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ABSTRACT

Recently, we have proposed a particle filtering-type method-
ology, which we refer to as cost-reference particle filtering
(CRPF). Its main feature is that it is not based on any partic-
ular probabilistic assumptions regarding the studied dynamic
model. The concepts of particles and particle streams, how-
ever, are the same in CRPF as in standard particle filtering
(SPF), but the probability masses of the particles are replaced
with user defined costs. In this paper we propose some modi-
fications of the original CRPF methodology. The changes al-
low for development of simpler algorithms, which may also
be less computationally intensive and possibly more robust.
We investigate several variants of CRPF and compare them
with SPF. The advantages and disadvantages of the consid-
ered algorithms are illustrated and discussed through com-
puter simulations of tracking of multiple targets which move
along a two-dimensional space.

1. INTRODUCTION

Cost Reference Particle Filtering (CRPF) is a generalization
of standard particle filtering (SPF) in that it allows for re-
cursive estimation of unobserved states of dynamic systems
without use of probability distributions of the noises in the
system and prior distributions of the states [7]. This method-
ology has already been successfully used in several appli-
cations including the positioning and tracking of one single
target [2]. We have found that it has substantial advantages
in terms of simplicity and robustness when compared to SPF
algorithms [1, 2, 7].

In this paper, we continue the study of this class of PF
methods and we investigate several variants of them. In par-
ticular, we propose to modify some of the steps of the origi-
nal CRPF and make the resulting methods much simpler for
use (by the practitioner) and much less computationally in-
tensive. We achieve all this without degrading the perfor-
mance of the CRPF methods.

We tested the methods by applying them to the problem
of tracking of multiple targets by using sensor measurements
obtained in a sensor network. The measurements represent
a superposition of signals that carry information about the
positions of the various targets. The sensors send the sensed
information to a fusion center that combines the received data
from all the sensors and carries out necessary computations.
We chose this problem because it is challenging and highly
nonlinear, and because it has already been addressed by SPF
[3,5, 6]

The remaining of the paper is organized as follows. First,
in Section 2, we briefly review the basic features of CRPF
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and then describe the new algorithms. In Section 3, we pro-
vide the details of the multiple target tracking problem that is
used for testing of the methods. In Section 4, we demonstrate
their performance through computer simulations. Finally, in
Section 5 we provide some concluding remarks.

2. CRPF AND ITS VARIANTS

We have a dynamic model of a system described by state and
observation equations whose general forms are given by

Xy = fx(xt—l)+ut ()
y: = fy(xt)‘f'vt 2

wheret = 1,2,... denotes discrete time; x; and y; are the state
and observation vectors, respectively; f, and f, are the state-
transition and observation functions, respectively; and u, and
v, are independent noise processes. We are interested in es-
timating the state vectors xo; = [X,X1,...,X;] from the ob-
servations y1; = [y1,...,¥:]. We address nonlinear problems,
that is, problems where at least the observation function f,(-)
is nonlinear. Although, in this statement, we assumed that the
noise is additive, the CRPF methods can be implemented in
a similar way for other types of signal degradation.

The SPF methods are based on the use of the Bayes’ the-
ory and the knowledge of the noise distributions of the noises
in (1) and (2). In many scenarios the knowledge of the dis-
tributions is questionable at best, and so our goal with CRPF
was to track unknown states in time without using probabilis-
tic assumptions of the noise. In order to estimate x¢.; from
Y1 in such situations, we considered a user-defined real cost
function [7],

C (%0:4|y1:4,A) = A€ (X0 -1[y1:-1) + AC (%] y71) 3)

where A% (x;|y;) is an incremental cost due to the presence
of a new observation and 0 < A < 1 is a forgetting factor that
weights the history of previous data. The cost measures the
quality of the state signal estimates according to the available
observations and its recursive structure allows for sequential
updating using solely the state and observation vectors at the
current time instant. We also considered a one-step risk func-

tion,
K (Xi-1lyr) = AC (fo(xi-1)|y1) 5

which acts as a prediction of the incremental cost obtained
from the previous state. With these two basic concepts, the
CRPF techniques are sequentially built in a way similar to
that of SPF algorithms [7]. It is apparent that many imple-
mentations of the CRPF methodology can be proposed for a
single problem.

In [1], the relationship between CRPF and SPF was stud-
ied (the values A = 1 and A = 0 provided the conditions) and



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

several modifications of the CRPF methodology were pro-
posed. The new algorithms avoid resampling (which is re-
quired in SPF and the original CRPF and represents a bottle-
neck in hardware implementations), are simpler to use, and
are less computationally intensive. Here we outline the most
simplified algorithm presented in [1] (A = 0, no resampling,
and estimation of the state using the particle with the mini-
mum cost) and we discuss several directions that can be taken
for further simplifications.

2.1 Simplified CRPF

Particles are initialized uniformly on a set, Xy C R with
zero assigned costs. Given a set of M state trajectories and

M
associated costs up to time 7, {x(()r_':),%,(m)} , the grid of
: m=1

state trajectories is randomly propagated when y; is observed
by implementing the following steps:

1. Selection of the most promising trajectories.
(a) Form=1,2,...M, let

A" = B(x"|yis1)

where %’t(i'f is a risk function.

(b) Sort in increasing order the (m)

t+1°
(c) Replicate the % trajectories.

Aoy M
A new particle filter denoted by {ﬁgg), t(m)} is ob-

m=1
tained as the result of this step !.
2. Propagation of new trajectories.
Form=1,....M, let

x"~ p (x|

" = A% "y

where p,; is a probability density function chosen by
the designer. As mentioned before, this is a simplified
version of the CRPF (note that compared to equation (3)
the cost here is only updated using the second term).

3. Estimation of the state. Let x"" = arg min{(ft(ﬁ)}, and
therefore we choose as estimate of the state the particle

with minimum cost.

2.2 New variants of the CRPF

Here we introduce some further simplifications and improve-
ments of the above described algorithm (labeled as crpf).
1. No risk calculation

A possible reduction in computational burden can be ob-
tained by eliminating the risk step and moving the se-
lection procedure at the end of step two, once costs are
calculated. We will denote this method by crpfy,,.

2. Other estimation procedures
The purpose of considering the minimum cost estimate
was to avoid the calculation of a probability mass func-
tion to normalize the obtain costs and perform estimation.
Other types of estimates like the weighted mean value of

Note that this CRPF approach avoids resampling by replacing it with
simple ordering of the obtained risks in step 1 of the algorithm and replicat-
ing the corresponding % (where N can be 2,3,---) particles with particles
with the lowest risks.

the samples can also be considered. The resulting algo-
rithm (which does not calculate risks either) is symbol-
ized by crpfi¥®". For ways of constructing the probability
mass function 7(-), please see [7].
3. Exploring the state space

In order to explore the sample space more efficiently,
we propose to sample P times using the same particle
(each particle would have P children and therefore we
would get M P particles in the generation step). The
number of particles is brought back to M once the costs
of all the particles are computed, the particles are ranked
according to the costs, and the particles with smallest
costs selected. This method is referred to as crpfy,,—p.

A summary of all the proposed algorithms is shown in
the Table.
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Figure 1: Target trajectories and their estimates. The esti-
mates are very close to the true trajectories and cannot be
discerned.
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Figure 2: Magnitude of the velocity.

3. STATEMENT OF THE TRACKING PROBLEM

Consider a network of N acoustic sensors deployed in a two-
dimensional field where K targets move according to a stan-
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dard model formulated as [5]

x = Gx+Guy 4
where x| = [xi'—t,...,x,zt]—r € R* indicates the position
and the velocity of the targets in the field, ie., x;; =
ks Xk Xigr %ops) L k=1,... K.

The transition matrices, G, of size 4K x 4K, and G,, of
size 4K x 2K, are block diagonal matrices with blocks

G =

X

and G/ =

coo—
co~O
o~ o
—oNo
oN o
Sonli o

where T is the sampling period. The noise in the state equa-
tion, u, € R2X, accounts for small acceleration turbulences
and is modeled as a Gaussian process with zero mean and

covariance matrix C, = diag (Guzl > Guz] g1 GMZK Y 6,42“).

The n-th sensor at a known position, r, € R2, n =
1,...,N, receives the signal power transmitted from the tar-
gets that are present in the field according to [8],

Ynr = gn(Xt)""Vn,t n=1,...,N

K Y, 4%
k

= Y 0 v, ©)
k=1 |rn - lk.,t!
where g,(-) is a function that models the received signal
power by the n—th sensor, ¥y, is the emitted (known) power
of the k—th target measured at a reference distance do, 1y, =

[%1 ks, X24s]" is the location of the k—the target at time 7,
« is an attenuation parameter that depends on the transmis-
sion medium and is considered known and the same for all
sensors, and

[ow—Ter = /(=310 (20— 2200 )2

The observation noise, v, ;, assumed to be independent from
u,, is modeled according to .4 (u,, 0'3), where u, = 6% and
o} = 20*/L, with 6% and L being the power of the back-
ground noise of one sample and the number of samples used
to obtain the measured power, respectively.

The objective is to track the targets in the field, i.e., es-
timate Xo, using the measurements of the N sensors, y, 1.1,
n=1,2,---N.

4. SIMULATION RESULTS

We now present simulation results that show the performance
of the CRPF algorithms discussed in the previous section.
We ran an experiment where we generated data according
to model (4)-(5), which corresponded to the evolution of a
system during 7 = 200s with sampling period 7; = 0.5s.
We considered that the distribution of the state noise was
u, ~ A(0,.5I,k); the parameters of the observation model
were, ¥, =¥ = 107, dy = 1m, and o = 2; and the obser-
vation noise distribution was generated with 6> = 0.02 and
L = 100. The sensor network was composed of N = 16 sen-
sors placed on a deterministic grid within the field (see Figure
1 for system configuration were the sensors are marked with
dots.)

We applied the proposed CRPF methodology for solv-
ing the tracking problem and, for comparison and bench-
marking purposes, we also implemented the SPF algorithm
[4]. For clarity, we only included in the Figures the results
corresponding to the SPF algorithm (labeled spf), the crpf,,
(CRPF that does not calculate the risks - see Table), and the
crpfar—p (CRPF that does not calculate the risk and propa-
gates per each particle P = 10 children - see Table). The crpf
(see [1]) and the crpf*®* showed similar results.

We used the following cost function for the CRPF algo-
rithms:

%(Xo) = 0
AC(xly) = [y —g(x) |
where || - || denotes Euclidean distance. The propagation

mechanism for the CRPF methods consisted of the sequence
of Gaussian densities given by

X1}~ N (Gxﬁt(T)l : 61212) ;
where the variance, Gtz, was a priori fixed.

In Figure 1, we compare the SPF method with perfect
knowledge of the noise distributions, and we present vehi-
cle trajectories in the two-dimensional space resulting from
a single simulation of the dynamic system. Both the SPF and
the CRPF-type of algorithms were run with M = 1000 parti-
cles. It is apparent that all the algorithms remained locked to
the vehicle position during the whole simulation interval.

Figure 2 shows the magnitude of the velocity of each tar-
get in one realization of the system. Even though the curves

are results of one run only, as expected, we already see that
the algorithm that propagates 10 children per particle has a
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Figure 3: Left: Mean absolute deviation of the position. Right: Mean absolute deviation of the velocity.

smoother performance than the algorithm propagating only
one child.

In Figure 3 (left) we show the mean absolute deviations
(mad) of the estimated positions of the targets. The errors
were computed over 10 runs using the same target trajecto-
ries. It can be seen that the proposed variations of the CRPF
algorithm provide good tracking results. Again, note that
the crpf,—p that explores the sample space more intensively,
gets a remarkable reductions in the error. Similar results can
be seen in Figure 3 (right) where the mean absolute devia-
tions of the estimated velocities of the targets was plotted.

5. CONCLUSIONS

We proposed three variants for simplified CRPF. Two of the
modifications result in less computationally demanding al-
gorithms, while the third approach is more computationally
intensive but explores the states space better and as a result
has improved performance. We studied the feasibility of the
methods on the problem of tracking multiple objects which
move along a certain two-dimensional area. The computer
simulations showed that the new algorithms had performance
that is similar to that of the SPF methods, or that it is even
better.
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