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ABSTRACT non-convex in the dual MAC, we have to resort to alternative
Since the downlink has a difficult algebraic structure, itquantities to be optimized. We choose the MSE, since the
is more convenient to switch to the dual uplink problemMSE gives a lower bound to the sum rate and the most popu-
which has better algebraic properties. We consider the ugar MSE problems either turn out to be convex (minimization
link/downlink duality with respect to thenean square er- of the sum MSE, [8, 9]) or can be solved via the KKT condi-
ror (MSE), where our system model is as general as pogions which are sufficient (balancing of the MSEs, [9]) in the
sible, i.e., we allow not only for correlations of the symbol dual MAC.
and noise, but also model the precoders, the channels, and We aim at a duality which is as general as possible. To
the equalizers as compact linear operators. We show th&lis end, we consider aN ,-dimensional Kl is possibly
a duality with respect to the MSE per user is preferable tonfinite) Hilbert space’” with the inner produdtdenoted by
the state-of-the-art stream-wise MSE duality, since the up(e,e) and restrict ourselves neither to uncorrelated symbols
link/downlink transformation of the user-wise MSE duality and uncorrelated noise processes nor to finite operaters, i.
has a considerably lower complexity than the one of thematrix operators. We only have to impose the assumptions
stream-wise MSE duality. Interestingly, the uplink/doimkl  that the channel operators and the filter operators (precode
transformation for the total MSE duality is trivial, i.e.sam-  and equalizer) are bounded, that is, any input with finitemor
ple weighting with a scalar common for all filters has to beis transformed to a bounded output. Together with the as-
computed. We apply the uplink/downlink duality to derive sumption that the correlation operators of the symbols and
the operator form of the well-knowmmansmit Wiener filter the noise are nuclear, i.e., the sum of their singular vakies
(TXWF). finite, the combination of any correlation operator with om

precoding operator, channel operator, and/or equalizate
1. INTRODUCTION erator is element of the trace class [13].

We present the MSE uplink/downlink duality per data
rsymbol, per user, and for the total MSE in Section 3. Al-
though the uplink/downlink duality can be used to find algo-
rithmic solutions to problems without closed form solutpn
we will apply the duality to obtain an expression for the well
known TXWF [14] as an operator in Section 4. Thereby, we
will see the advantage of our duality especially for sum MSE
minimizations, i.e., the uplink/downlink transformatia
simple weighting with a common scalar.

In the broadcast setup [1], e.g., the downlink of a cellula
system, one transmitter communicates with several rexceive
If the broadcast channgBC) is non-degraded [1], e.g., the
downlink with multiple-input multiple outputMIMOQ) chan-
nels to the multiple users, optimizing the system, e.g.,imax
mizing the sum rate, is difficult in general, since most prob
lems for the BC are non-convex.

A powerful tool to circumvent the difficulties with the
BC is the uplink/downlink duality, i.e., the achievable iy
pf a suitably defined dl_JahuIt|pIe access chan_r1c§MAC) 2 SYSTEM MODEL
is the same as the achievable region of the original BC un-
der the same total transmit power constraint. Such a duAs depicted in Fig. 1, we consider a BC, whétausers are
ality was reported for the vector Gaussian BC capacity reserved by one centralized transmitter. The data signal
gion in [2, 3] (with non-lineadirty paper codingDPC [4]),
for the MIMO Gaussian BC capacity region in [5] (with Nz
DPC), for thesignal-to-interference-and-noise rati{8INR) s(t) = zisx,iak,i(t) 1)
region with linear beamforming in [2, 6] (vector BC) and i=

[7]1 (MIMO BC with fixed receivers), and recently, for the f . .
. L . . or the k-th user is transformed by the respective precoder
MIMO BC MSE region with linear precoding and with DPC P, at the transmitter, Whefe[ﬁ,iﬁzj] —ryij. The formula-

in [8, 9] and [10, 11], respectively. The aforementioned du-. _ , .-
alities enabled efficient algorithmic solutions to nonwan  tion of s(t) in (1) confirms the fundamental concept of digi-

BC optimizations, because the dual MAC problems are coni@! communications (i.e., communication by means of wave-
vex, e.g., sum rate maximization [12]. forms), if thes,;'s are elements of a finite alphabet. The sum

To reach the whole capacity region of the MIMO BC, ©f the precoded signals is transmitted over the chaHpéd
the non-linear DPC has to be applied [5]. However, we reUserk whose received signal is perturbed by the najg)
strict ourselves to linear precoding to avoid the compjexit 1in our notation. we have for the inner

] R , product thawp, ) = a(¢, P
DPC. Since the rate related problems (e.g., maximization ofng (¢, ay) = a*(¢,y) for a € C. We also have tf}?a¢¢,lll§ _ <¢<,’¢>*’
the sum rate and rate balancing) for linear precoding ace alsvhere(e)* denotes complex conjugation.
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Figure 1: Broadcast Channel Model

Figure 2: Multiple Access Channel Model

e.g., frequency-selective channels, FIR precoders/egus|
and transformed by the equaliz@yto get the estimation sig- and IIR precoders/equalizers. Note however that we have to

nal assume that the chain of any precoder, channel, and equalize
. K has to be nuclear. Therefore, we restrict the channel opera-
&(t) = GkHi ZPiS(t) + GkNk(t). (2)  tors to be nuclear and the filter operators to be bounded.
i=
The estimate for theth data symbod ; of userk is obtained 3. UPLINK/DOWNLINK DUALITY

by following inner product:
In the BC (see Fig. 1), the MSE for theh data symbol of

&i = (S bi)- (8)  userk can be written as
Besides the assumptions that both, #ig(t)’s and the BC_Ellg. 4 |
bki(t)’s, are linearly independent, we do notimpose any spe- i = Usk' — &l }
cial constraints on the signaturas;(t) andby;(t), e.g., we Ny
do not assume that they form orthonormal basegbér that =Iyjj— Z 2 Re(fk,j,i (GkHkPrax j, bk7i>)
they are the same. Popular examplesdgi(t) andby;(t) = (4)

are pulse shaping and its matched filter, the spreading se-

K

guences of CDMA signals, and canonical unit vectors for + <GkaPfRS/§Fﬁkabki7bki>

MIMO sytems. /Zl Al i Dk,
The correlation operator for a random proce@s is de- n <Ger]kabk,i i),

noted byRy, whereRy is defined by Ex(¢,Xx)] = Rx¢ for any

9(t). As we restricRy to be nuclear for any procestt), we By definition, the correlation operator for tketh data signal

get : NN o ,
fulfills Re @ = 3,20 5 ;74 ki jai (§,a j) for any ¢ (t).
Nz . We will show in the next subsections that the MAC de-
E[(Ax,x)] = Zl<AE[X<Xv $i)’],9i) = Tr(ARx) picted in Fig. 2 is dual to the BC in Fig. 1 with respect to the

= MSE for the same sum transmit power. The transmit filter
for any orthonormal basig (t),i = 1,...,N» of 2 and for of userk for the dual MAC is denoted by, thek-th user’s
any bounded operatdr. We use the abbreviation ) for channel isCy, and the respective receive filterfg. Similar

the sum;?‘j{(A:pi,tpw which is independent of the choice tothe BC, the data signal can be written as

for the orthonormal basig;(t) and is called the trace of Ny

an operator [13, 15]. Note that the correlation operator PAC(1) = § 5y (t). (5)

Rx is positive definite by definition. Therefore, we always i; S

have that TfAR«A) > 0, whereA denotes the adjoint op-

erator of A. Furthermore, we assume that the noft)  The corresponding correlation operator fulfilRAC¢ =

of userk is uncorrelated with any data signslt), i.e., Ny <Ny

E[M(6.S)] = Ry.s® = O withi,k=1,....K for any ¢ (t).  Zi=1 2j-1"kiibki(®,bki), where Bsqis ;] =i, and the

Symbols of different users are assumed to be uncorrelatedstimate for thé-th symbol of usek is ¢ = (§/4€ ay;).

thatis, Bscjs; ;] = 0 fork # £. With above definitions, the MSE of theth data symbol for
Our general system model comprises many popular spetserk in the dual MAC reads as

cial cases, e.qg., flat-fading MIMO channels (the channeis ca

be described by a matrix operator, [8, 9]) and frequency- MAC _ Ellg, . ac |2

selective MIMO channels (possibly IIR). We'd like to stress &i = ’S‘“ Cki ’

that only the case of matrix operators has been considered in N,y

the literature on uplink/downlink duality up to now. Due to I - N 4

our general formulation, we can show in the next section that = Tk ;12 Re(ricji(FChTidx i)

the uplink/downlink duality also holds for many other cases

(6)
€ MACT - E

°Note that T¢e) has following properties. First, itis linear, i.e.,(®A 4 + [Z <FkC€TZRs£ ToCoFraxi, i)
bB) =aTr(A)+bTr(B). Second, the operators can be rotated insige)Tr =1

thatis, T(AB) = Tr(BA). For finite dimensional operators, it is equal to the = )
trace of a matrix, i.e., the sum of the diagonal elements. + <FKR'7 Fkak-,l ’ ak-,l>'
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3.1 Duality per Data Symbol Here, we introduced/ j = |<GgH[Pkak’i,b£7j>|2 for nota-

As their MSE duality is based on the SINR duality (e.g., [6]), ional brevity. Multiplying above equation witfi; and col-
which was naturally shown for each data symbol separateljecting all equations fok = 1,....K andi = 1,...,N,», we
Schubert et al. presented the MSE duality per data symbol i@nd up with the equation system
[8]. We prove that the symbol-wise duality also holds for in-
finite dimensional operators without using any SINR result. WeE=p (12)
Note that we need the assumption for the symbol-wise du-
ality that the symbols are uncorrelateg;(; = 0 fori  j).  where the MAC power control parameters are put into
Substituting this assumption into (4) and (6), we can infer
that it is useful fog2© = eMAC that following equality holds: g2 2 2 2 4T

: : §=[&1 &N, Eon &Ny, ]

Re(rki,i{GkHkPiaki;bki)) = Re (ki (FCiTibxi ai)) - and(e)T denotes transposition. Let= (k—1)N, +i and
Fulfilling this first condition means that the desired symbolv.a (ZF%)ZN??”‘L - Then, theu-th element of the right-hand
S« experiences the same (or complex conjugate) total weigrﬁ' eof(12)is

in the BC and the dual MAC. As we will see later, the noise

power of the BC plays the same role as the transmit power [plu = rkii(Praki; Pkaki)

of the dual MAC and vice versa. Therefore, we set the noise )

power of the BC (MAC) equal to the transmit power of the and theu-th element of the-th column of W' is

MAC (BC), where we allow for a different power control in

the MAC (expressed by the scaldig € R): =T iWk )i j u#v
Wlay = { 5K 1 SNV FnnnWnkoni — M Wik
, B uv > m=1 Zn:_l mnnWmikni = FkiiWiekii [ _
&k (GiRy Gidoiei, bici) = i (T, Tichiei) (8) +(GkRn, Gkbx.i, bii)

) —
((FkRpFyawi,axi) = rkii{Pkaxi, Pkaki)- 9 _ ) ) o
863 FiRa Prdici, Ai) = et (Picde, Prdi) ®) Clearly,W is (column) diagonal dominant for non-vanishing

PP ; noise in the BC, i.e[Wuy > 5 iy |[Wuy| for anyv. Thus,
Lhtir: (?lelr,:;izlct:elzurgﬁ ?ﬁ: cggliez\;%thvekoipe;gvf%\s/(;, E\I/(e the matrixW is lallways inve%itﬁe. Moreove®V has a di-

’ i ki oo 7T ' agonal with positive entries and all other elements are non-
choose the operators for the dual MAC such that they havggsitive. Consequently, all entries B 1 are non-negative.
a close relationship to the operators in the BC and such thaf, e the right-hand side only contains non-negative num-

the conditions (7)—(9) are fulfilled in order to end up with @pes  the resulting has always non-negative elements. This

simple proof for the duality. observation shows that we can always find a dual MAC with
An obvious choice for the MAC precoders and the MAC the gperators in (10) and (11) which lead to the same MSE
equalizers fulfilling (8) and (9) are for all users and data symbols by applying the appropriate
u power controky; in the dual MAC.
Tk= R%ﬁszek When summing up the scalar equations of (12), the re-
F. — T.P.R-V2 (10) sulting right-hand side is the total transmit power in the, BC
k= TkPkRp

ie., ZE:]_ Z|N:%:f Tk,i,i <Pkak,i, Pkak,i>. Due to

respectively. Here, we have introduced the oper@gr _
whosei-th eigenvalue isf;/, /7 with the eigenfunction (Wl + ;[W]u,v = (GkRuy Grbyi, i)
bii(t). Likewise,ay;(t) is the eigenfunction corresponding uFv

to the ei envalueg/Tyii/éki of Tk. For (7), it suffices to set
g i/ & K % and (8), the resulting left-hand side is the total transmonter

120 -1/2 in the dual MAC. Thus, the dual MAC leads to the same
Ck =Ry "HkRp " (11)  MSEs as the BC for the same total transmit power.
) , iy With similar steps, it can be shown that the BC in Fig. 1
We denote the ‘square root’ operator of the positive correfaads to the same MSEs for the same total transmit power as
lation operatoRy as R)l(/2 which is also an adjoint operator, the dual MAC in Fig. 2, if the BC operators fulfill (7)—(9) and

whereRy$ = RY?RY/?¢ for arbitrary ¢ (t). Clearly, phys- are chosento be
ically meaningful noise operator must be invertible and so

their square root operators are invertible. Px= Rﬁ/ZFkTgl
With the dual MAC operators in (10) and (11), the equal- L TTi= -1/2
ity £2C = eMAC can be rewritten as Gk = O TRy, (13)
’ ' 1/27 —-1/2
Hi = Ri 2R, 2.
K Ny _
; er,j,JW&k,J,i + (GkRay Grbxi, bi) = Therefore, we have proven that some MSEs for every
==l user and data symbol can be achieved in the BC for a given
K Ny EZZJ. Mii total transmit power, iff the same MSEs can be achieved in
= <5 TkiiWitij + 75 (Pkaki, Prakii)- the dual MAC for the same transmit power, i.e., the BC and
=R3 §
=1j=1>ki ki the dual MAC have the same MSE region.
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3.2 Duality per User Note that above conditions and the operatorsin (14) only en-

Obviously, the duality of the BC and the MAC per data sym-""g’lce a u'a/?(r:—wise power contro_l (thek=1.... ’_K)' Setting )
leads to an equation system as in (12). Again,

bol provenin the previous subsection implies that the BC an&k =& 1 /
the MAC are also dual per user, i.e., a set of user MSEs (sufft€ properties of the resulting equation system ensurethe e
tence of a valid solution, summing up the equations shows

of the MSEs of every user’s data symbols) can be achieve'i ,
in the BC for some transmit power, iff the same user MSE¢hat the transmit powers of the BC and the dual MAC are

are possible in the dual MAC. However, the transformatiojdentical, and similar steps are possible for the transéerm
between the dual MAC and the BC presented in the last suion from the dual MAC to the BC. Therefore, a duality with

section is very complex, since we need to solve an equatidigSPect to the users’ MSEs is possible with a dramatically re
system inKN, variables [see (12]}. As we will see in the duced number of duality parameters compared to the duality

following, this high complexity can be avoided, if we use per data symbol shown in the previous subsection. More pre-

g ; : : : : cisely, we need to comput€ instead ofN ,» parameters for
tehqeugﬁggtgy'[;?ernﬁs}eewféiﬁg’ since the dimensionality ef ththe transformation from the BC to the dual MAC and vice

Contrary to the previous subsection, it is not necessary t4&"5&-
restrict thek-th user’'s data symbols to be uncorrelated. For, .
notational brevity, we use the operatdrsandl, which map 3.3 Duality for Total MSE

some orthonormal basif(t),i = 1,...,N,» of 5 to thek-  With similar steps as in the previous two subsections, it can
th user’s signatures ; = Wi ¢; andby; = @i, respectively. be shown that a duality with respect to the total sum MSE

Thus, we have thaRs, = kag’KWk and RSMKAC = rkRgrk, £ = 3K, & can be achieved with following operators
WhereRf{y = ZN:}T :\':"1 rei.jdi(y, 9j) for anyy(t) € 7.

_ zpl/2E $,-1/21
With above definitions, the sum over the data symbol in- Tie= &Ry "GrlRs 7Ty

dexi in the total MSEs for the BCg€ = 5 g£C) and for Fo = W REYAG PR, Y2 (15)
the dual MAC EMAC = 511 eMAC), which follow respec- Cc=RYZAR,
tively from (4) and (6), leads to traces (®) of operators.
The total MSE of usek in the BC can be expressed as where we sef, = &, k=1,...,K compared to (14). Conse-
Ny quently, the original BC problem can be solved in the dual
eBC_ § E[‘S‘i — & ’2} MAC and the transformation of the solution to the BC is just
k i; ' ' a weighting of the operators with a scalar which follows from

_ — the transmit power constraint.
—Tr(Rs) —2Re(Tr(FkaHkPkRsk\Uk*1)) P
4. APPLICATION OF DUALITY TO TXWF

K
+ Y Tr (TkGrHKP(Rs PeHGKTk) The TXWF (see [14]) minimizes the total MSE of the BC un-
2:1_ _ der a total transmit power constraint, where the equatinati
+ Tr (TkGkR, Gkl k) operators are constrained to be weighted identity opevator

whereas we get for the total MSE in the MAC: and the weights have the same vadLe R for all receivers:

K Ny

vac _ & Ac|? i BC
gMAC EUS‘J_ ! ‘ ] {Pwr1,---,Pwrk,Owr} = argmin % Zlfk,i
i= ' {P1,-,PK .G} K=LT=
MAC U MAC —1 K (16)
:Tf(Rs« ) —ZRe(Tf ("’kaCkaRsk M )) st: Y Tr(PRyPY) <Pt Ge=gl, ¥k
k=1

Unfortunately, the cost function of above TXWF optimizatio
_ _ is non-convex. However, a closed form expression for finite
+Tr (WkaRn Fk"’k) dimensional operators has been given in [14] by solving the
original BC problem. With the duality for the total MSE, the
solution is obtained much easier than shown in [14].

K
+ ; Tr (WkaCngRg"(ACTgQFk\Uk)
/=1

The three conditions (7)—(9) can be rewritten as

Re(Tr (FkaHkPkaRg)) =Re(Tr (Wkackakag’k)) Clearly, the dual MAC problem has precoddrgs con-
= = == strained to be [see (15)]:
&2Tr (MGRp, Gl = Tr (TWMRETicT) [see (15)]
E2Tr (WiFiRnFWi) = Tr (PrWicRE WiPy) T = RZNRE 7T (17)
respectively. These conditions are fulfilled by with T = gé € R. Thus, the total transmit power constraint

Te=§ RY2¢, r RO V/2r-1 (which can easily be shown to be always active) for the dual
k= Sk 2kE kT k MAC can be fulfilled by the appropriate choice for the com-
F = E[l\vgle"l/ZWkﬁkRﬁl/z (14)  mon scalar MAC weight

1/25 —1/2
Ck = Ry *HR,2. \/ P

(18)

B ZleTf (Fka)krk) '

SNote that we do not restridl;~ to be finite.
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With this result, the dual MAC optimization corresponding
to (16) transforms into an unconstrained minimization ef th
total MSE with respect to the equalizéfig Fortunately, the
problem falls apart intd separate problems, one for each
Fk. which can be solved using the orthogonality principle:

£ (s~ 80°) %] 0 i=1..ny

wherexMAC (t) denotes the received signal for the dual MAC [3]
(see Fig. 2). Since we have that

(1]

(2]
(19)

E[Sﬁ,iXMAC} = G T RYACT, 1,

K — _ (4]
E[%Mﬁc’*XMAC} = ; CTRY T CFcWidi + Ry FiWidy

=
and the orthogonality condition (19) must hold for iglthe ~ [5]
dual MAC equalizer reads as

-1
1—3 - AS 1 -
SV IRE T (; Hol (T oH, + §|> R, 2.
=1
o) 6]
Here, we took the expressions for the precoding operators

T, from (17) and the channel operatdfs from (15). By
employing (15) again, we can find the BC precoders:

Fi

. [7]
1/ K_ _ 1 _
Pk:ﬁ /ZHgI'gI'gHg—i—ﬁl HeMew L (21)
=1

The found precoders must fulfill the total transmit power-con [8]
straint which can be used to find the receivers’ weight

— —2__
Sk Tr (2/',(1 (HérérﬁHé + %zl) HkRgA(ACHk)

9= Plot

9]
(22)

The obtained solution for the TXWF operator has some inter-

esting properties. [10]

e Due to the definition ofy and Iy, by; = MW, a;
holds. Therefore, the BC data signal [see (1)] is first
transformed by the BC precodeg to the dual MAC  [11]
data signal [see (5)]. With this transformation, the sig-
naturesy ; employed at the receivers perfectly match the
signatures at the transmitter.

e The orthonormalized data sigrﬁl = \Ilizlsk propagates

over the total channdiyHy. Therefore, we do not find [12]
any occurence of without the correspondingy in
above precoder solution (21).

e When creating an equivalent model for the orthonormal-
ized data signai{f (t), the operatofy is merged with the
channel operatoH,. Hence, the noise process in this [13]
equivalent model must bigcnx. We follow that the reg-
ularization parameter/I? [see (18)] is equal to the ra- [14]
tio of the total noise power in the equivalent model over
the total transmit poweRy;, i.e., one over the signal-to-
noise-ratio in this equivalent model.

e For the special case, that the signatures at the trangts]
mitter and at the receivers are identical, i.&;(t)
byi(t) Vk,i, and the signatures are orthonormal the op-
eratord , andW disappear. Then, the relationship to the
matrix-valued TXWF solution in [14] becomes evident.
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