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ABSTRACT the complexity of maximuna posteriori(MAP) data detec-
. jon grows exponentially with the number of inputs (Nol)
Sequential Monte Carlo (SMC) schemes have been recent hd the length of the channel impulse response (CIR). In

proposed in order to perform optimal equalization of mul-[6 7] . . ; X
o ) ; , 7] quasi-MAP SMC equalizers with polynomial complex-
tiple input multiple output (MIMO) wireless channels. The ity (with respect to the Nol and the CIR length) have been

main feaures of SMC techniques that make them appealin scribed, but even these techniques can be prohibitive for

for the equalization problem are (a) their potential to pro- . ; ; .
vide asymptotically optimal performance in terms of bit errorcertain classes of MIMO systems, since they involve running

rate and (b) their suitability for implementation using par_banks of Kalman filters (KFs) and perform successive matrix

L . -inversions.
allel hardware. Nevertheless, existing SMC equalizers stil : .
exhibit a very high computational complexity, relative to the IT tr,\]/'li\gork’ V\;-e ptroposlfal\;vlvlslgew ?MC eq?ﬁhzelrs for
dimensions of the MIMO channel, which makes them usencany- equalization o systems with polyno-
less in practical situations. In this paper we introduce '[womlal (quadratic) complexity. They are specially suitable for

new SMC equalizers whose computaional oad is oly of =L 11 & (108 TUTREr 0 KenemIno S feeening
polynomial order with respect to the channel dimensions, an§ ! q .

. X s ! s in online detection. Compared with the methods in [6, 7],
avoid computationally heavy tasks such as matrix INVErSIONSy & hew equalizers substitu{)e the KF banks by less co[mplgex
The performance of the proposed techniques is numericall

illustrated by means of computer simulations. i‘gﬁ:f ilnsg?sri)gxg ;I?gggtiletrastmatmn algorithms that avoid
The remaining of the paper is organized as follows. In

1. INTRODUCTION the next section, the signal model for transmission over a

: . frequency-selective MIMO channel is described. In section

SMC methods, also known as particle filtering (PF) algo-?’ t?we sta¥1dard application of SMC methods to MIMO equal-

rithms, are simulation based techniques that aim at approxi=’_..~ ~. = . .
; o " : : Ization is discussed. The fundamental ideas behind the pro-
mating thea posterioriprobability density function (pdf) of a posed SMC equalizers are introduced in Section 4. lllustra-

time-varying signal of interest (SOI), given some related ob, . . : ; )
servations, using a discrete probability measure with a rar;qve computer simulations are shown in Section 5 and, finally,

dom support [1, 2, 3]. PF algorithms explore the space of thgoncludlng remarks are made in Section 6.

SOI by generating random samples (termed particles) from

a proposal distribution. These particles are then assigned 2. SIGNAL MODEL

proper weights [1] and yield the discrete approximation ofThe discrete-time equivalent model of a MIMO transmission

thea posterioripdf. system with frequency-selective and time-varying CIR can

Particle filtering is a very general methodology that hasbe written as [6]

found numerous applications in digital communications (see 1

Eai] for an overview). The reason is that, although SMC tech- Xt = Zo Hitbtitu, teN, (1)
gues are computationally intensive in absolute terms (be- &

cause usually many particles have to be generated in order

to obtain some prescribed level of performance), they are invhere {Hi_rt}{‘jol is the L x N-dimensional CIR, of length

herently suitable for implementation using parallel hardwaren, by is theN x 1 vector containing the symbols transmit-

and, therefore, hold promise of very high processing speedgd at timet, u; ~ N(u|0, 021, ) is an additive white Gaus-

Many of the most recently proposed digital transmission syssian noise (AWGN) process with zero mean and covariance

tems can benefit from the fast processing capabilities of Pmatrix 621, (I is theL x L identity matrix) andx; is the

methods. In particular, those that involve communicatiorl x 1 vector of observations. The symbols are modeled as

through multiple input multiple output (MIMO) channels, discrete uniform random variables in the alpha#gthence

e.g., multi-antenna systems [4, 5], are well known to requiréy, ~ % (%N). It is often convenient to use a more compact

fast and sophisticated signal processing techniques to carfgpresentation of (1), namely

out fundamental tasks such as channel equalization. Practical o

MIMO channel equalization poses several problems because xt = Hibt +u, 2)

This work was supported biinisterio de Educadn y Cienciaof Wher.th : [Hmflﬂ "H07t_; is thel >T< Ijm overall channel
Spain (project TEC2004-06451-C05-01). matrix at timet andb; = [bt_m 1 by ]" isanNmx 1 vec-
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tor that contains all the symbols involved in the thi ob-
servation.

the IS principle can be sequentially applied by exploiting the
recursive decomposition of the posterior distribution

The channel variation can be modeled with an autore-

gressive (AR) process [8], that we assume of first order for
simplicity (higher orders are easily handled, except for the

notational involvement), specifically
H; = yH; 1+ Vi, ©))

wherel—¢ < y < 1 (for small € > 0) and V¢ is a matrix

(6)

which is easily derived by taking into account taeoriori
uniform distribution of the symbols, and an adequate impor-
tance function that can be factored as

P(bot|xot) O p(xt|bot, x0t—1) P(bot—1/X01-1),

q(bot|xot) = q(bt|bot—1,%01)d(bot-1/x0t-1). (7)

of independent and identically distributed (i.i.d.) Gaussiantpe recursive algorithm that combines the IS principle and

random variables with zero mean and variaage

decompositions (6) and (7) to build a discrete random mea-

Because of the channel frequency-selectivity, some typgyre that approximates the posterior pdf is called sequential

of smoothing is needed for reliable data detection. The de- )
sign of smoothing detectors becomes simpler if we stack tdmportance sampling (SIS) [2, 3]. L& = {

: M
by

. . . =1
gether several successive observation vectors, to yield thgnote the discrete measure at tigehereM is the number

model

Xta = Ht,abt,a + Ut a, (4)

wherea > 1 is the smoothing lagx:a = [x{ -~ x{ 4] "
is theL(a+ 1) x 1 vector of stacked observationb; 5

b o1 -blial " has dimensiondN(m+a) x 1, uga

[uf ---u4]" and
[ Hy(m—1) 0 0 17
Ht(m— 2) Ht+1(m— 1) 0
; Hira(m—2)
Hea— H¢(0) Hita(m—1)
Ht11(0) Hita(m—2)
0 0 Hi+d(0)
) ®)

is theL(a+ 1) x N(m+ a) stacked channel matrix.

3. MIMO CHANNEL EQUALIZATION
3.1 Sequential Importance Sampling
Most particle filtering methods rely upon the principle of Im-

of particles. The desired pdf is approximated as

M .
Pborfxo0) = 3 & (bor)w{”, ®

where & (by) = &(b; — b{") is the Dirac delta function.
When a new observation is collected at titrel, the SIS al-
gorithm proceeds through the following steps to recursively
computeQ; . 1,

1. Importance samplingot(z1 ~ q(bt+1|bgi,xo;t+1).

i)

! P(xs1/bgy ,1.%01)
+

2. Weight u datew( W, Lt
gntup t b ab{ b0 xor11)

i mo!
3. Weight normalizationw") = o
k=1M
Itis straightforward to obtain data estimates from the approx-
imate pdfp(bo+|xot). In particular, the marginal MAP sym-

bol detector is
)

which amounts to selecting the particle with the highest accu-
mulated weight (note that some particles can be replicated).
One major problem in the practical implementation of

M .
b — argmax! § &(b; — b\ 9
t g D {.Z (bt t 9)

portance Sampling (IS) [1] for building an empirical approx-the SIS algorithm is that after few time steps most of the par-
imation of a desired pdf sayp(x), by drawing samples from ticles have importance weights with negligible values (very
a different distribution, known @mportance functiorpro-  close to zero). The common solution to this problem ito
posal pdfand denoted|(x). These samples are then assignedsamplethe particles. Resampling is an algorithmic step that
appropriate normalizeithportanceweights, i.e., stochastically discards particles with small weights while
replicating those with significant weight. In this paper, we
consider only the conceptually simplest resampling scheme,
that generates a setBfnew and equally weighted particles,
{bgi, 1/MM., by drawing from the discrete probability dis-
where M, wl) = 1, M being the number of particles. In tripution prsp(bgi) —wi.
order to detect the transmitted symbols, it is natural to aim '
at the approximation of tha posteriorimarginal pdf of the 3.2 Optimal importance function
data,p(bot|xot), which contains all relevant statistical infor-
mation for the optimal (Bayesian) estimationkay;. In turn,
an importance function of the forg(boz|xo+) is needed.
One of the most appealing features of the patrticle filte

ing approach is its potential for online processing. Indeed, q(br|xo1, boi_1) = p(b|xot, bot_1) O p(xi|bot, Xo1_1),
1We will always use the termensity even for discrete random variables, (10)

since any probability mass function can be expressed as a density using sudY§lich _Comains all the information available at timfor the
of Dirac delta functions. sampling ofby.

X ~qx) and w0

The performance of the SIS algorithm considerably depends
on the choice of importance function. The optimal proposal
(Jpdf for the described scheme is
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In order to sample the importance function of (10), itneed of Kalman filtering. Assume also a suitable proposal
is necessary to evaluate the likelihoptk;|bo+,x0t—1) for  pdf of the form
each possible value of vectbk, normalize and then draw

from the resulting discrete distribution. Unfortunately, there brtsa, Herra by L HY o x1400) O
are| |\ possibilities forb; and the evaluation of each like- %(Prrra Hirvalbog g Hor g X11+2)
lihood involves running one step of a Kalman filter (KF) Gt (btt+aHetra) 0t (Hera), (14)

which, in turn, has a computational complexif(L®) be-
cause of matrix inversions [9]. Moreover, when the MIMO
channel is dispersiven(> 1) the equalizer performance is
very poor, because decisions made at tiraee not reliable.

Further details can be found in [6]. Wt(i) 0 Weat
+a —

with ¢ (bt:t+a|Hit+a) and g(Hit1a) to be specified later,
and the weight update rule

p(Xt:t+a‘thm+1;t+aa Ht(:lt)+a)

(i) (i)
3.3 Delayed Sampling 0 q‘(gbtiHa'HtHa)
| I
Detection in dispersive channels usually requires some w (15)
smoothing (i.e., to exploit posterior observationg. a, Qt(Ht<:lt>+a|Ht(91)

where0 < a < m—1is a smoothing lag) in order to detect

bt. In the context of particle filtering, smoothing is also re-The yse of (14) and (15) yields a new set of weighted parti-

ferred to aglelayed samplinf9] because particlb!’ cannot = i i N M .
be drawn untilxia is obgerv%gi. g t cles,Qya = {(bgha, Hg:ﬁa) aWt(IJZa}izlv and the approxi-

The optimal smoothing importance pdf is mation
b |bot_ = p(bt|bot_ . Mo
q(bt|bo 17:01+a) p(bt| ~0.t 1,X0t+a) p(botsa, HotyalX1tia) ~ zlwfﬁaé(boua)é(ﬂona).
U3 b 10aczNa[Tk=o P (Xt-+k| Do, Pt 111k X0t+k-1) 5 i= 16)
(1) Integrating (16)' ove.bt'+1;t+a anq Hii111a, Yields an esti-

where  the  evaluaton  of  each factor Mate of the desired joint smooting pdf,
P (Xt k/bot, bri1tik, Xorik-1) requires a KF step. The
weight update equation becomes [6] p(bot, Hot|x11+a) =~

Mo
//-Z\Wt(ﬁad (bot+a)d (Hot+a)
M

) ) a ) .
Wt(LZa = t([ga,l ~z kI_L (Xt+k|b8%717 bt:t+k7 X01+k71) .

btit+a

B (12)
whereby 4 € M@, Therefore, sampling and updating Therefore, it is only necessary to keep the weighted parti-
a single particle with this method involves the computation _ NN R
of |2|N@) Jikelihoods. The complexity of the algorithm, Cl€S Up to timé, Oq = {(bOI’HO:t) 7Wt+a}i:11 and apply
therefore, grows exponentially with the number of antennagl4), (15) and (17) sequentially, with resampling steps when
and the smoothing lag, i.e., it 8(|2|N@). needed. Approximate MAP, smooth symbol estimates are

computed as

,Z\Wt(iiaa (bo1)d (Hoz)- (17)

4. ANEW SMC-MAP EQUALIZER

M . .
The SMC equalizer based on the optimal delayed impor- b"aP — arg max{zlcs(bt _bt('))wf'la}, (18)
tance function is limited by its practically intractable compu- L =

tational complexity. In [6, 7], new SMC smoothing schemes

were proposed that avoid the exponential growth of complex4.1  Channel Sampling Scheme

ity, but they still require to run banks of Kalman filters, as ajthough the weight update equation (15) enables us to cir-
well as additional matrix inversions, that yield &((Lm)°)  cymvent the use of the KF banks in [9, 6, 7], we still need to
load. . N _design a proposal pdf that avoids matrix inversions and any
In order to drastically reduce this stringent computationay ey “heavy” computations. With that aim, we propose to
requirements, we propose a scheme to directly approximatgse 4 pank of (simple) adaptive channel estimators that play
using samples, the joint smoothing distribution of the sei,e same role as the KF, but with less stringent requirements.
quence of symbol vectors and channel matrices given the obx gimilar idea was applied, for single-user spread spectrum
servations, i.e.p(bot, Hot|x111a), instead of the marginal gy qtems, in [10]. In this paper, we will consider both least
a posterioripdf of (6). Let us start with the joint posterior mean squares (LMS) and recursive least squares (RLS) [11]
filtering pdf, that admits the straightforward decomposition channel estimation algorithms, to be briefly described in Sec-
tions 4.1.1 and 4.1.2, respectively.
P(botra, Hotvalx11ra) U P(xttralbt-mittia, Hitra) Independently of the channel estimation method, at time
X p(Hetra|Hi-1) t there is an available channel estimafﬂ,@l, for each
x p(bot-1,Hot-1/x11-1)-(13)  je{1,...,M}. Taking into account the AR model of the chan-
. it (i) ; _
Notice thatp(xt:t+albt—m+1t+a, Hit+a) and p(Hia[Hi_1) nel varlatlon-, we propAo(si)e to draI7.'It from a Ggussmn pro.
are Gaussian pdf’s, straightforward to evaluate without th@osal pdf with mearyH,’; and diagonal covariance matrix
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031, WhereaH |s a design parameter. The remaining chan-detection, as suggested in [7], but avoiding the computatlon

nel samplesH are then drawn using the AR model. of inverse matrices. In particular, we exploit the matrix in-
In summary. t+1t+ar version lemma [11] to recursively approximate the inverse of

the autocorrelation matrix

Ht(:lt)+a ~ (Hitya) = N(Ht‘Vﬁt(leaI?lI) . < Lo y -1
a R/[T = a 7nxt’axt‘ (27)
<[] N(H | yHy k-1, 02T). (19) g nZO °
K=1
as

Given Ht<'t)+ , we can draw the new symbol vectbP) (see n—1 5-1_ -1 _ HyR-1
Section 4.2 for details) and then update the bank of adaptive™ox J L@ty Rex =0 (Tiary) — 8raxta) Ristyp

channel estimators, to yieH; ', i =1,...,M. where 0 < o < 1 is a forgetting factor andgia =
1R 1x . .
4.1.1 LMS Channel Estimation 1“;}711?4—;1;1&1 is a gain vector. A bank dfi(a+1) MMSE
Xtalh 1Xta
Consider the minimum mean square error (MMSE) estimatinear filters is built,
tion of the channel givebgi, ie{1,..,M}, andxyy, i.e., . . .
Wil = R {H{JE, (29)
) - B —(i)HZ .
He" =arg nI}tm{E {th Hib ' 20)  fori— 1,...,M, whereW\') has dimensionk(a-+1) x N(a-+

ON(m-1)xN(a+1)
IN@ty
andN(a+ 1) soft data estimates are computed,

The simplest way to adaptively solve (20) is the LMS algo-1), 5 is the symbol power an& =
rithm [11], which takes the form

Al =l (A -x )b, (@) M

yih =W xea (30)

whereu << 1is a step-size parameter.

Let yﬁ“{a denote thej-th element inyt(f;, let by be thel-

4.1.2 RLS Channel Estimation th symbol inb; and letj = Nk+ q for integersk,q > 0.

(i .
The LMS algorithm (21) has linear computational complex-1 €M tha is an estimate obqgk. If the symbols are
ity, but it usually exhibits a slow convergence rate and pooPinary, bqt € {1} (extension to higher order constella-

traCkIng Capabllltles To avoid these well-known draWbaCk%K)ns is Stra|ghtforward), we can ass|gn probab|||q§§qt
it is convenient to use the exponentially-weighted RLS algoe _ 112 (where o2 is a desian arameté} and
rithm [11]. The channel estimator is xp{ |y, qt — 1 (w oy ! 'gn p )

q 1 =1 q+)1 t and draw a samplbqt accordingly.

. t
A" = arg min{ Z ALK ka_kuHZ} 22) Repeatlng this process for all symbols from tine® time
t+awe obtain the desired samphéwa. The evaluation of

where0 < A < 1is a forgetting factor. The sequence of prob- q‘(bt t+a|Ht t+a) is carried out by adequately multiplying the
lems defined by (22) are recursively solved using the RL$JrObabllltlesqilqt forq=1,..,Nandt,...,t+a.
algorithm, summarized in the following equations

5. SIMULATIONS

I PN .
Ré) 0 Inm (initialization) (23) " In order to numerically illustrate the performance of the pro-
. A 1R1 posed SMC equalizers, we have considered a simple sys-

gt(') _ 1 t — (24) tem with N = 2 transmitting antennas arid= 3 receiving

1+A-1p0) R b antennas. The length of the CIR is = 2, and the pa-

o o A W rameters of the channel AR process gre 1— 10~° and
) = 7Y g <x{* — b Hf?l) 02 = 104, We have also assumed a BPSK modulation for-
mat, thusZ = {£1}, and each channel use consists of the

(25)  transmission of a frame of 300 symbol vectors (i.e., 600 bi-

(i) . (i) =(i)" (i)t nary symbols overall), including a training sequence of 30

R¢ = A (INm_gt by )R[l (26)  symbol vectors which are used to obtain an initial (rough)
estimate of the CIR.

Within this simulation setup, we have compared the op-
timal smoothing SMC equalizer described in Section 3.3
(labeled “D-SIS opt”) with the two low-complexity SMC
4.2 Data Sampling Scheme smoothers proposed in this paper (labeled “LMS-D-SIS” and

“RLS-D-SIS”, depending on the type of adaptive channel es-
When the channel sampléi[tt ¢ 1 € {1,...,M}, is avail-  timator used). The smoothing lagas= 1 for the three equal-
able, we build a data proposal pdf based on linear MMSHzers.

The complexity of the resulting equalizer is linear with re-
spect toLNm Since, normallyl ~ N, it becomesZ(N?).
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Figure 1. BER of the SMC equalizers and the MLSD for Figure 2: BER of the SMC equalizers and the MLSD for
several values of the SNR (M=30 particles). several values of the SNR (M=100 particles).

Figure 1 depicts the Bit Error Rate (BER) of the differ- [2]
ent algorithms for several SNR values, when the number of
particles of the SMC equalizers M = 30. The curve la-
beled “MLSD” shows the performance of the maximum like- [3]
lihood sequence detector implemented via the Viterbi algo-
rithm, with perfect knowledge of the time-varying CIR, and
serves as a reference for performance. It can be seen that
the optimal smoothing SMC algorithm clearly outperforms [4]
the proposed low-complexity equalizers. Indeed, the opti-
mal delayed sampling scheme is much more efficient than
the proposed techniques, although this is at the expense of an
unaffordable computational load.

Nevertheless, the performance gap considerably reducet!
when we increase the number of particles. This is shown
in Figure 2, where we can observe the BER curves obtained
for M = 100, all other simulation parameters being the same.
The RLS-D-SIS equalizer attains practically optimal perfor- [6]
mance up to SNR=12 dB, and suffers only a minor loss
at SNR=15 dB. The LMS-D-SIS equalizer has an approxi-
mately constant loss ef 2 dB for the whole range of SNR
values, but has the advantage of its greater simplicity. [7]

6. CONCLUSIONS

Existing particle filtering methods for MIMO channel equal- [8]
ization suffer from severe limitations because of their high

computational requirements. In this paper we have intro-

duced two low complexity sampling schemes that achieve
an appealing trade-off between performance and complex-
ity and are specially suitable for systems that operate under
stringent time schedules. Moreover, our computer simula-l
tions show that for a sufficiently large number of particles,

the proposed equalizers can achieve a nearly optimal perfor-
mance. [10]
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