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ABSTRACT
In this paper, we derive the Cramér-Rao bound for blind
carrier frequency offset (CFO) estimation in orthogonal fre-
quency division multiplexing (OFDM) with constant modu-
lus constellations. A blind maximum likelihood CFO estima-
tor is also proposed. It achieves highly accurate frequency
synchronization with a single OFDM block, regardless of
multipath fading and without the need for null-subcarriers.
The approach is thus very attractive for time and frequency
(i.e., doubly) selective channels where the CFO may be time
varying. If sufficient additional pilot information is avail-
able, maximum likelihood estimates of channel parameters
and transmitted data can be obtained as a byproduct. Finally,
performance bounds are evaluated for several commonly en-
countered scenarios.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
powerful technique to handle impairments of wireless com-
munication channels such as multipath propagation. Hence,
OFDM is a viable candidate for future 4G wireless communi-
cations techniques. However, OFDM and multicarrier mod-
ulation in general are highly sensitive to carrier frequency
synchronization errors caused by oscillator inaccuraciesand
Doppler shifts due to mobility [1]. Carrier frequency offset
(CFO) leads to intercarrier interference (ICI) which severely
degrades the performance. Therefore, CFO compensation
must be accomplished with high fidelity in time and fre-
quency selective wireless channels.

In practice, distinguishing the pilots from the
information-bearing symbols is difficult due to the nonlinear
distortion caused by the CFO. Here, blind estimators may
provide an appealing alternative [2, 3, 4]. They allow
efficient decoupling of the carrier frequency synchronization
problem from both channel estimation and data detection.
Those tasks may then be performed as subsequent steps.

In this paper, we first derive the Cramér-Rao bound
(CRB) for the blind CFO estimation problem in OFDM sys-
tems using constant modulus symbols. The CRB defines the
smallest achievable variance among the class of unbiased es-
timators. Hence, it is an important performance measure.
The stochastic CRB for the above problem was derived in
[5, 6] under the circular or non-circular complex Gaussian
approximation. Despite the approximation, the related bound
does not provide clear indication on the CFO estimation per-
formance for a particular channel and data sequence. For
this purpose, we follow the deterministic approach. The re-
lated CRB is referred to as conditional or deterministic CRB.
Assuming constant modulus (CM) modulations, the CFO is
shown to be identifiable without any null-subcarrier (NSC),

i.e., even in the case when all the subcarriers are active. The
CRBs on the channel magnitude and phase parameters are
obtained as well.

Based on the knowledge of the structure of the Fisher in-
formation matrix (FIM), we propose a novel maximum likeli-
hood (ML) estimator for the CFO as well as the channel mag-
nitude and phase parameters. The new blind ML estimator
for the CFO outperforms the algorithms in [3, 4]. The pro-
posed estimator needs only a single OFDM block to obtain
reliable estimates under time and frequency selective fading,
unlike most of the blind techniques, which commonly require
extensive time averaging. For these reasons, the proposed
method is particularly suited to doubly selective channels.
The key idea is to exploit correlation among OFDM subcarri-
ers and more specifically in the magnitude squared spectrum
of the channel [3, 4]. Furthermore, we use a parametrization
which does not lead to a rank deficient FIM, i.e., the parame-
ters are identifiable. Simulation studies demonstrate thatthe
projection based estimators [3, 4] perform close to their re-
spective CRBs.

The rest of the paper is organized as follows. The para-
metric model for the OFDM system is described in Section
2. The CRB is derived in Section 3. Section 4 introduces
the blind ML estimator. Simulation results are reported in
Section 5. Finally, Section 6 concludes the paper.

2. SYSTEM MODEL

Let us assume an OFDM transmission withNa modulated
subcarriers out of a total ofN , and consider a single block
of data for simplicity. Assuming perfect symbol timing, the
received OFDM signal in time domain after cyclic prefix re-
moval, including the frequency offset, is expressed as

y = βCεFVD
h̃
a+w, (1)

wherey is a N × 1 vector,β =
√

N/Na ensures that the
total transmitted power is constant regardless ofNa, andF is
the unitaryN ×N inverse discrete Fourier transform (IDFT)
matrix. The diagonal matrixCε introduces the frequency
offset and is defined as

Cε = ej2πεLCP/N ·diag
{

1, . . . ,ej2πε(N−1)/N
}

, (2)

whereLCP is the length of the cyclic prefix (LCP < N ) and
diag{} denotes the diagonal matrix constructed from the ar-
gument vector. The quantityε ∈ [0,1[ is referred to as nor-
malized frequency offset wrt. intercarrier spacing. The (m,n)
element of theN ×Na tall selection matrixV is 1 if the
nth symbol is transmitted on themth subcarrier, and zero
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otherwise [1]. TheNa ×Na diagonal matrixD
h̃

in (1) con-
tains the channel frequency responseh̃ = [h̃n1, . . . , h̃nNa

]T

at active subcarriers frequencies on its main diagonal, and
NA = {n1, . . . ,nNa

} ∈ {0, . . . ,N −1} is the subset of active
subcarrier indices. A block fading channel model is con-
sidered. The CFO is assumed to vary block-wise as well.
Moreover, when viewed as part of the channel, the CFO ren-
ders the channel time-variant over the duration of an OFDM
block. Thus, this model clearly applies to doubly-selective
channels. The vectora = [an1, . . . ,anNa

]T of sizeNa × 1
contains constant modulus symbols, i.e.,|an|2 = 1,∀n ∈NA .
The complex noise termw is assumed to be zero-mean cir-
cular complex Gaussian with covariance matrixσ2I.

3. CRAMÉR-RAO BOUND FOR BLIND CFO
ESTIMATION WITH CM MODULATIONS

3.1 Parametrization of the channel magnitude spectrum

The channel frequency response (CFR) at active subcarriers
is related via discrete Fourier transform to aLh-tap channel
impulse response (CIR) in time domain as follows:

h̃n =
Lh−1

∑
l=0

hle
j2πln/N , n ∈ NA, (3)

whereh0, . . . ,hLh−1 are the CIR coefficients in time domain
(Lh ≤LCP+1). It is shown in [3] that the squared magnitude
|h̃n|2 of the CFR may be parametrized as

|h̃n|2 = cT
nλ, n ∈ NA

cn =
√

2
[

1√
2
,cos

(2πn
N

)

, . . . ,cos
(

2πn(Lh−1)
N

)

,

sin
(

2πn
N

)

, . . . ,sin
(

2πn(Lh−1)
N

)]T

∈R2Lh−1×1

λ =
[

g0,
√

2Re{g1} , . . . ,
√

2Re
{

gLh−1
}

,
√

2Im{g1} , . . . ,
√

2Im
{

gLh−1
}

]T

∈R
2Lh−1×1

gi = ∑Lh−1−i
l=0 h∗

l hl+i ∈C,
(4)

where Re{} and Im{} denote the real and imaginary
parts, respectively. Hence, the magnitude squared spec-
trum is entirely characterized by the 2Lh − 1 channel auto-
correlation coefficients in time domain. Notice that the above
parametrization is identical to the one used in [4].

3.2 Parametrization for OFDM with CM modulations

Sincea is a vector of CM symbols, the model in (1) for the
received signal may be rewritten as

y = βCεFVD|h̃|vϕ +w, (5)

with the following notation:

D|h̃| = diag{v|h̃|} (6)

v|h̃| =
[

|h̃n1|, . . . , |h̃nNa
|
]T

=
[√

cT
n1

λ, . . . ,
√

cT
nNa

λ
]T

(7)

vϕ =
[

ejϕn1 , . . . ,e
jϕnNa

]T
, (8)

where (7) follows from (4) andϕn = arg{h̃nan}, n ∈ NA.

3.3 Likelihood function

Let us stack the real parametersε, λ, andϕ into the vector

θ =
[

ε,λT ,ϕT
]T

of lengthNa +2Lh.

By definings(θ) = βCεFVD|h̃|vϕ, we may rewrite (5) as

y = s(θ)+w. (9)

Assuming that the parameter vectorθ is an unknown deter-
ministic quantity, the vector of observationsy is complex
circular Gaussian with means(θ) and covariance matrixσ2I.
Dropping out the terms independent ofθ, the log-likelihood
function may be expressed as

L
(

y|θ,σ2) ∝− 1
σ2 (y− s(θ))H(y− s(θ)). (10)

Notice that optimizing (10) with respect toθ leads to a non-
linear least-squares problem.

3.4 Fisher information matrix

The Fisher information matrix (FIM) for the deterministic
ML (DML) problem in (9) may be expressed as [7, 8]:

Iθ =
2
σ2 Re

{

(

∂

∂θT
s(θ)

)H (

∂

∂θT
s(θ)

)

}

(11)

=
2
σ2 Re

{

JH
θ Jθ

}

∈R
Na+2Lh×Na+2Lh, (12)

where theN ×Na +2Lh Jacobian matrixJθ is defined as:

Jθ =

[

∂

∂ε
s(θ),

∂

∂λT
s(θ),

∂

∂ϕT
s(θ)

]

. (13)

The partial derivatives above are obtained as

∂

∂ε
s(θ) = βC̄εFVD|h̃|vϕ (14)

∂

∂λT
s(θ) =

1
2
βCεFVDϕD−1

|h̃|C
T (15)

∂

∂ϕT
s(θ) = jβCεFVD|h̃|Dϕ, (16)

with the following notation:

C̄ε = j
2π

N
diag{LCP, . . . ,LCP+N −1}�Cε (17)

Dϕ = diag{vϕ} (18)

C =
[

cn1, . . . ,cnNa

]

, (19)

where� stands for the element-wise or Hadamard product.

3.5 Structure of the FIM and the CRB matrix

Let us now take a closer look at the structure of the FIM in
(12). It may be partitioned into nine blocks:

Iθ =





Iε,ε I
T
λ,ε I

T
ϕ,ε

Iλ,ε Iλ,λ I
T
ϕ,λ

Iϕ,ε Iϕ,λ Iϕ,ϕ



 . (20)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



After some derivations, expressions for the diagonal blocks
of the FIM are found:

Iε,ε = 2γvH
ϕ D|h̃|UD|h̃|vϕ ∈R (21)

Iλ,λ =
1
2
γCD−2

|h̃|C
T ∈R

2Lh−1×2Lh−1 (22)

Iϕ,ϕ = 2γD2
|h̃| ∈R

Na×Na , (23)

where U = 4π2

N2 VT FH diag
{

L2
CP, . . . ,(LCP+N −1)2

}

FV.
The signal-to-noise ratio (SNR) is defined asγ = β2/σ2. The
off-diagonal blocks of the FIM may be expressed as:

Iλ,ε = γ Re
{

CD−1
|h̃|D

∗
ϕWD|h̃|vϕ

}

∈R
2Lh−1×1 (24)

Iϕ,ε = 2γ Re
{

−jD∗
ϕD|h̃|WD|h̃|vϕ

}

∈R
Na×1 (25)

Iϕ,λ = 0Na×2Lh−1, (26)

with W = j 2π
N VT FH diag{LCP, . . . ,LCP+N −1}FV.

Now, the following remarks are in order:
1. The FIM does not depend on the valueε of the CFO.
2. There is no coupling between the channel magnitude

squared parametersλ and the phase parametersϕ.
3. The information on the CFOε is coupled with all the

other parameters.
4. The phase parametersϕ are not mutually coupled, i.e.,

Iϕ,ϕ is a diagonal matrix. This relates to the orthogo-
nality of the OFDM transmission scheme.

5. The channel magnitude squared parametersλ exhibit
coupling.
Finally, the CRB matrixC as well the individual CRBs

on the parametersε, λ andϕ are obtained as:

C = I
−1
θ

Cε = {C}1,1
Cλi

= {C}1+i,1+i, i = 1, . . . ,2Lh−1
Cϕi

= {C}2Lh+i,2Lh+i, i = 1, . . . ,Na,

(27)

where{C}m,n stands for the(m,n) element of the CRB ma-
trix andλi (resp.ϕi) denotes theith element of the vectorλ
(resp.ϕ). A pictorial representation of the FIM and the CRB
matrix is given in Figure 1. A remarkable property is that the
error onλ1 is uncorrelated with the error on the CFO and the
phase parameters. Indeed,λ1 represents the total channel en-
ergy (i.e.,‖h‖2, see (4)), which may be estimated regardless
of the CFO or the CM symbols.

Notice that the parametrization in (5) guarantees the iden-
tifiability of the parameters, i.e., the FIM is invertible, pro-
vided thatNa ≥ Lh [3]. The model in (1) leads to a phase
ambiguity and a rank deficient FIM: the phase of the channel
parameters may not be distinguished from that of the sym-
bols without any additional pilot information. Assuming a
perfectly compensated CFO,Lh pilots symbols are needed
to fully estimate the channel coefficients and then recover the
transmitted data. One may eventually circumvent the prob-
lem by looking for a constrained CRB [9]. However, a proper
constraint still remains to be found.

4. BLIND MAXIMUM LIKELIHOOD ESTIMATION

Given the log-likelihood function in (10), maximum likeli-
hood estimates of channel magnitude, phase and CFO pa-

FIM

 

 

1e+003

1e+005

CRB matrix

 

 

1e−006

1e−005

0.0001

0.001 

Figure 1: Structure of the FIM and the CRB matrix for
N = 64, Na = 48, andLh = 4. Dark colors correspond to
high absolute values and white areas to zeros. Blocks are
delimited by dotted lines.

rameters may be obtained as

θ̂ML = argmax
θ

L
(

y|θ,σ2) . (28)

The likelihood function is a nonlinear function of the param-
eter vectorθ. The Levenberg-Marquardt algorithm is the
method of choice for nonlinear least-square problems [10].
In our case, it proceeds as follows. At iterationi, the score
function needs to be evaluated first:

q
(

y|θ̂{i}
,σ2

)

=
2
σ2 Re

{

θ̂
{i}H (

y− s
(

θ̂
{i}))

}

. (29)

The estimated parameter vector is then iteratively updatedas
follows:

θ̂
{i+1}

= θ̂
{i}

+
(

I
θ̂
{i} + ζ{i}

I
θ̂
{i} � I

)−1
q

(

y|θ̂{i}
,σ2

)

,

(30)
where the step sizeζ{i} at iterationi is chosen such that the
update stays within the trust region [10].

As the likelihood function may have several local min-
ima, the parameters need to be initialized properly in order
to find the global optimum. For this purpose, we follow the
procedure below:

1. Obtain initial ˆε{0}, e.g. by using the algorithms in [3, 4].
2. Compensate for the CFO using ˆε{0} and form the carrier-

synchronized signal estimate in the frequency domain at
active subcarriers:̃̂y = VTFHC∗

ε̂{0}y.
3. Obtain an estimate of the magnitude squared spectrum at

active subcarriers:̂v|h̃|2 = 1
β2

ˆ̃y� ˆ̃y
∗
.

4. Initializeλ̂
{0}

andϕ̂{0} respectively as:

λ̂
{0}

= β2Cv̂|h̃|2

ϕ̂{0} = [ϕ̂
{0}
n1 , . . . , ϕ̂

{0}
nNa

]T , ϕ̂
{0}
n = arg{ ˆ̃yn}, n ∈ NA.

The algorithms [3, 4] used at step 1 to initialize the CFO pa-
rameter are very close to the ML solution, as will be demon-
strated in simulations next. Consequently, the initialization
problem reduces to the estimation of the channel magnitude
and phase parameters. Since the FIM forλ andϕ is a block
diagonal matrix, initial estimates for both parameters maybe
computed independently as it is done in step 4. Hence, the
above procedure provides a reliable way for initializing the
ML algorithm.

The major computational cost lies in the calculation of
the matrix inverse in (30). Given the special structure of the
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FIM (see Section 3.5 and Fig. 1), the inverse may be found
with significantly lower complexity by exploiting the prop-
erties of partitioned matrices. The number of required oper-
ations in both cases is proportional to:
• Conventional inversion:N3

a +8L3
h +6N2

aLh +12NaL
2
h.

• Partitioned inversion:N2
a +16L3

h +4NaLh−12L2
h.

TypicallyLh �Na, and thus the complexity may be reduced
almost by a factor ofNa.

5. SIMULATION RESULTS

The simulation results are reported in this section. The total
number of subcarriers is set toN = 64 and the length of the
cyclic prefix isLCP = 4. QPSK modulation is used. The nor-
malized frequency offset is set asε = 0.43. We choose the
same deterministic four-tap channel impulse response as in
[6] in order to allow a comparison with the CRB. The channel
is unknown to the receiver whereas its lengthLh is assumed
to be known a-priori. In practice, it may either be estimated
or upper-boundedby the length of the cyclic prefix [4]. A sin-
gle OFDM block is used for the estimation of the parameters
of interest. It is assumed to remain unchanged in all the simu-
lations. The mean square error (MSE), MSE= E

[

|ε̂− ε|2
]

, is
chosen as the error criterion for carrier frequency offset esti-
mation. Empirical MSEs are ensemble averages over 10000
realizations of the noise process. Depending on the use of
null-subcarriers, the two following scenarios are considered:

I. Na = 64 active subcarriers, no null-subcarrier.
II. Na = 48 active subcarriers,Nz = 16 equispaced NSCs.

The CRB on the carrier frequency offset derived in (27)
for OFDM using CM constellations is plotted in Figure 2 for
scenarios I and II. The curves are referred to as ’CM’ and
’NSC+CM’, respectively. In addition, the deterministic CRB
on the CFO derived in [1] is also shown for comparison. It
applies to OFDM systems transmitting non-CM symbols in
the presence of NSCs and is referred to as ’CRB (NSC)’. In
our specific simulation case, the CM property without NSCs
provides 1.5 dB gain over the system with NSCs and non-
CM symbols, and 3 dB gain if both NSCs and CM symbols
are used. Also, note that the CRB curves are dependent on
the placement of the null-subcarriers (if any), as well as on
the transmitted symbol and the channel impulse response [1].

Let us now consider scenario I and compare the MSE
performance of the two following algorithms in Figure 3:
I-1 The projection-based blind CFO estimator of [4] exploit-

ing the CM property (denoted ’Proj. (CM)’).
I-2 The proposed blind ML estimator (denoted ’ML (CM)’)

described by equations (28)-(30). The ’CM’ algorithm is
used to initialize the CFO estimate (Section 4, step 1).

While the blind CFO estimator of [4] lies 1 dB above the
CRB, the proposed blind ML estimator achieves the bound
for SNRs larger than 10 dB. In practice, no more than five
iterations of the Levenberg-Marquardt algorithm are needed.

We now consider the scenario II and compare in Figure 4
the MSE performance of the three following algorithms:
II-1 The blind CFO estimator of [2] based on NSCs solely

(denoted ’NSC’).
II-2 The blind CFO estimator of [3] exploiting jointly NSCs

and the CM property (denoted ’NSC+CM’).
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C
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CRB (NSC)
CRB (CM)
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Figure 2: CRB vs. SNR for different signal models. A gain
of 1.5 dB over the NSC case is achieved by exploiting the
CM property. A 3 dB gain is obtained if both NSCs and CM
symbols are present.
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ML (CM)
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Figure 3: MSE of the projection based CM blind CFO es-
timator [4] and the proposed blind ML CFO estimator. The
ML estimator closes the 1 dB gap between [4] and the CRB.
The CRB is attained for a single OFDM block and SNRs
larger than 10 dB.

II-3 The proposed blind ML estimator (denoted ’ML
(NSC+CM)’). The ’NSC+CM’ algorithm is used to pro-
vide an initial estimate for the CFO (Section 4, step 1).

The blind ML estimator achieves the CRB for values of the
SNR above 10 dB. Also, the gap of the method in [3] to the
CRB is negligible. On the other hand, the NSC-based estima-
tor achieves the CRB only when constant modulus symbols
are not in use. Otherwise, a 3 dB loss is experienced.

Both the projection based ’CM’ estimator [4] and the
joint ’NSC+CM’ criterion [3] perform extremely close to
their respective CRBs in practice. This is not surprising since
both algorithms are closely related to maximum likelihood
estimation [3]. The estimation error on the CFO is well be-
low 1% wrt. intercarrier spacing at 15 dB SNR, while a tol-
erance of 5% is commonly considered to be sufficient for
QPSK modulation in practical systems [1]. Also, no error
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Figure 4: MSE of the NSC [2], NSC+CM [3] and proposed
blind ML CFO estimator. The CRB is attained by the ML
estimator for a single OFDM block and SNRs larger than 10
dB. It is observed that [3] is very close to the ML solution.
Almost 3 dB gain is achieved over the NSC algorithm [2].

floor is observed in MSE and hence the proposed estima-
tors are unbiased. Moreover, the algorithms in [3, 4] proved
to be a reliable way to initialize the ML estimator in prac-
tice, as explained in Section 4. The algorithms in [3, 4] are
computationally less complex than the proposed ML estima-
tor since they involve one-dimensional search of the value
of the CFO only. On the other hand, the ML algorithm pro-
vides information on the channel magnitude and phase pa-
rameters, which are later needed for equalization purposes,
once frequency synchronization has been performed. The
MSE curves for magnitude and phase parameter ML estima-
tion are not shown, due to the lack of space. However, they
converge to their respective CRBs as well.

Finally, for a given SNR, we may also study the indi-
vidual CRBs on the phase parameters as a function of the
subcarrier index. The results are presented in Figure 5. The
CRBs are approximately inversely proportional to the chan-
nel magnitude spectrum which determines the SNR on the
subcarriers. The CRBs on the phase parameters are of high
importance as the final objective is to transmit information
through the system.

6. CONCLUSIONS

In this paper, we derived the Cramér-Rao bound for blind
carrier frequency offset estimation in OFDM using constant
modulus constellations. The performance of existing blind
CFO estimators exploiting the CM property is compared to
the obtained CRB. A blind maximum likelihood CFO esti-
mator is also proposed. The estimator achieves the CRB
with a single OFDM block, regardless of multipath fading
and without the need for null-subcarriers or training. The ap-
proach is thus very attractive for doubly selective channels
where the CFO may be time varying. If additional infor-
mation is available, maximum likelihood estimates of chan-
nel parameters and transmitted data may be obtained as a
byproduct.

1 5 10 15 20 25 30 35 40 45 48
0

1

2

1 5 10 15 20 25 30 35 40 45 48
10

−4

10
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10
0

|h̃
n

i
|

C ϕ
n

i

Active subcarrier index (i)

Active subcarrier index (i)

Figure 5:Upper plot: Channel magnitude spectrum at active
subcarrier frequencies.Lower plot: CRB on the phase pa-
rameters at 15 dB SNR. The CRBs for the phase parameters
are approximately inversely proportional the channel magni-
tude spectrum, which determines the SNR on the subcarriers.
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