l 2L
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m m m m
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… …
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� � � � � �

… …

� � � � � �

… …

                       (1) 

 

The entries of the differential matrix M are positive integers and 

are defined by equation (2) if card(IAk∩IBl) ≥ Imin and                     

card(JAk ∩JBl) ≥  Jmin, and zero otherwise. 
 

mkl = Card(IAk∩IBl)xCard(JAk ∩JBl) .                (2) 

 

In equation (2), mkl is the overlapping coefficient or the area covered 

by the intersection of the two biclusters BAk = {IAk, JAk} and BBl = 
{IBl, JBl} considered, and Imin and Jmin the minimum number of genes 

and conditions in their intersection defined by the user.  

Graphically, one can also model the relationship between the two 

sets of biclusters by a labelled weighted graph, as shown in Fig. (6).  

The vertices of the graph are the individual biclusters in each set, the 

edges the relationship that exists between different biclusters, the 
weight their overlapping coefficient, which indicates by how much 

they overlap and which correspond to the differential matrix M de-

fined above. The vertices are labelled with the set of genes, condi-

tions, and their respective attributes. The edges are labelled with the 

set of genes, conditions, and attributes that belong to the intersection 

of the corresponding two biclusters. 
 

 

 

 

 

 
 

 

 

 

 

 

4.2. Output Identification 

 
Using the labelled weighted graph modelling approach, one can 

identify the set of fully convergent, fully divergent, partially, and 

split conserved biclusters as follows. 

 

4.2.1. Identification of fully Divergent Biclusters 
 

From the above graph modelling approach the set of fully diver-
gent biclusters will correspond to the set of isolated nodes or verti-

ces of the graph, example of BAK in figure (6).  

In the differential matrix M defined above, the bicluster BAk in A 

will be fully divergent in B if all the elements of the kth row of M are 

m21 

m22 

m3L 

m11 BA1 

BA2 

BAK 

BB2 

BB1 

BBL 

BA3 

Figure 6: Illustration of the graph representation 

  

Figure 3: illustration of the fully divergent biclusters 

 
Figure 4: illustration of the partial conserved biclusters 

 

  

Figure 5: illustration of the split conserved biclusters 
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zeros. Likewise, the bicluster BBl in B will be fully divergent in A if 

all the elements of the lth column of M are zeros. 

 

4.2.2. Identification of fully convergent Biclusters 
 

The bicluster BAk = {IAk, JAk} in A will be fully conserved in B if 

equation (3) is true. 

 

SAk = Card(IAk)xCard(JAk) = sup(M(k,:)).         (3) 

 

In equation (3), SAk is the area covered by the bicluster BAk = {IAk, 
JAk} in A, M(k,:) is the set of the weight of all the edges that are 

connected to node or bicluster BAk = {IAk, JAk}, which is the k
th row 

of the differential matrix M defined above.  

Likewise, the bicluster BBl = {IBl, JBl} in B will be fully conserved 

in A if equation (4) is true. 

 
SBl = Card(IBl)xCard(JBl) = sup(M(:,l)).         (4) 

 

In equation (4), SBl is the area covered by the bicluster BBl = {IBl, JBl} 

in B, M(:,l) is the set of the weight of all the edges that are con-

nected to node or bicluster BBl = {IBl, JBl}, which is the l
th column of 

the differential matrix M defined above. 
 

4.2.3. Identification of Partially and Split Conserved 

Biclusters 
 

A general approach to identify the set of partially and split con-
served biclusters will be to consider it as being the remaining of the 

set of all biclusters minus the set of fully convergent biclusters and 

fully divergent biclusters. 

5. RESULTS 

We applied our approach to tissues provided by the University of 
Minnesota Cancer Center’s Tissue Procurement Facility. Bulk tu-

mor and normal tissues were identified, dissected, and snap-frozen 

in liquid nitrogen within 15 to 30 minutes of resection from the 

patient. Tissue sections were made from each sample, stained with 

hematoxylin and eosin (H&E), and examined independently by two 

pathologists to confirm the pathological state of each sample. The 
tissue samples consisted of 50 normal ovaries, 20 serous papillary 

ovarian carcinoma tumors, 17 metastases of serous papillary ovarian 

carcinoma to the omentum, and 372 other tissue samples from 21 

different sites, such as kidney, breast, or lung.  All tissue samples 

underwent stringent quality control measures to verify the integrity 

of the RNA before use in gene array experiments. Gene expression 
was determined by Gene Logic Inc. using Affymetrix HU_95 arrays 

containing 12,000 known genes and 48,000 expressed sequence 

tags. The gene expression matrix was normalized using Affymetrix 

(M.A.S. 4.0.1), and the log floor data transform with a floor value of 

1 was performed.  Because of missing values, 5 metastases of serous 

papillary ovarian carcinoma tissues were removed, and about 74 
genes were eliminated because they all had missing values. Thus the 

final gene expression matrix used for simulation contained: 44 nor-

mal ovaries, 17 serous papillary ovarian carcinoma tumors, and 15 

metastases of serous papillary ovarian carcinoma to the omentum, 

about 12626 genes among which ~12000 are known genes.  

We combined the biclustering technique with a sensitivity analy-
sis of the results by varying the thresholds used in the approach to 

define divergent biclusters. We identified 55 upregulated in ovarian 

cancer tissues compared to normal ovarian tissue and the other 372 

non-ovarian tissues. This set included all 40 candidate biomarkers 

listed in [15]. We also identified 25 genes that were downregulated 

in ovarian cancer tissue and the other 372 non-ovarian tissues com-

pared to normal ovarian tissue. Note that this category has never 

been studied before. The well separated histograms of the gene ex-

pression patterns in normal and non-ovarian tissues and cancerous 

ovarian tissues of many of the newly identified candidate genes 

make them more promising biomarkers than previously reported 

candidates. Immunohistochemistry analysis and reverse transcrip-
tase polymerase chain reaction screening of all candidate bio-

markers are in progress and will be reported at the conference. 

6. CONCLUSION 

In this study, we introduce and develop a differential biclustering 

algorithm for local comparison of gene expression data. The pro-

posed algorithm can be used to identify similarities and differences 
among related organisms or to identify group of genes that are in-

volved in the development of some disease. Analysis of a set of 

normal and cancer ovarian data using the proposed algorithm shows 

interesting patterns that are either specific to normal ovarian tissue 

or ovarian cancer tissue. Investigation of the differences and simi-

larities of the S.cerevisiae and the C.albicans which are two related 
organism using our differential biclustering algorithm approach is 

currently under progress. 
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