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ABSTRACT

In this paper, we address the problem of blind parameteanatitin
and multiuser detection for impulse radio ultra-wide badi\VB)
systems under frequency selective fading. We consider amkn

ambient and impulsive noise parameters as well as an unknown
UWB channel characterized by a large number of taps, and pro-

pose a blind Bayesian multiuser detector based on Gibbslsemnp
Because Gibbs sampler is a soft-input soft-output modwdeac
ble of exchanging probabilistic information, the proposietector

is also employed within a turbo multiuser detection streetior
coded UWB systems. The simulation results show that the $5ibb
sampler is effective in estimating the system parametedstlaat
the proposed receiver provides significant performancesgaiter

a few detection/decoding iterations.

1. INTRODUCTION

Impulse radio, a form of UWB signaling, has properties thaken
it a viable candidate for short-range communications irsdenul-
tipath environments [1]. However detrimental effects & thiwB
channel, such as impulsive noise components and severipatilt
fading effects represented by long channel impulse regsgneses
significant design challenges for such systems. For thisorean
this paper we consider parameter estimation and data aéistofor
UWB systems under multipath fading and impulsive noise,@od
Fcise a blind Bayesian multi-user detector based on Gibbplsam
2].

Gibbs sampling approach, shown in [3, 4] to be asymptoticall
optimum in the estimation performance, has been succssfi
plied to blind equalization of multipath fading channeld gnd
multi-user detection for CDMA [6] under both Gaussian and im
pulsive noise. A salient feature of these adaptive Bayesiah
tiuser detectors is their capability of using and genegasioft prob-
abilistic information, making them suitable for iteratipeocessing
as also presented in [6].

In the proposed UWB receiver, the UWB signal in considera-
tion is observed from a multiuser detection (MUD) point ofwi
The Gibbs sampling procedure is applied to the synchrondi8 U
model with unknown noise parameters for Gaussian and irveuls
noise, as well as unknown multipath channel amplitudescéded
UWB systems the proposed blind multiuser detector is engaloy
within an iterative receiver, and performance evaluationsneans
of both unknown parameter histograms and bit-error ratessugre
presented.

2. SYSTEM MODEL

We consider the time-hopping multiple access UWB systerwsho
in Figure 1, where th&th user signal is expressed as

w(t—i (i))

wherew is the transmitted monocycle waveforﬁ'}ﬁk) is the frame

time, defined as the time interval that a replica of the synibol
placed in successive frames with a totaIN}f frames per symbol.
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Figure 1: The block diagram of the UWB system.
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Figure 2: Relationship betweex(i) ands(i).

allowed hopping bins in each fram&, is the chip duration, with a
total of N. chips per frame. The monopulse is time-shifted in each

frame according to the symbol value; e.g., itis shiftedrg())/(i) if
Xk (7 )J =m,V(m) € {0,1}, with r<k)(i) =0 for our binary model

0
andr£ )( i)=Te/2.

The inherent “replication of symbols along the frames” prop
erty of the UWB model is recognized as a kind of spreading. The
change is that the conventional UWB system repeats the same s
bol along frames while a lengtk- orthogonal spreading code is
used for this purpose in the proposed model, viitibeing the
spreading matrix of dimensiom x K, whereK is the total number
of users. In(1), w(t) can be observed as linearly modulated with
symbol rate IT¢ [7]. We can obtain a discrete time model repre-
sentation by sampling evefix seconds. Then the information from
all users at the receiver can be represented by

2(i) = n(i)

As(i)+ 2

ci (i) is the time hopping sequence which is selected to be pseudevheres(i) and UWB channel coefficient matri are formed ac-

random and takes values0cy, (i) < Ny whereNj, is the number of

cording to [8] and are defined as below. The UWB channel length
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L is assumed to be equal to the total number of uke(with the
number of active users taking any value less than or equé) for

the sake of convenience. Different paths are assumed e ati
integer multiples ofr1 (i) and he noise variance(s) and the channel

coefficients are assumed to be constant duringhg/mbols per 1

user.
The UWB receiver knows(i)'s for M symbols corresponding
to of all theK users. The receiver of the proposed system deter-
mines the symbol values at positions in each frame pointédhyu
ck(i)'s. Detection of the orthogonally spread and distorted syimb
values in each frame(i)’s, allows us to form a matr>G(i) defined
in (3). The relationship betweex{i) ands(i), which is required to
understand this conversion, is shown in Figure 2. From lmerie
procedure involves the estimation of the symbol values uGadels-
sian or impulsive noise and frequency selective fading ivsvB
system with orthogonal spreading applied over successivesds.
We make the following definitions which are helpful in forrgin

the signal model that will be used in the sequel and in computi 3.

the a posteriori bit probabilitieR(x (i) = 1|Y) for k= 1,2,...,K
andi=0,1,....M —1.

(i) = Pali)x() )"
si) = [sY(i)s? () - KT .
B(i) = diagxy(i), Xo(i),..., x(1)},i=0,1,2,...M—1

D = [dydy .- dk]

X = [x0)x(1) - x(M-1)]

Y = [Oy@) - yM-1)

a = [AA-- AT

A = diaQAl,Ag,...,AK].

Note that we can now form the matr&(i) as

G(i) =DB(i),i =0,1,...M—1, 3)

previously. Then we can rewrite our problem as

y(i) = DAXx(i)+n()
= DB(i)a+n(i),i=0,1,....,M—1.

4
®)

whereB(i) can be formed as
B(i)=D"'G(i),i=0,1,....M—1.

In the next section, we describe the application of Gibbspdam
for symbol estimation under unknown UWB fading channel with
Gaussian and impulsive noise.

3. BLIND BAYESIAN MULTIUSER DETECTION FOR
UWB SYSTEMS

In this section we will present the operation of Gibbs samfitet
for Gaussian and then for impulsive noise models.

3.1 Gaussian Noise Model

Let 8 = [a g2 X|T be a vector of unknown parameters, and¥et
be the observed data. To find the a posteriori marginal Histri
tion of some parameter, say?, conditioned on the observatiof,
i.e.,p(a?|Y), direct evaluation involves

p(a?]Y) :/./.4./p(9|Y)dadX ®)

for all the elements of and X. The Gibbs sampler is a Monte
Carlo method for numerical evaluation of the above multigim
sional integral when a direct evaluation is infeasible. Basic idea

is to generate random samples from the joint posterioridigton
p(6|Y) and then to estimate any marginal distribution using these
samples [3].

2.

3.1.1 Prior Distributions

Bayesian analysis requires a careful selection of pridritigions.
The following are the basic assumptions:

The ambient noise distribution is Gaussian. The pdf(of is

given by
L o NI
(2mo2)1/2 202

For the unknown amplitude vectar=[A A --- AK}T where
A’s are the channel coefficients, a truncated Gaussian gger d
tribution is assumed with

p(a) O N(ag, Xo)laso (8)

wherelg.g is an indicator that is 1 if all the elements afare
positive and is 0 otherwise.

For the noise variance?, an inverse chi-square prior distribu-
tion is assumed

p(o?) O x2(vo, o) )

with vg being the degrees of freedom ahgl the location pa-
rameter.

p(n(i)) = @)

. Assuming that the binary pulse position modulation (PPM)

symbolsx(i)’s are independent, the prior distributi@(X) can
be expressed as

-1

M
p(X) = iEL

wherepy(i) = P(x(i) = 1).

K i .
M eV - p@ 0 (0)
k=0

3.1.2 Conditional Posterior Distributions

The following conditional distributions are needed for ksam-
pler estimation steps with their derivations in [6].
from the values detected at chips th¢i) values point as explained 1

The conditional distribution of the amplitude vecépgivenag?,
X andY is given by

p(ala?,X,Y) ON(a., =:)laso (11)
with
1 e, ML
=50+ 3 Z}B(I)RB(I), (12
i=
and

1 M-1
a =3, (201a0+ 2 Zj B(i)DTy(i)) (13)

whereR = DTD.

2. The conditional distribution of the noise variamn%given a, X

andY is given by

p(o%laX,Y) D)2 (vaMM) (14)

Vo +KM
with

M-1
&= ; ly(i) — DAX(D)|. (15)

. The conditional probabilities of(i) = 0 or 1, givena, 02, Xyi

andY with Xy; defined in Section 3.1.3 can be obtained from

P(x(i) =1la, 0% Xi,Y) (i)
P(x(i) =0la, 02, Xy, Y)  1—pk(i)

Zxdl [y(i)-DAXY(i)] (16)

with py(i) being the a priori probability of a transmitted symbol
1 and

X0(0) = [x(i) - X1 (i) OXa (i) - X (D))"
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3.1.3 Gibbs Multiuser Detector
The Gibbs sampler, given the initial valug®) = [a® g2 x (O
and posterior distributions, iterates the following loop:

e Draw samplea(™ from p(a\azm*l),x(”*l)?

o Draw samples?™ from p(o2/a(™
e FOri=0,1,....M—1,
Fork=12,... K

Y) given by(11).

. X1 y) given by(14).

Draw sample (i)™ from P(x(i)[a(™, g2
X" ) given by(16).
where
X = xO™,. x(-1)®,
Xl(i)(m,...,xk,l(i)(n),xkﬂ(i)(”’l),...,xK(i)(”*)’
x(i+1)M D x(M—1)Y}

The a posteriori symbol probabilities are approximated as

1 n=np+N n)
P((i) =1]Y) = > a (17)
n=np+1
whereng is the “burn-in” period,ééin) =1if xl((n) =1 andééin) =

if xf(n) = 0. The maximum a posteriori probability (MAP) decision
is given by

X (i) =arg max P b|Y). 18
(i) = arg max P(xc(i) =blY) (18)
3.2 Impulsive Noise M odel
The vector of unknown parameter3, is changed intd = [a 012
02 £ I X|T for the impulsive case wheie= {1;(i): j=0,...,Ny—
1i=0,...,M—1}, and
1 it nj(i) ~N(0,02),
'J(')‘{ 2 it ny(i) ~N(0,02), (19)
fori=0,...,M—1,j=0,...,Ny— 1. Define
N i 2 2 2
A(i) = diadgj i), O i) Oi, (i) (20)

The impulsive outliers occur with frequeney andal2 and 02? are
the noise variances.

3.2.1 Prior Distributions

The following are the prior distribution selections :

1. The ambient noise distribution is a common two-term Gauss
mixture [9]. The pdf ofn;(i) is given by

Py (1) = =2 xp( ”'(”2)+ : exp(”"(”2>
: \/2no? 207 \/2mo? 203
(21)

wherej =0,...,Ny—1,0< € < 1 ando? < 02.

2. For the unknown amplitude vectay a truncated Gaussian prior
distribution is assumed as given(i@).

3. For the noise varianceqz,l = 1,2, independent inverse chi-
square prior distributions are assumed

p(a?) ~ X 2(W, A1), | = 1,2, with viAg < vado. (22)

4. For the binary PPM symbolsg(i)’s being independent, the
prior distribution in(10) is assumed.

5. For the probabilitye, a beta prior distribution (denoted I) is

assumed.
_ T(ag+hp)
P&) = Fag)r(bo)*

6. Giveng, the conditional distribution of the indicator random
variablel (i) is

(1-&)> ' ~B(ag,bo).  (23)

plj()=1le) = 1-e p(j(i)=2le)=¢ (24)
pIle) = (1-g)™e™ (25)
with
M-1 M-1
m = Z} n (i) andmp = Z} nz(i) = MNp —my.
Here,n (i) is the number oF sin {lo(i),11(i),. .., In—1(])},1 =

1,2. Note thamny (i) +np(i) = Np.

3.2.2 Conditional Posterior Distributions

1. The conditional distribution of the amplitude vectr given
0%,03,6,1, X andY, is

p(a‘af70227£7I7X7Y) u N(a*72*)|a>0 (26)

with
=31+ Z> (DT A()IDB(i), (27)

and
a. =3, (Eo a0+ 20 (i)DTA()ty(i )>~ (28)

2. The conditional distribution of the noise varianqé given a,
ol_z, g1, XandY forl =2if | = 1andl = 1if | =2, is given by

p(ofla, of,&,1,X,Y) (29)
M-1 A
o x|+ Z}m(i),w
is Vi+3ite ni(i)
with
M—1Nh—
5= Z) Z) yi()) — &N Ax(D)]7- 11, )=y (30)
where k-, is the indicator function such that it is 1 if

lij(i)=1,anditis O ifl; (i) ;A l; ET is the jth row of the spreading
waveform matrixD, j = Nh -1.

3. The conditional probablllty ok(i) = 0 or 1, givena, 07, 0%,
&, |, Xk andY, can be obtained from

P (% (

P(x(i) =
P (i)

1—pk(i)

4. The conditional distribution dfj(i), givena, 02, 02, ¢, 1 i, X
andY, with I denoting the set containing all elements|of
except forl(i), is given by

P(lj(i) = 1a,0f,0%,&1;i,X,Y)
P(j(i)=2la 07,03, 1ji,X,Y)

Mexp(% [vit) —EFAXMZ {ai% B UifD

g1€&
M-—1.

i) =1la,07,02,€,1,%X,Y)

0la,0%,0%,€,1, X, Y)

exp(2Adf A1) Hy(i) — DAXR()]) - (31)

(32)

for j=0,....N,—1andi =
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(i)
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5. The conditional distribution of, givena, o7, 03, 1, X andY is

given by

M-1 M-1
Plela,of,03,1,X,Y] =B <a0+ % noi), bo + % nl(i)> :
a T (@3

A posteriori
LLR for user,

Ty

/ Extrinsic info. for user 1

Deinterleaver

A priori LLR for user 1
> Decoder Interleaver

A priori LLR for user 2
J—» Decoder —bé—zb Interleaver

A posteriori Extrinsic info. for user 2
LLR for user
> ¥
Deinterleaver

A posteriori
LLR for user
K +

3.2.3 Gibbs Multiuser Detector

Given the initial value®(© = [a(® ¢2© 62 £(0) (0 (0] the

=

/ Extrinsic info. for user K

Deinterleaver

A priori LLR for user
= Decoder Interleaver

Gibbs sampler iterates the following loop:

o Draw samplea™ from plajo?'

X (-1 ) given by (26).

e Draw sample ¢?

(n)

X (1 y) given by(29).

e Draw sample 022<n) from p(022|a(”>,012<”),e<”*1),1(”*1>,

X (-1 y) given by(29).
e FOri=0,1,....M—1,

Fork=1,2,...

Draw sample (i)™ from P(x(i)|a(", o?

K,

from p(o?|al,

n-1)
) 02

2(n-1) g(n-1)

)

2(n=1) (n-1) y(n-1)

2 ) ’

(n)

a2 -1 101 %M v) given by (31)

where

X = xOO,x = DO )0, X1 (),
X1 (D xe (DY x(i42)Y L x(M—1)(-DY,

e FOri=0,1,....M—1,

Forj=1,2,...,Np—1,

Draw 1j(i)(" from P('j(i)|a(n):‘712<n)v‘722(n>'
e 0,1, X7, ) given by(32).

where

1V = (L0, Iy 1l — DO 1), 11 (),

|j+1(i)(n71) ey |Nh,1(i)(n71),INh,1(M — 1)(n—l)}_

e Draw £ from p(ea(",0?

(33).

(n

» 72

20 10 X" Y) given by

I(nfl)'

Figure 3: The iterative multiuser detector structure.

3.3 Adaptive Turbo Multiuser Detector

The Gibbs sampler makes hard decisions based on the a posteri
ori log-likelihood ratios (LLR) of the transmitted symbds given

in (18). However, its output contains the a posteriori conditional
probabilities ofx(i) being 0 or 1 in(16) or (31) for Gaussian and
impulsive noise respectively. These probabilities addedi @aver-
aged over the after-burn-in steps of the Gibbs sampler carsbe

as the soft input to the iterative decoder. One can therefotain

the a posteriori log-likelihood ratios depending on the bghvalue

of the transmitted symbol as

pOY X)) =1) . P(x(i)=1)
(V=0 9pxi=0 ¥

fork=1,2,...,Kandi=0,1,...,M —1. The second term dB4)

is the a priori information ok (i) computed by the channel decoder
in the previous iteration, interleaved and fed back to theppsed
multiuser detector for the following iteration. It equalfod the first
iteration as no prior information exists. The first term(84) is the
extrinsic information which is, after being deinterleayeded by
the channel decoder to produce a posteriori LLRgx(i)] equals
to the value of the first term for the first iteration of the déeo
These LLRs are after being interleaved, sent to the multidisec-
tor to be used in the calculation of the a priori distribui@s shown
in Figure 3. Note that for all the iterations, the decoderdpiced a
priori LLRs are interleaved and then subtracted from thetiomer
detector output, the a posteriori LLRs, to form the extirigfor-
mation not influenced by the a priori information computedtiy
decoder in the previous iteration. The decoder in Figure Bema
use of the well-known MAP algorithm [10].

A1[x(i)] = log

+lo P
9p

4. SIMULATION RESULTS

A binary PPM modulated UWB system of 5 active users in a non-
line-of-sight UWB channel given in [8] with all the coefficits be-
ing positive is used in the simulations. The system paramete
N; = 10 frames/symbolN, = 500 bins,N; = 1000 chips/frame.
The channel code for each user is a rate that is one half ofotire ¢
straint length-5 convolutional code (with octal 23, 35 ganers).
The initial values o = [1 1 --- 1]T, ;;, andXo = 1000 114x114
are used in (8)yp = 1,A0 = 0.1 are used i{9); vi = 1,4, =0.1in
(22) for | =1 andv; = 1, A| = 1 again in(22) for | = 2. Moreover,
ap =1 andbg = 2 are used i1i23). D is formed by trimming 128 bit
long Walsh codes to 114 bits. The total number of symbols per,u
M, is chosen to be 256. In the Monte Carlo simulations, theltesu
of cases where the Gibbs sampler does not converge to aogoluti
are discarded.

The turbo gain of the proposed structure is 24 dB when a com-

The a posteriori symbol probabilities are approximated agarison is made between the first and the third iterationgtwis

given in(17) and(18).

significant. It is demonstrated that the iterative multiudetector
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is superior to the matched filter (MF) based receiver as thR SN

grows. Increasing the number of iterations leads to smgHeérs,
as observed in all turbo-processed systems. In Figure 4uttves
corresponding to all iterations are those at the output eftiind
multiuser detector, first iteration being the uncoded hibrerate.
Kappa, in the legend, is the ratio of the variances of the Isipel
and non-impulsive component for impulsive scenario (Kapph
for the Gaussian case). The histograms of the impulsiveersus-
nario is given in Figure 5. The tracking performance for tams
scenario is seen in Figure 6.

5. CONCLUSION

In this paper, the Gibbs sampler receiver is adapted to abina
PPM modulated impulse radio UWB system in a frequency selec
tive UWB channel with Gaussian and impulsive noise. The soff

outputs of the Gibbs sampler are iteratively decoded. Tdrative
multiuser detector is shown to be more effective than thezeon
tional receiver for UWB systems. The Gibbs sampler outparfo
the MF-based conventional receiver at the expense of ceradite
complexity. Therefore, the proposed system shall be eteduaith
respect to the BER requirements of any design in which it bell
employed.
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