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ABSTRACT
In this paper, we address the problem of blind parameter estimation
and multiuser detection for impulse radio ultra-wide band (UWB)
systems under frequency selective fading. We consider unknown
ambient and impulsive noise parameters as well as an unknown
UWB channel characterized by a large number of taps, and pro-
pose a blind Bayesian multiuser detector based on Gibbs sampling.
Because Gibbs sampler is a soft-input soft-output module, capa-
ble of exchanging probabilistic information, the proposeddetector
is also employed within a turbo multiuser detection structure for
coded UWB systems. The simulation results show that the Gibbs
sampler is effective in estimating the system parameters and that
the proposed receiver provides significant performance gains after
a few detection/decoding iterations.

1. INTRODUCTION

Impulse radio, a form of UWB signaling, has properties that make
it a viable candidate for short-range communications in dense mul-
tipath environments [1]. However detrimental effects of the UWB
channel, such as impulsive noise components and severe multipath
fading effects represented by long channel impulse responses poses
significant design challenges for such systems. For this reason, in
this paper we consider parameter estimation and data restoration for
UWB systems under multipath fading and impulsive noise, andpro-
pose a blind Bayesian multi-user detector based on Gibbs sampling
[2].

Gibbs sampling approach, shown in [3, 4] to be asymptotically
optimum in the estimation performance, has been successfully ap-
plied to blind equalization of multipath fading channels [5] and
multi-user detection for CDMA [6] under both Gaussian and im-
pulsive noise. A salient feature of these adaptive Bayesianmul-
tiuser detectors is their capability of using and generating soft prob-
abilistic information, making them suitable for iterativeprocessing
as also presented in [6].

In the proposed UWB receiver, the UWB signal in considera-
tion is observed from a multiuser detection (MUD) point of view.
The Gibbs sampling procedure is applied to the synchronous UWB
model with unknown noise parameters for Gaussian and impulsive
noise, as well as unknown multipath channel amplitudes. Forcoded
UWB systems the proposed blind multiuser detector is employed
within an iterative receiver, and performance evaluationsby means
of both unknown parameter histograms and bit-error rate curves are
presented.

2. SYSTEM MODEL

We consider the time-hopping multiple access UWB system shown
in Figure 1, where thekth user signal is expressed as

s(k)(t) =
∞

∑
i=−∞

ω
(

t − iT (k)
f −ck (i)Tc − τ(k)

m (i)
)

(1)

whereω is the transmitted monocycle waveform.T(k)
f is the frame

time, defined as the time interval that a replica of the symbolis
placed in successive frames with a total ofNf frames per symbol.
ck (i) is the time hopping sequence which is selected to be pseudo-
random and takes values 0< ck (i) < Nh whereNh is the number of
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Figure 1: The block diagram of the UWB system.

Nf – total # of frames, forming the user signal s(i)

Nh - # of hopping-allowed chips 

Nc – total # of chips

PPM shift, determined according to the value of x(i)

Each replica of the symbol located in different chips  
in each frame according to the orthogonal code

Figure 2: Relationship betweenx(i) ands(i).

allowed hopping bins in each frame.Tc is the chip duration, with a
total of Nc chips per frame. The monopulse is time-shifted in each

frame according to the symbol value; e.g., it is shifted byτ(k)
m (i) if

xk ⌊(
i

Nf
)⌋ = m, ∀(m)∈ {0,1}, with τ(k)

0 (i) = 0 for our binary model

andτ(k)
1 (i) = Tc/2.

The inherent “replication of symbols along the frames” prop-
erty of the UWB model is recognized as a kind of spreading. The
change is that the conventional UWB system repeats the same sym-
bol along frames while a length-K orthogonal spreading code is
used for this purpose in the proposed model, withD being the
spreading matrix of dimensionsNf ×K, whereK is the total number
of users. In(1), ω(t) can be observed as linearly modulated with
symbol rate 1/Tc [7]. We can obtain a discrete time model repre-
sentation by sampling everyTc seconds. Then the information from
all users at the receiver can be represented by

z(i) = A s(i)+n(i) (2)

wheres(i) and UWB channel coefficient matrixA are formed ac-
cording to [8] and are defined as below. The UWB channel length
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L is assumed to be equal to the total number of usersK (with the
number of active users taking any value less than or equal toK) for
the sake of convenience. Different paths are assumed to arrive at
integer multiples ofτ1(i) and he noise variance(s) and the channel
coefficients are assumed to be constant during theM symbols per
user.

The UWB receiver knowsck(i)’s for M symbols corresponding
to of all theK users. The receiver of the proposed system deter-
mines the symbol values at positions in each frame pointed out by
ck(i)’s. Detection of the orthogonally spread and distorted symbol
values in each frame,z(i)’s, allows us to form a matrix,G(i) defined
in (3). The relationship betweenx(i) ands(i), which is required to
understand this conversion, is shown in Figure 2. From hereon, the
procedure involves the estimation of the symbol values under Gaus-
sian or impulsive noise and frequency selective fading in anUWB
system with orthogonal spreading applied over successive frames.

We make the following definitions which are helpful in forming
the signal model that will be used in the sequel and in computing
the a posteriori bit probabilities,P(xk(i) = 1|Y) for k = 1,2, ...,K
andi = 0,1, ...,M−1.

x(i) = [x1(i) x2(i) · · · xK(i)]T

s(i) = [s(1)(i) s(2)(i) · · · s(K)]T

B(i) = diag[x1(i), x2(i), . . . , xK(i)], i = 0,1,2, ...,M−1

D = [d1 d2 · · · dK ]

X = [x(0) x(1) · · · x(M−1)]

Y = [y(0) y(1) · · · y(M−1)]

a = [A1 A2 · · · AK ]T

A = diag[A1,A2, . . . ,AK ].

Note that we can now form the matrixG(i) as

G(i) = DB(i), i = 0,1, ...,M−1, (3)

from the values detected at chips theck(i) values point as explained
previously. Then we can rewrite our problem as

y(i) = DAx(i)+n(i) (4)

= DB(i)a+n(i), i = 0,1, . . . ,M−1. (5)

whereB(i) can be formed as

B(i) = D−1G(i), i = 0,1, . . . ,M−1.

In the next section, we describe the application of Gibbs sampler
for symbol estimation under unknown UWB fading channel with
Gaussian and impulsive noise.

3. BLIND BAYESIAN MULTIUSER DETECTION FOR
UWB SYSTEMS

In this section we will present the operation of Gibbs sampler first
for Gaussian and then for impulsive noise models.

3.1 Gaussian Noise Model

Let θ = [a σ2 X]T be a vector of unknown parameters, and letY
be the observed data. To find the a posteriori marginal distribu-
tion of some parameter, sayσ2, conditioned on the observationY,
i.e.,p(σ2|Y), direct evaluation involves

p(σ2|Y) =

∫ ∫
. . .

∫
p(θ |Y)da dX (6)

for all the elements ofa and X. The Gibbs sampler is a Monte
Carlo method for numerical evaluation of the above multidimen-
sional integral when a direct evaluation is infeasible. Thebasic idea
is to generate random samples from the joint posterior distribution
p(θ |Y) and then to estimate any marginal distribution using these
samples [3].

3.1.1 Prior Distributions

Bayesian analysis requires a careful selection of prior distributions.
The following are the basic assumptions:

1. The ambient noise distribution is Gaussian. The pdf ofn(i) is
given by

p(n(i)) =
1

(2πσ2)1/2
exp

(
−
‖n(i)‖2

2σ2

)
(7)

2. For the unknown amplitude vectora = [A1 A2 · · · AK ]T where
Ak’s are the channel coefficients, a truncated Gaussian prior dis-
tribution is assumed with

p(a) ∝ N(a0,Σ0)Ia>0 (8)

whereIa>0 is an indicator that is 1 if all the elements ofa are
positive and is 0 otherwise.

3. For the noise varianceσ2, an inverse chi-square prior distribu-
tion is assumed

p(σ2) ∝ χ−2(ν0,λ0) (9)

with ν0 being the degrees of freedom andλ0 the location pa-
rameter.

4. Assuming that the binary pulse position modulation (PPM)
symbolsxk(i)’s are independent, the prior distributionp(X) can
be expressed as

p(X) =
M−1

∏
i=0

K

∏
k=0

pk(i)
xk(i)[1− pk(i)]

1−xk(i) (10)

wherepk(i) = P(xk(i) = 1).

3.1.2 Conditional Posterior Distributions

The following conditional distributions are needed for Gibbs sam-
pler estimation steps with their derivations in [6].

1. The conditional distribution of the amplitude vectora, givenσ2,
X andY is given by

p(a|σ2,X,Y) ∝ N(a∗,Σ∗)Ia>0 (11)

with

Σ
−1
∗ = Σ

−1
0 +

1
σ2

M−1

∑
i=0

B(i)RB(i), (12)

and

a∗ = Σ∗

(

Σ
−1
0 a0 +

1
σ2

M−1

∑
i=0

B(i)DTy(i)

)

(13)

whereR = DTD.

2. The conditional distribution of the noise varianceσ2 givena, X
andY is given by

p(σ2|a,X,Y) ∝ χ−2
(

ν0 +KM,
ν0λ0 +s2

ν0 +KM

)
(14)

with

s2 =
M−1

∑
i=0

‖y(i)−DAx(i)‖2. (15)

3. The conditional probabilities ofxk(i) = 0 or 1, givena,σ2,Xki
andY with Xki defined in Section 3.1.3 can be obtained from

P(xk(i) = 1|a,σ2,Xki,Y)

P(xk(i) = 0|a,σ2,Xki,Y)
=

pk(i)
1− pk(i)

e
2Ak
σ2 dT

k [y(i)−DAx0
k(i)] (16)

with pk(i) being the a priori probability of a transmitted symbol
1 and

x0
k(i) = [x1(i) · · · xk−1(i) 0 xk+1(i) · · · xK(i)]T .
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3.1.3 Gibbs Multiuser Detector

The Gibbs sampler, given the initial valuesθ (0) = [a(0) σ2(0)
X(0)]T

and posterior distributions, iterates the following loop:

• Draw samplea(n) from p(a|σ2(n−1)
,X(n−1),Y) given by(11).

• Draw sampleσ2(n)
from p(σ2|a(n),X(n−1),Y) given by(14).

• For i = 0,1, . . . ,M−1,

For k = 1,2, . . . ,K,

Draw sample xk(i)(n) from P(xk(i)|a(n),σ2(n)
,

X
(n)
ki ,Y) given by(16).

where

X
(n)
ki = {x(0)(n), . . . ,x(i−1)(n),

x1(i)
(n), . . . ,xk−1(i)

(n),xk+1(i)
(n−1), . . . ,xK(i)(n−1),

x(i +1)(n−1), . . . ,x(M−1)(n−1)}

The a posteriori symbol probabilities are approximated as

P(xk(i) = 1|Y) =
1
N

n=n0+N

∑
n=n0+1

δ (n)
ki (17)

wheren0 is the “burn-in” period,δ (n)
ki = 1 if x(n)

k = 1 andδ (n)
ki = 0

if x(n)
k = 0. The maximum a posteriori probability (MAP) decision

is given by
x̂k(i) = arg max

b∈{1,0}
P(xk(i) = b|Y). (18)

3.2 Impulsive Noise Model

The vector of unknown parameters,θ , is changed intoθ = [a σ2
1

σ2
2 ε I X]T for the impulsive case whereI= {I j (i) : j = 0, . . . ,Nh−

1, i = 0, . . . ,M−1}, and

I j (i) =

{
1 if n j(i) ∼ N(0,σ2

1 ),
2 if n j(i) ∼ N(0,σ2

2 ),
(19)

for i = 0, . . . ,M−1, j = 0, . . . ,Nh−1. Define

Λ(i) = diag[σ2
I0(i)

,σ2
I1(i)

, . . . ,σ2
INh−1(i)

] (20)

The impulsive outliers occur with frequencyε, andσ2
1 andσ2

2 are
the noise variances.

3.2.1 Prior Distributions

The following are the prior distribution selections :

1. The ambient noise distribution is a common two-term Gaussian
mixture [9]. The pdf ofn j (i) is given by

p(n j(i)) =
1− ε√
2πσ2

1

exp

(

−
n j (i)2

2σ2
1

)

+
ε√

2πσ2
2

exp

(

−
n j (i)2

2σ2
2

)

(21)
where j = 0, . . . ,Nh−1, 0< ε < 1 andσ2

1 < σ2
2 .

2. For the unknown amplitude vectora, a truncated Gaussian prior
distribution is assumed as given in(8).

3. For the noise variancesσ2
l , l = 1,2, independent inverse chi-

square prior distributions are assumed

p(σ2
l ) ∼ χ−2(νl ,λl ), l = 1,2, with ν1λ1 < ν2λ2. (22)

4. For the binary PPM symbols,xk(i)’s being independent, the
prior distribution in(10) is assumed.

5. For the probabilityε, a beta prior distribution (denoted byβ ) is
assumed.

p(ε) =
Γ(a0 +b0)

Γ(a0)Γ(b0)
εa0−1(1− ε)b0−1 ∼ β (a0,b0). (23)

6. Given ε, the conditional distribution of the indicator random
variableI j(i) is

p(I j(i) = 1|ε) = 1− ε, p(I j(i) = 2|ε) = ε (24)

p(I|ε) = (1− ε)m1εm2 (25)

with

m1 =
M−1

∑
i=0

n1(i) andm2 =
M−1

∑
i=0

n2(i) = MNh−m1.

Here,nl (i) is the number ofl ′s in {I0(i), I1(i), . . . , INh−1(i)}, l =
1,2. Note thatn1(i)+n2(i) = Nh.

3.2.2 Conditional Posterior Distributions

1. The conditional distribution of the amplitude vectora, given
σ2

1 ,σ2
2 ,ε,I,X andY, is

p(a|σ2
1 ,σ2

2 ,ε,I,X,Y) ∝ N(a∗,Σ∗)Ia>0 (26)

with

Σ
−1
∗ = Σ

−1
0 +

M−1

∑
i=0

B(i)DT
Λ(i)−1

DB(i), (27)

and

a∗ = Σ∗

(

Σ
−1
0 a0 +

M−1

∑
i=0

B(i)DT
Λ(i)−1y(i)

)

. (28)

2. The conditional distribution of the noise varianceσ2
l given a,

σ2
l

, ε, I, X andY for l = 2 if l = 1 andl = 1 if l = 2, is given by

p(σ2
l |a,σ2

l
,ε,I,X,Y) (29)

∝ χ−2

(

νl +
M−1

∑
i=0

nl (i),
νl λl +s2

l

νl +∑M−1
i=0 nl (i)

)

with

s2
l =

M−1

∑
i=0

Nh−1

∑
j=0

[y j(i)−ξ T
j Ax(i)]2 ·1{I j (i)=l} (30)

where 1{I j (i)=l} is the indicator function such that it is 1 if

I j (i) = l , and it is 0 ifI j (i) 6= l ; ξ T
j is the j th row of the spreading

waveform matrixD, j = 0, . . . ,Nh−1.
3. The conditional probability ofxk(i) = 0 or 1, givena, σ2

1 , σ2
2 ,

ε, I, Xki andY, can be obtained from

P(xk(i) = 1|a,σ2
1 ,σ2

2 ,ε,I,Xki,Y)

P(xk(i) = 0|a,σ2
1 ,σ2

2 ,ε,I,Xki,Y)
=

pk(i)
1− pk(i)

exp
(

2AkdT
k Λ(i)−1[y(i)−DAx0

k(i)]
)

. (31)

4. The conditional distribution ofI j(i), givena, σ2
1 , σ2

2 , ε, I ji , X
and Y, with I ji denoting the set containing all elements ofI
except forI j(i), is given by

P(I j(i) = 1|a,σ2
1 ,σ2

2 ,ε,I ji ,X,Y)

P(I j(i) = 2|a,σ2
1 ,σ2

2 ,ε,I ji ,X,Y)
= (32)

σ2(1− ε)

σ1ε
exp

(
1
2

[
y j(i)−ξ T

j Ax(i)
]2
[

1

σ2
2
−

1

σ2
1

])

for j = 0, . . . ,Nh−1 andi = 0, . . . ,M−1.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Deinterleaver Decoder Interleaver

Gibbs 
Multi-user 
Detector

+ +

Deinterleaver Decoder Interleaver+ +

Deinterleaver Decoder Interleaver+ +
+

+

+

+

+

+

-

-

-
-

-

-A posteriori
LLR for user 

1 

A posteriori
LLR for user 

2

A posteriori
LLR for user 

K

Extrinsic info. for user 1

Extrinsic info. for user 2

Extrinsic info. for user K

A priori LLR for user 1

A priori LLR for user 2

A priori LLR for user K

y(i)

Figure 3: The iterative multiuser detector structure.

5. The conditional distribution ofε, givena, σ2
1 , σ2

2 , I, X andY is
given by

P[ε|a,σ2
1 ,σ2

2 ,I,X,Y] = β

(

a0 +
M−1

∑
i=0

n2(i),b0 +
M−1

∑
i=0

n1(i)

)

.

(33)

3.2.3 Gibbs Multiuser Detector

Given the initial valuesθ (0) = [a(0) σ2
1

(0) σ2
2

(0) ε(0) I(0) X(0)], the
Gibbs sampler iterates the following loop:

• Draw samplea
(n) from p(a|σ2

1
(n−1)

,σ2
2

(n−1)
,ε(n−1),I(n−1),

X
(n−1),Y) given by (26).

• Draw sample σ2
1

(n)
from p(σ2

1 |a
(n),σ2

2
(n−1)

,ε(n−1),I(n−1),

X
(n−1),Y) given by(29).

• Draw sample σ2
2

(n)
from p(σ2

2 |a
(n),σ2

1
(n)

,ε(n−1),I(n−1),

X
(n−1),Y) given by(29).

• For i = 0,1, . . . ,M−1,

For k = 1,2, . . . ,K,

Draw sample xk(i)(n) from P(xk(i)|a(n),σ2
1

(n)
,

σ2
2

(n)
,ε(n−1),I(n−1),X

(n)
ki ,Y) given by (31)

where
X

(n)
ki = {x(0)(n), . . . ,x(i − 1)(n),x1(i)(n), . . . ,xk−1(i)(n),

xk+1(i)(n−1), . . . ,xK(i)(n−1),x(i +1)(n−1), . . . ,x(M−1)(n−1)}.

• For i = 0,1, . . . ,M−1,

For j = 1,2, . . . ,Nh−1,

Draw I j (i)(n) from P(I j (i)|a(n),σ2
1

(n)
,σ2

2
(n)

,

ε(n−1),I
(n)
ji ,X(n),Y) given by(32).

where
I
(n)
ji = {I0(0)(n), . . . ,INh−1(i − 1)(n), I0(i)(n), . . . , I j−1(i)(n),

I j+1(i)(n−1), . . . , INh−1(i)(n−1),INh−1(M−1)(n−1)}.

• Draw ε(n) from p(ε|a(n),σ2
1

(n)
,σ2

2
(n)

,I(n),X(n),Y) given by
(33).

The a posteriori symbol probabilities are approximated as
given in(17) and(18).

3.3 Adaptive Turbo Multiuser Detector

The Gibbs sampler makes hard decisions based on the a posteri-
ori log-likelihood ratios (LLR) of the transmitted symbolsas given
in (18). However, its output contains the a posteriori conditional
probabilities ofxk(i) being 0 or 1 in(16) or (31) for Gaussian and
impulsive noise respectively. These probabilities added and aver-
aged over the after-burn-in steps of the Gibbs sampler can beused
as the soft input to the iterative decoder. One can thereforeobtain
the a posteriori log-likelihood ratios depending on the symbol value
of the transmitted symbol as

λ1[xk(i)] = log
p(Y|xk(i) = 1)

p(Y|xk(i) = 0)
+ log

P(xk(i) = 1)

P(xk(i) = 0)
. (34)

for k = 1,2, . . . ,K andi = 0,1, . . . ,M−1. The second term of(34)
is the a priori information ofxk(i) computed by the channel decoder
in the previous iteration, interleaved and fed back to the proposed
multiuser detector for the following iteration. It equals 0for the first
iteration as no prior information exists. The first term in(34) is the
extrinsic information which is, after being deinterleaved, used by
the channel decoder to produce a posteriori LLRs.λ1[xk(i)] equals
to the value of the first term for the first iteration of the decoder.
These LLRs are after being interleaved, sent to the multiuser detec-
tor to be used in the calculation of the a priori distributions as shown
in Figure 3. Note that for all the iterations, the decoder-produced a
priori LLRs are interleaved and then subtracted from the multiuser
detector output, the a posteriori LLRs, to form the extrinsic infor-
mation not influenced by the a priori information computed bythe
decoder in the previous iteration. The decoder in Figure 3 makes
use of the well-known MAP algorithm [10].

4. SIMULATION RESULTS

A binary PPM modulated UWB system of 5 active users in a non-
line-of-sight UWB channel given in [8] with all the coefficients be-
ing positive is used in the simulations. The system parameters are
Nf = 10 frames/symbol,Nh = 500 bins,Nc = 1000 chips/frame.
The channel code for each user is a rate that is one half of the con-
straint length-5 convolutional code (with octal 23, 35 generators).
The initial values ofa0 = [1 1 · · · 1]T1×114 andΣ0 = 1000I114×114
are used in (8);ν0 = 1,λ0 = 0.1 are used in(9); νl = 1,λl = 0.1 in
(22) for l = 1 andνl = 1, λl = 1 again in(22) for l = 2. Moreover,
a0 = 1 andb0 = 2 are used in(23). D is formed by trimming 128 bit
long Walsh codes to 114 bits. The total number of symbols per user,
M, is chosen to be 256. In the Monte Carlo simulations, the results
of cases where the Gibbs sampler does not converge to a solution
are discarded.

The turbo gain of the proposed structure is 24 dB when a com-
parison is made between the first and the third iterations, which is
significant. It is demonstrated that the iterative multiuser detector
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is superior to the matched filter (MF) based receiver as the SNR
grows. Increasing the number of iterations leads to smallergains,
as observed in all turbo-processed systems. In Figure 4, thecurves
corresponding to all iterations are those at the output of the blind
multiuser detector, first iteration being the uncoded bit error rate.
Kappa, in the legend, is the ratio of the variances of the impulsive
and non-impulsive component for impulsive scenario (Kappa= 1
for the Gaussian case). The histograms of the impulsive noise sce-
nario is given in Figure 5. The tracking performance for the same
scenario is seen in Figure 6.

5. CONCLUSION

In this paper, the Gibbs sampler receiver is adapted to a binary
PPM modulated impulse radio UWB system in a frequency selec-
tive UWB channel with Gaussian and impulsive noise. The soft
outputs of the Gibbs sampler are iteratively decoded. The iterative
multiuser detector is shown to be more effective than the conven-
tional receiver for UWB systems. The Gibbs sampler outperforms
the MF-based conventional receiver at the expense of considerable
complexity. Therefore, the proposed system shall be evaluated with
respect to the BER requirements of any design in which it willbe
employed.
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Figure 4: BER performance - convolutional code, Gaussian and im-
pulsive noise (averaged over the first three users).
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Figure 5: Gibbs sampler outputs for the 100 iterations afterburn-in
for impulsive noise. The actual values in order are [0.55095 0.3102
0.2702 0.141].
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Figure 6: Gibbs sampler tracking performance for 100 iterations
after burn-in for the first three channel coefficients and thenoise
variance.
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