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‡Departamento de Teorı́a de la Sẽnal y Comunicaciones, Universidad Carlos III de Madrid.
Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain.E-mail: jmiguez@ieee.org

ABSTRACT

Sequential Monte Carlo (SMC) schemes have been recently
proposed in order to perform optimal equalization of mul-
tiple input multiple output (MIMO) wireless channels. The
main feaures of SMC techniques that make them appealing
for the equalization problem are (a) their potential to pro-
vide asymptotically optimal performance in terms of bit error
rate and (b) their suitability for implementation using par-
allel hardware. Nevertheless, existing SMC equalizers still
exhibit a very high computational complexity, relative to the
dimensions of the MIMO channel, which makes them use-
less in practical situations. In this paper we introduce two
new SMC equalizers whose computational load is only of
polynomial order with respect to the channel dimensions, and
avoid computationally heavy tasks such as matrix inversions.
The performance of the proposed techniques is numerically
illustrated by means of computer simulations.

1. INTRODUCTION

SMC methods, also known as particle filtering (PF) algo-
rithms, are simulation based techniques that aim at approxi-
mating thea posterioriprobability density function (pdf) of a
time-varying signal of interest (SOI), given some related ob-
servations, using a discrete probability measure with a ran-
dom support [1, 2, 3]. PF algorithms explore the space of the
SOI by generating random samples (termed particles) from
a proposal distribution. These particles are then assigned
proper weights [1] and yield the discrete approximation of
thea posterioripdf.

Particle filtering is a very general methodology that has
found numerous applications in digital communications (see
[3] for an overview). The reason is that, although SMC tech-
niques are computationally intensive in absolute terms (be-
cause usually many particles have to be generated in order
to obtain some prescribed level of performance), they are in-
herently suitable for implementation using parallel hardware
and, therefore, hold promise of very high processing speeds.
Many of the most recently proposed digital transmission sys-
tems can benefit from the fast processing capabilities of PF
methods. In particular, those that involve communication
through multiple input multiple output (MIMO) channels,
e.g., multi-antenna systems [4, 5], are well known to require
fast and sophisticated signal processing techniques to carry
out fundamental tasks such as channel equalization. Practical
MIMO channel equalization poses several problems because
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the complexity of maximuma posteriori(MAP) data detec-
tion grows exponentially with the number of inputs (NoI)
and the length of the channel impulse response (CIR). In
[6, 7] quasi-MAP SMC equalizers with polynomial complex-
ity (with respect to the NoI and the CIR length) have been
described, but even these techniques can be prohibitive for
certain classes of MIMO systems, since they involve running
banks of Kalman filters (KFs) and perform successive matrix
inversions.

In this work, we propose two new SMC equalizers for
nearly-MAP equalization of MIMO systems with polyno-
mial (quadratic) complexity. They are specially suitable for
systems with a large number of transmitting and receiving
antennas, or when there exist strict time requirements, such
as in online detection. Compared with the methods in [6, 7],
the new equalizers substitute the KF banks by less complex
parallel adaptive channel estimation algorithms that avoid
matrix inversions altogether.

The remaining of the paper is organized as follows. In
the next section, the signal model for transmission over a
frequency-selective MIMO channel is described. In section
3, the standard application of SMC methods to MIMO equal-
ization is discussed. The fundamental ideas behind the pro-
posed SMC equalizers are introduced in Section 4. Illustra-
tive computer simulations are shown in Section 5 and, finally,
concluding remarks are made in Section 6.

2. SIGNAL MODEL

The discrete-time equivalent model of a MIMO transmission
system with frequency-selective and time-varying CIR can
be written as [6]

xt =
m−1

∑
i=0

Hi,tbt−i +ut , t ∈ N, (1)

where{Hi,t}m−1
i=0 is the L×N-dimensional CIR, of length

m, bt is theN× 1 vector containing the symbols transmit-
ted at timet, ut ∼ N(ut |0,σ2

uIL) is an additive white Gaus-
sian noise (AWGN) process with zero mean and covariance
matrix σ2

uIL (IL is theL× L identity matrix) andxt is the
L× 1 vector of observations. The symbols are modeled as
discrete uniform random variables in the alphabetB, hence
bt ∼ U (BN). It is often convenient to use a more compact
representation of (1), namely

xt = Htbt +ut , (2)

whereHt = [Hm−1,t · · ·H0,t ] is theL×Nm overall channel
matrix at timet andbt = [b>t−m+1 · · ·b>t ]> is anNm×1 vec-
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tor that contains all the symbols involved in the thet-th ob-
servation.

The channel variation can be modeled with an autore-
gressive (AR) process [8], that we assume of first order for
simplicity (higher orders are easily handled, except for the
notational involvement), specifically

Ht = γHt−1 +Vt , (3)

where1− ε < γ < 1 (for small ε > 0) andVt is a matrix
of independent and identically distributed (i.i.d.) Gaussian
random variables with zero mean and varianceσ2

v .
Because of the channel frequency-selectivity, some type

of smoothing is needed for reliable data detection. The de-
sign of smoothing detectors becomes simpler if we stack to-
gether several successive observation vectors, to yield the
model

xt,a = Ht,abt,a +ut,a, (4)

where a ≥ 1 is the smoothing lag,xt,a = [x>t · · ·x>t+a]
>

is the L(a+ 1)× 1 vector of stacked observations,bt,a =
[b>t−m+1 · · ·b>t+a]

> has dimensionsN(m+ a) × 1, ut,a =
[u>t · · ·u>t+a]

> and

Ht,a =




Ht(m−1) 0 · · · 0
Ht(m−2) Ht+1(m−1) · · · 0

... Ht+1(m−2)
. . .

...

Ht(0)
...

. . . Ht+d(m−1)
... Ht+1(0)

. . . Ht+d(m−2)
...

...
. . .

...
0 0 · · · Ht+d(0)




>

(5)
is theL(a+1)×N(m+a) stacked channel matrix.

3. MIMO CHANNEL EQUALIZATION

3.1 Sequential Importance Sampling

Most particle filtering methods rely upon the principle of Im-
portance Sampling (IS) [1] for building an empirical approx-
imation of a desired pdf1, sayp(x), by drawing samples from
a different distribution, known asimportance functionor pro-
posal pdfand denotedq(x). These samples are then assigned
appropriate normalizedimportanceweights, i.e.,

x(i) ∼ q(x) and w(i) ∝
p(x(i))
q(x(i))

,

where∑M
i=1w(i) = 1, M being the number of particles. In

order to detect the transmitted symbols, it is natural to aim
at the approximation of thea posteriorimarginal pdf of the
data,p(b0:t |x0:t), which contains all relevant statistical infor-
mation for the optimal (Bayesian) estimation ofb0:t . In turn,
an importance function of the formq(b0:t |x0:t) is needed.

One of the most appealing features of the particle filter-
ing approach is its potential for online processing. Indeed,

1We will always use the termdensity, even for discrete random variables,
since any probability mass function can be expressed as a density using sums
of Dirac delta functions.

the IS principle can be sequentially applied by exploiting the
recursive decomposition of the posterior distribution

p(b0:t |x0:t) ∝ p(xt |b0:t ,x0:t−1)p(b0:t−1|x0:t−1), (6)

which is easily derived by taking into account thea priori
uniform distribution of the symbols, and an adequate impor-
tance function that can be factored as

q(b0:t |x0:t) = q(bt |b0:t−1,x0:t)q(b0:t−1|x0:t−1). (7)

The recursive algorithm that combines the IS principle and
decompositions (6) and (7) to build a discrete random mea-
sure that approximates the posterior pdf is called sequential

importance sampling (SIS) [2, 3]. LetΩt =
{
b(i)

0:t ,w
(i)
t

}M

i=1
denote the discrete measure at timet, whereM is the number
of particles. The desired pdf is approximated as

p̂(b0:t |x0:t) =
M

∑
i=1

δi(b0:t)w
(i)
t , (8)

where δi(bt) = δ (bt − b(i)
t ) is the Dirac delta function.

When a new observation is collected at timet +1, the SIS al-
gorithm proceeds through the following steps to recursively
computeΩt+1,

1. Importance sampling:b(i)
t+1 ∼ q(bt+1|b(i)

0:t ,x0:t+1).

2. Weight update:w̃(i)
t+1 = w(i)

t
p(xt+1|b(i)

0:t+1,x0:t )

q(b(i)
t+1|b

(i)
0:t ,x0:t+1)

3. Weight normalization:w(i)
t = w̃(i)

t

∑N
k=1 w̃(k)

t

It is straightforward to obtain data estimates from the approx-
imate pdfp̂(b0:t |x0:t). In particular, the marginal MAP sym-
bol detector is

b̂map
t = argmax

bt

{
M

∑
i=1

δ (bt −b(i)
t )w(i)

t

}
, (9)

which amounts to selecting the particle with the highest accu-
mulated weight (note that some particles can be replicated).

One major problem in the practical implementation of
the SIS algorithm is that after few time steps most of the par-
ticles have importance weights with negligible values (very
close to zero). The common solution to this problem is tore-
samplethe particles. Resampling is an algorithmic step that
stochastically discards particles with small weights while
replicating those with significant weight. In this paper, we
consider only the conceptually simplest resampling scheme,
that generates a set ofM new and equally weighted particles,

{b(i)
0:t ,1/M}M

i=1, by drawing from the discrete probability dis-

tribution prsp(b
(i)
0:t) = w(i)

t .

3.2 Optimal importance function

The performance of the SIS algorithm considerably depends
on the choice of importance function. The optimal proposal
pdf for the described scheme is

q(bt |x0:t ,b0:t−1) = p(bt |x0:t ,b0:t−1) ∝ p(xt |b0:t ,x0:t−1),
(10)

which contains all the information available at timet for the
sampling ofbt .
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In order to sample the importance function of (10), it
is necessary to evaluate the likelihoodp(xt |b0:t ,x0:t−1) for
each possible value of vectorbt , normalize and then draw
from the resulting discrete distribution. Unfortunately, there
are|B|N possibilities forbt and the evaluation of each like-
lihood involves running one step of a Kalman filter (KF)
which, in turn, has a computational complexityO(L3) be-
cause of matrix inversions [9]. Moreover, when the MIMO
channel is dispersive (m > 1) the equalizer performance is
very poor, because decisions made at timet are not reliable.
Further details can be found in [6].

3.3 Delayed Sampling

Detection in dispersive channels usually requires some
smoothing (i.e., to exploit posterior observations,x0:t+a,
where0 < a≤ m−1 is a smoothing lag) in order to detect
bt . In the context of particle filtering, smoothing is also re-

ferred to asdelayed sampling[9] because particleb(i)
t cannot

be drawn untilxt+a is observed.
The optimal smoothing importance pdf is

q(bt |b0:t−1,x0:t+a) = p(bt |b0:t−1,x0:t+a)

∝ ∑b̃t+1:t+a∈BNa ∏a
k=0 p

(
xt+k|b0:t , b̃t+1:t+k,x0:t+k−1

)
,

(11)

where the evaluation of each factor
p
(
xt+k|b0:t , b̃t+1:t+k,x0:t+k−1

)
requires a KF step. The

weight update equation becomes [6]

w(i)
t+a = w(i)

t+a−1 ∑
b̃t:t+a

a

∏
k=0

p
(
xt+k|b(i)

0:t−1, b̃t:t+k,x0:t+k−1

)
.

(12)
whereb̃t:t+d ∈BN(a+1). Therefore, sampling and updating
a single particle with this method involves the computation
of |B|N(a+1) likelihoods. The complexity of the algorithm,
therefore, grows exponentially with the number of antennas
and the smoothing lag, i.e., it isO(|B|N(a+1)).

4. A NEW SMC-MAP EQUALIZER

The SMC equalizer based on the optimal delayed impor-
tance function is limited by its practically intractable compu-
tational complexity. In [6, 7], new SMC smoothing schemes
were proposed that avoid the exponential growth of complex-
ity, but they still require to run banks of Kalman filters, as
well as additional matrix inversions, that yield anO

(
(Lm)3

)
load.

In order to drastically reduce this stringent computational
requirements, we propose a scheme to directly approximate,
using samples, the joint smoothing distribution of the se-
quence of symbol vectors and channel matrices given the ob-
servations, i.e.,p(b0:t ,H0:t |x1:t+a), instead of the marginal
a posterioripdf of (6). Let us start with the joint posterior
filtering pdf, that admits the straightforward decomposition

p(b0:t+a,H0:t+a|x1:t+a) ∝ p(xt:t+a|bt−m+1:t+a,Ht:t+a)
× p(Ht:t+a|Ht−1)
× p(b0:t−1,H0:t−1|x1:t−1).(13)

Notice thatp(xt:t+a|bt−m+1:t+a,Ht:t+a) andp(Ht:t+a|Ht−1)
are Gaussian pdf’s, straightforward to evaluate without the

need of Kalman filtering. Assume also a suitable proposal
pdf of the form

qt(bt:t+a,Ht:t+a|b(i)
0:t−1,H

(i)
0:t−1,x1:t+a) ∝

qt(bt:t+a|Ht:t+a)qt(Ht:t+a), (14)

with qt(bt:t+a|Ht:t+a) and qt(Ht:t+a) to be specified later,
and the weight update rule

w(i)
t+a ∝ wt+a−1

p(xt:t+a|b(i)
t−m+1:t+a,H

(i)
t:t+a)

qt(b
(i)
t:t+a|H(i)

t:t+a)

× p(H(i)
t:t+a|H(i)

t−1)

qt(H
(i)
t:t+a|H(i)

t−1)
. (15)

The use of (14) and (15) yields a new set of weighted parti-

cles,Ω̃t+a =
{(

b(i)
0:t+a,H

(i)
0:t+a

)
,w(i)

t+a

}M

i=1
, and the approxi-

mation

p(b0:t+a,H0:t+a|x1:t+a)≈
M

∑
i=1

w(i)
t+aδi(b0:t+a)δi(H0:t+a).

(16)
Integrating (16) overbt+1:t+a andHt+1:t+a, yields an esti-
mate of the desired joint smooting pdf,

p(b0:t ,H0:t |x1:t+a) ≈
∫ ∫ M

∑
i=1

w(i)
t+aδi(b0:t+a)δi(H0:t+a)

=
M

∑
i=1

w(i)
t+aδi(b0:t)δi(H0:t). (17)

Therefore, it is only necessary to keep the weighted parti-

cles up to timet, Ωt+a =
{(

b(i)
0:t ,H

(i)
0:t

)
,w(i)

t+a

}M

i=1
, and apply

(14), (15) and (17) sequentially, with resampling steps when
needed. Approximate MAP, smooth symbol estimates are
computed as

b̂map
t = argmax

bt

{
M

∑
i=1

δ (bt −b(i)
t )w(i)

t+a

}
. (18)

4.1 Channel Sampling Scheme

Although the weight update equation (15) enables us to cir-
cumvent the use of the KF banks in [9, 6, 7], we still need to
design a proposal pdfqt that avoids matrix inversions and any
other “heavy” computations. With that aim, we propose to
use a bank of (simple) adaptive channel estimators that play
the same role as the KF, but with less stringent requirements.
A similar idea was applied, for single-user spread spectrum
systems, in [10]. In this paper, we will consider both least
mean squares (LMS) and recursive least squares (RLS) [11]
channel estimation algorithms, to be briefly described in Sec-
tions 4.1.1 and 4.1.2, respectively.

Independently of the channel estimation method, at time

t there is an available channel estimate,Ĥ(i)
t−1, for each

i ∈{1, ...,M}. Taking into account the AR model of the chan-

nel variation, we propose to drawH(i)
t from a Gaussian pro-

posal pdf with meanγĤ(i)
t−1 and diagonal covariance matrix
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σ2
HI, whereσ2

H is a design parameter. The remaining chan-

nel samples,H(i)
t+1:t+a, are then drawn using the AR model.

In summary,

H(i)
t:t+a ∼ qt(Ht:t+a) = N(Ht |γĤ(i)

t−1,σ
2
HI)

×
a

∏
k=1

N(Ht+k|γHt+k−1,σ2
v I). (19)

GivenH(i)
t:t+a, we can draw the new symbol vectorb(i)

t (see
Section 4.2 for details) and then update the bank of adaptive

channel estimators, to yield̂H(i)
t , i = 1, ...,M.

4.1.1 LMS Channel Estimation

Consider the minimum mean square error (MMSE) estima-

tion of the channel givenb(i)
0:t , i ∈ {1, ...,M}, andx1:t , i.e.,

Ĥ(i)
t = argmin

Ht

{
E

[∥∥∥xt −Htb
(i)
t

∥∥∥
2
]}

. (20)

The simplest way to adaptively solve (20) is the LMS algo-
rithm [11], which takes the form

Ĥ(i)
t = Ĥ(i)

t−1−µ
(
Ĥ(i)

t−1b
(i)
t −xt

)
b

(i)H

t , (21)

whereµ << 1 is a step-size parameter.

4.1.2 RLS Channel Estimation

The LMS algorithm (21) has linear computational complex-
ity, but it usually exhibits a slow convergence rate and poor
tracking capabilities. To avoid these well-known drawbacks
it is convenient to use the exponentially-weighted RLS algo-
rithm [11]. The channel estimator is

Ĥ(i)
t = argmin

H

{
t

∑
k=0

λ t−k
∥∥xk−Hbk

∥∥2

}
, (22)

where0< λ < 1 is a forgetting factor. The sequence of prob-
lems defined by (22) are recursively solved using the RLS
algorithm, summarized in the following equations

R(i)−1

0 ∝ INm (initialization) (23)

g(i)
t =

λ−1R(i)−1

t−1 b
(i)
t

1+λ−1b
(i)H

t R(i)−1

t−1 b
(i)
t

(24)

Ĥ(i)H

t = Ĥ(i)H

t−1 +g(i)
t

(
xH

t −b
(i)H

t Ĥ(i)H

t−1

)

(25)

R(i)−1

t = λ−1
(
INm−g(i)

t b
(i)H

t

)
R(i)−1

t−1 (26)

The complexity of the resulting equalizer is linear with re-
spect toLNm. Since, normally,L≈ N, it becomesO(N2).

4.2 Data Sampling Scheme

When the channel sample,H(i)
t:t+d, i ∈ {1, ...,M}, is avail-

able, we build a data proposal pdf based on linear MMSE

detection, as suggested in [7], but avoiding the computation
of inverse matrices. In particular, we exploit the matrix in-
version lemma [11] to recursively approximate the inverse of
the autocorrelation matrix

R−1
t,x =

(
t

∑
n=0

α t−nxt,axH
t,a

)−1

(27)

as

R̂−1
0,x ∝ IL(a+1), R̂−1

t,x = α−1(
IL(a+1)−gt,axH

t,a

)
R̂−1

t−1,x,
(28)

where 0 < α < 1 is a forgetting factor andgt,a =
α−1R̂−1

t−1xt,a

1+α−1xH
t,aR̂

−1
t−1xt,a

is a gain vector. A bank ofN(a+1) MMSE

linear filters is built,

W(i)
t,a = σ2

bR̂
−1
t,x H(i)

t,aE, (29)

for i = 1, ...,M, whereW(i)
t,a has dimensionsL(a+1)×N(a+

1), σ2
b is the symbol power andE =

[
0N(m−1)×N(a+1)

IN(a+1)

]
,

andN(a+1) soft data estimates are computed,

y(i)
t,a = W(i)

t,a
H
xt,a. (30)

Let y(i)
j,t,a denote thej-th element iny(i)

t,a, let bl ,t be thel -
th symbol inbt and let j = Nk+ q for integersk,q ≥ 0.

Then, y(i)
j,t,a is an estimate ofbq,t+k. If the symbols are

binary, bq,t ∈ {±1} (extension to higher order constella-

tions is straightforward), we can assign probabilitiesq(i)
+1,q,t ∝

exp{− 1
σ2

y
|y j,q,t − 1|2 (whereσ2

y is a design parameter) and

q(i)
−1,q,t = 1− q(i)

+1,q,t , and draw a sampleb(i)
q,t accordingly.

Repeating this process for all symbols from timet to time

t +a we obtain the desired sampleb(i)
t:t+a. The evaluation of

qt(b
(i)
t:t+a|H(i)

t:t+a) is carried out by adequately multiplying the

probabilitiesq(i)
±1,q,t for q = 1, ...,N andt, ..., t +a.

5. SIMULATIONS

In order to numerically illustrate the performance of the pro-
posed SMC equalizers, we have considered a simple sys-
tem with N = 2 transmitting antennas andL = 3 receiving
antennas. The length of the CIR ism = 2, and the pa-
rameters of the channel AR process areγ = 1− 10−5 and
σ2

v = 10−4. We have also assumed a BPSK modulation for-
mat, thusB = {±1}, and each channel use consists of the
transmission of a frame of 300 symbol vectors (i.e., 600 bi-
nary symbols overall), including a training sequence of 30
symbol vectors which are used to obtain an initial (rough)
estimate of the CIR.

Within this simulation setup, we have compared the op-
timal smoothing SMC equalizer described in Section 3.3
(labeled “D-SIS opt”) with the two low-complexity SMC
smoothers proposed in this paper (labeled “LMS-D-SIS” and
“RLS-D-SIS”, depending on the type of adaptive channel es-
timator used). The smoothing lag isa= 1 for the three equal-
izers.
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Figure 1: BER of the SMC equalizers and the MLSD for
several values of the SNR (M=30 particles).

Figure 1 depicts the Bit Error Rate (BER) of the differ-
ent algorithms for several SNR values, when the number of
particles of the SMC equalizers isM = 30. The curve la-
beled “MLSD” shows the performance of the maximum like-
lihood sequence detector implemented via the Viterbi algo-
rithm, with perfect knowledge of the time-varying CIR, and
serves as a reference for performance. It can be seen that
the optimal smoothing SMC algorithm clearly outperforms
the proposed low-complexity equalizers. Indeed, the opti-
mal delayed sampling scheme is much more efficient than
the proposed techniques, although this is at the expense of an
unaffordable computational load.

Nevertheless, the performance gap considerably reduces
when we increase the number of particles. This is shown
in Figure 2, where we can observe the BER curves obtained
for M = 100, all other simulation parameters being the same.
The RLS-D-SIS equalizer attains practically optimal perfor-
mance up to SNR=12 dB, and suffers only a minor loss
at SNR=15 dB. The LMS-D-SIS equalizer has an approxi-
mately constant loss of≈ 2 dB for the whole range of SNR
values, but has the advantage of its greater simplicity.

6. CONCLUSIONS

Existing particle filtering methods for MIMO channel equal-
ization suffer from severe limitations because of their high
computational requirements. In this paper we have intro-
duced two low complexity sampling schemes that achieve
an appealing trade-off between performance and complex-
ity and are specially suitable for systems that operate under
stringent time schedules. Moreover, our computer simula-
tions show that for a sufficiently large number of particles,
the proposed equalizers can achieve a nearly optimal perfor-
mance.

REFERENCES

[1] J. S. Liu and R. Chen, “Sequential Monte Carlo meth-
ods for dynamic systems,”Journal of the American Sta-
tistical Association, vol. 93, no. 443, pp. 1032–1044,
September 1998.

4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

D−SIS opt
LMS−D−SIS
RLS−D−SIS
MLSD (known channel)

Figure 2: BER of the SMC equalizers and the MLSD for
several values of the SNR (M=100 particles).

[2] A. Doucet, N. de Freitas, and N. Gordon, Eds.,Sequen-
tial Monte Carlo Methods in Practice, Springer, New
York (USA), 2001.
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