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ABSTRACT
The paper considers an important variation of the MIMO
channel Decision Feedback (DF) equalizer, the bidirectional
MIMO equalizer, that combines the classical forward DF
equalizer (DFE) with the backward DFE, which is based on
imposing anticausal properties to the feedback filter. With
reference to the minimum mean square error (MMSE) cri-
terion, we extend the bidirectional equalization from the
single-input single-output (SISO) scenario to the more gen-
eral multiple-input multiple-output (MIMO) scenario where
different definitions of anticausal systems can be given. An
original variation of the bidirectional DF equalizer is also
proposed in order to reduce its performance loss in the pres-
ence of the error propagation.

1. INTRODUCTION

Recent advances in wireless communications have motivated
the study of the equalization over dispersive MIMO chan-
nels. Maximum likelihood equalization techniques for a
MIMO dispersive channel present computational complex-
ity that increases exponentially with the number of input se-
quences as well as with channel memory order and, there-
fore, suboptimum receivers are often considered. An im-
portant class of equalizers is the DF equalizer, which is a
symbol-by-symbol equalizer and, at least in SISO scenario,
performs very closely to the Viterbi equalizer [1] over many
channels and exhibits better tolerance to phase jitter [2].

MIMO DF equalizer design is usually performed in the
indirect case (i.e., perfect estimates of channel response as
well as of data and noise spectra are available) under the
adoption of Zero Forcing (ZF) or Minimum Mean Square Er-
ror (MMSE) criterion and under the assumption (motivated
by analytical tractability) of correct previous decisions. The
general design procedure for MIMO scenario has been de-
rived in [3, 4] with reference to the MMSE criterion; such a
procedure requires the factorization of a discrete-time spec-
tral matrix; the simplification of such a procedure has been
considered in [5].

Several variations of the DF equalizer have been pro-
posed in the literature; among them, one of the most impor-
tant improvements is represented by its bidirectional version
[6], particularly suited to the modern packet-switching trans-
missions. Such an equalizer, derived only with reference to
a SISO scenario, recursively works on the received sequence
both in a forward and in a backward fashion, thus obtaining
two estimates of each transmitted symbol, to be used for the
final decision. Formally, the backward DFE is designed by
imposing that the feedback filter is anticausal while the for-

ward DFE is designed by imposing that the feedback filter
is causal. Since the definitions of causal and anticausal fil-
ter admit several variations in the MIMO scenario, a detailed
analysis is required to provide its extension to the MIMO
scenario.

In this paper we derive the MIMO bidirectional DF
equalizer (Bi-DFE) according to the MMSE criterion and we
analyze its performances in the presence of error propaga-
tion. Moreover, in order to improve them, an original two-
stage variation of such an equalizer is proposed.

2. BASIC NOTATIONS

Let us consider the vector x(n) of discrete-time pro-

cesses; its autocorrelation matrix is defined as Rx(m)
�
=〈

E[x(n)xH(n−m)]
〉

= RH
x (−m) with the superscript H de-

noting the Hermitian transpose, E the statistical average and
〈·〉 the temporal average. The spectral matrix of x(n) is de-
fined as the (two-sided) z-transform of the autocorrelation

matrix Rx(m), i.e., Sx(z)
�
= ∑+∞

m=−∞ Rx(m)z−m = SH
x (z−∗),

where the last equality follows from Rx(m)=RH
x (−m) with

the asterisk ∗ denoting the complex conjugate. Therefore
Sx(e j2πν) is the power spectral density of x(n).

3. DF FILTER DESIGN

Let us consider the following MIMO discrete-time channel
model:

r(n) = h(n)⊗x(n)+ η(n) (1)

where ⊗ denotes MIMO discrete-time convolution, x(n) is
the input information-bearing vector with spectral matrix
Sx(z); such a matrix describes the spatial and temporal cor-
relation of the process x(n). The channel is described by
the MIMO impulse response h(n) and the zero-mean dis-
turbance η(n), uncorrelated with x(n), has spectral matrix
Sη (z). Note that the disturbance can include not only the
background noise but also the interferences from signals
different from x(n). The considered discrete-time channel
model is central in the problem of receiver design for a vari-
ety of modern communication systems.

When DF equalization method is adopted, the equalized
sequence z(n) is given by

z(n) = f(n)⊗ r(n)−b(n)⊗ x̂(n) (2)

where f(n) is the feedforward MIMO linear and time-
invariant (LTI) filter, b(n) is the feedback MIMO LTI filter,
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and x̂(n) represents an estimation of x(n) obtained by hard-
decisions based on the same sequence z(n). Both the forward
and backward DF equalizers share the same structure while
the difference consists in the response of the two filters F(z)
and B(z), where we denote with the upper-case letter the z-
transform of the impulse response. In particular only the op-
timum MMSE filters in the forward DFE are usually derived
while the backward DFE is not considered, as in [3, 4], or it
is briefly sketched as in [5]. In this section, instead, we pro-
vide a simple and detailed derivation of the optimum MMSE
backward DFE leaving just sketched the well-known deriva-
tion of the forward counterpart.

The adoption of the MMSE criterion means to search
for the optimum filters F(z) and B(z) (expressed in the z-

domain) that minimize the cost function
∫ 1

2

− 1
2

TrSe(e j2πν)dν
where Tr denotes the trace operator and Se(z) denotes the

spectral matrix of the error sequence e(n)
�
= z(n)−x(n). Un-

der the typical assumption x(n) = x̂(n), it can be shown that

Se(z) =
[
F(z)H(z)− B̃(z)

]
Sx(z)

[
HH(z−∗)FH(z−∗)

− B̃H(z−∗)
]
+F(z)Sη (z)FH(z−∗)

with B̃(z)
�
= B(z)+ I. Such a result is easily derived since

the output y(n) of a LTI filter H(z) with input x(n) has spec-
tral matrix Sy(z) = H(z)Sx(z)HH(z−∗). The matrix Se(z)
can be easily re-written as

Se(z) = ∆F(z)Sr(z)∆FH(z−∗)+B̃(z)SB(z)B̃H(z−∗)

∆F(z)
�
= [F(z)−F(opt)(z)]

Sr(z)
�
= H(z)Sx(z)HH(z−∗)+Sη(z)

SB(z)
�
= Sx(z)−Sx(z)HH(z−∗)S−1

r (z)H(z)Sx(z)

F(opt)(z)
�
= B̃(z)Sx(z)HH(z−∗)S−1

r (z). (3)

This implies that F(opt)(z) is the optimum choice for F(z)
and it depends on the utilized feedback filter; relation
(3) with B̃(z) = I allows one to determine the optimum
MMSE linear filter. The optimum feedback filter minimizes∫ 1

2

− 1
2

Tr
[
B̃(e j2πν)SB(e j2πν)B̃H(e j2πν)

]
dν . Let us note that,

according to the matrix inversion lemma, SB(z) = S−1
C (z)

where SC(z)
�
= S−1

x (z)+HH(z−∗)S−1
η (z)H(z). Since the se-

quence x̂(n) is obtained by hard-decisions on the already ob-
tained values of x(n), not all the values of x̂(n) are available
at time-step n and, therefore, a constraint on the utilized filter
B(z) is needed; in particular, the forward DFE is obtained by
imposing the causality of the filter while the backward DFE
is obtained by imposing the anticausality of the filter. In or-
der to derive the bidirectional equalizer, we first need to de-
rive the backward DF equalizer. Since in MIMO case there
are different anticausality properties, we review a number of
relevant definitions to be utilized.

We say that H(z) is anticausal when it is analytic in
|z| ≤ 1, i.e., it is has all poles outside C, and H(0) is up-
per triangular. We say that H(z) is causal when it analytic
in |z| ≥ 1, i.e., all poles are internal to the unit circle C, and

H(∞) is lower triangular. We say that H(z) is strictly anti-
causal when all its poles are external to C and H(0) is strictly
upper triangular (i.e., upper triangular with null diagonal en-
tries); we say that H(z) is strongly anticausal when all its
poles are external to C and H(0) is null. We say that a square
matrix is monic when its diagonal entries are equal to one.
We say that H(z) is anticanonical when it is square, anti-
causal, H(0) is monic and H−1(z) is anticausal; note that
the inverse of an anticanonical filter is also anticanonical and
the product of two anticanonical filters is also an anticanon-
ical filter. We say that H(z) is canonical when it is square,
causal, H(∞) is monic and H−1(z) is causal. Note that if
H(z) is anticanonical, then HH(z−∗) is canonical and vice
versa.

For backward DF filter design we can impose that B(z)
is strictly anticausal, which implies that B̃(z) is anticausal
with B̃(0) monic, but we can also simply impose that B(z)
is strongly anticausal, which implies that B̃(z) is anticausal
with B̃(0) = I. In the strictly anticausal case the first com-
ponent of x̂(n) (i.e., the decision taken at time n about the
first component of x(n)) is utilized for obtaining the second
component of z(n), and so on. Note the dependence on the
chosen order of the components of x(n) that we do not con-
sider for optimization here. In the strongly causal case only
decisions relative to successive time instants are utilized to
obtain z(n) and the re-ordering of x(n) is irrelevant.

In order to determine the optimum B̃(z) in such
set of filters, we need to minimize the following

cost function
∫ 1

2

− 1
2

Tr
[
B̃(e j2πν)SB(e j2πν)B̃H(e j2πν)

]
dν =∫

C Tr
[
B̃(z)SB(z)B̃H(z−∗)

]
dz

j2πz with
∫

C denoting the integral

on the contour |z| = 1. We first consider the case where the
square matrix SB(z) = DB is a constant diagonal matrix (with
positive entries) and the following optimization problem




B̃(opt)(z) = argmin
B̃(z)

∫
C

Tr
[
B̃(z)DBB̃H(z−∗)

] dz
j2πz

b̃(0) = B0
(4)

where B0 is an assigned matrix, and b̃(k) (with (i, �) entry
b̃i,�(k)) denotes the stable time impulse response of B̃(z). At
this aim we note that the cost function in (4) can be re-written
as

∫
C

N

∑
i=1

N

∑
�=1

Di|B̃i,�(z)|2 dz
j2πz

=
N

∑
i=1

N

∑
�=1

∫ 1
2

− 1
2

Di|B̃i,�(ν)|2dν

=
N

∑
i=1

N

∑
�=1

+∞

∑
k=−∞

Di|b̃i,�(k)|2 (5)

where B̃i,�(z) denotes the (i, �) entry of B̃(z) and B̃i,�(ν)
denotes B̃i,�(z) for z = e j2πν . Therefore, problem (4) obvi-

ously admits the solution b̃(opt)
i,� (k) = B0i,�δ (k) or, equiva-

lently, B̃(opt)(z) = B0 and the value of the cost function at
the optimum is

Tr
[
B0DBBH

0

]
. (6)
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Consider now the same problem with a different con-
straint


B̃(opt)(z) = argmin
B̃(z)

∫
C

Tr
[
B̃(z)DBB̃H(z−∗)

] dz
j2πz

B̃(z) anticanonical

B̃(0) = B0.

(7)

It admits solution only if B0 is an anticanonical matrix. In
such a case, the solution is obviously B̃(opt)(z) = B0 with
minimum value (6). In fact, optimum solution of uncon-
strained problem (4) satisfies also the constraint, imposed in
(7), of being an anticanonical filter with assigned value for
z = 0. Consider now the following problem


B̃(opt)(z) = argmin
B̃(z)

∫
C

Tr
[
B̃(z)DBB̃H(z−∗)

] dz
j2πz

B̃(z) anticanonical.

(8)

From the solution of problem (7), it easily follows that the

problem (8) admits the solution B̃(opt)(z) = B(opt)
0 where


B(opt)

0 = argmin
B0

Tr
[
B0DBBH

0

]
B0 anticanonical.

(9)

Since Di > 0 and

Tr
[
B0DBBH

0

]
=

N

∑
i=1

N

∑
�=1

Di|B0i,�|2, (10)

the solution of (9) is obtained when B(opt)
0 , constrained

at unit diagonal entries, has null nondiagonal entries, i.e.,

B(opt)
0 = I; therefore, the solution of (8) is B̃(opt)(z) = I.

To solve the optimization problem in the general case of
non-constant matrix SB(z), we need to consider that, given
the spectral matrix SB(z) = SH

B (z−∗) ≥ 0, there exist two
canonical filters GB(z) and GB(z) (called here the left fac-
tor and the right factor, respectively) and two diagonal ma-
trices DB and DB with positive diagonal entries such that
SB(z) = GB(z)DBGH

B (z−∗) = G H
B (z−∗)DBGB(z).

Consider therefore the following problem


B̃(opt)(z) = argmin
B̃(z)

∫
C

Tr
[
A(z)DBAH(z−∗)

] dz
j2πz

A(z) = B̃(z)G H
B (z−∗)

B̃(z) anticausal

b̃(0) = B0

(11)

where b̃(k) denotes the time transform of B̃(z). From the
solution of the problem (4), it follows that the optimum B̃(z)

is such that, at the optimum, A(opt)(z)
�
= B̃(opt)(z)G H

B (z−∗)

= A(0) = B̃(0)G H
B (∞). Since B̃(z) is constrained to be an-

ticausal, it follows that

B̃(opt)(z) = B0G
H
B (∞)G −H

B (z−∗). (12)

At the optimum, the value of the cost function is

Tr
[
A(0)DBAH(0)

]
= Tr

[
B0q0BH

0

]
(13)

where q0
�
= G H

B (∞)DBGB(∞). Let us consider two possible
cases regarding the assigned matrix B0 in the problem (11):
a) the special choice B0 = I (strongly anticausal filtering)

implies that B̃(opt)(z) = G H
B (∞)G −H

B (z−∗) with optimum
value Tr[q0];

b) the matrix B0, which is upper triangular since B(z) is
anticausal, is constrained to be monic (strictly anticausal
filtering). Then, B0 is chosen among all anticanonical
matrices in order to minimize the value of the cost func-
tion at the optimum. Note that B̃(opt)(z) is a polynomial
in z and it is anticanonical provided that B0 is anticanon-
ical. The property of G H(z−∗) to be anticanonical is cru-
cial to guarantee that the optimum B̃(opt)(z) among all
anticausal filters (with anticanonical matrix B0) can be
obtained by searching among the B̃(z) that are anticanon-
ical. This means that the problem (11) with this further
choice of B0 among all anticanonical matrices becomes
equivalent to the following problem


B̃(opt)(z) = argmin
A(z)

∫
C
Tr

[
A(z)DBAH(z−∗)

] dz
j2πz

A(z) = B̃(z)G H
B (z−∗)

B̃(z) anticanonical.

Note that, as B̃(z) varies over all anticanonical filters,
A(z) describes the set of all anticanonical filters. In
fact, for any anticanonical filter C(z), there exists an
anticanonical matrix B̃(z) = C(z)G −H

B (z−∗) such that

A(z)
�
= B̃(z)G H

B (z−∗) = C(z). We have used properties
that the product of two anticanonical filter and the inverse
of an anticanonical filter are anticanonical. From the so-
lution of problem (8) it follows that B̃(opt)(z)G H

B (z−∗) =
I, or, equivalently,

B̃(opt)(z) = G−H
B (z−∗). (14)

From the previous results it follows that, for strictly an-
ticausal feedback filter B(z), the optimum MMSE B̃(z) is
G −H

B (z−∗) while, for strongly causal feedback filter, the op-
timum MMSE B̃(z) is G H

B (∞)G −H
B (z−∗) where GB(z) is the

right factor of SB(z).
The problem has been solved for the anticausal case.

Analogously, it is easy to show that, for strictly causal feed-
back filter, the optimum MMSE B̃(z) is G−1

B (z) while, for
strongly anticausal feedback filter, the optimum MMSE B̃(z)
is GB(∞)G−1

B (z). Such anticausal filters start the backward
recursion from the successive training sequence. The results
of forward and backward recursion on the same data may be
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×
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Figure 1: The structure of the bidirectional DF equalizer.

used to conceive a special MIMO multistage equalizer which
focuses on the part of the sequence where one of the two DF
equalizers has failed.

Note that SC(z) = S−1
B (z) = G−1

B (z)D−1
B G −H

B (z−∗) and,
therefore, the filter G −1

B (z) is the left factor of SC(z). It is cer-
tainly easier to manipulate SC(z) when the inversions of the
matrices Sx(z) and Sη(z) are particularly simple (e.g., they
are constant diagonal matrices [i.e., spatially and temporally
uncorrelated signal and noise processes]).

The result reported in the present section extends those
reported in [4] for the following reasons: (a) the back-
ward DFE is explicitly derived; (b) a discrete-time model
is adopted; (c) non-stationarity in the transmitted sequence
and in the disturbance sequence is admitted; (d) optimiza-
tion is not only performed over strictly causal feedback fil-
ters but also over strongly causal filters; (e) optimum feed-
forward filter is determined by standard algebra rather than
by calculus of variations; (f) in the derivation of the result not
only factorization of matrix SB(z) but also of matrix SC(z)
is used. Note, however, that in [4] the equivalence of the
MMSE and geometric-MSE criteria with respect to the de-
sign of the feedforward filter is also shown and the optimiza-
tion over a possible linear transmitting filter under geometric
MSE criterion is also performed.

4. BIDIRECTIONAL DF EQUALIZER

The bidirectional DF equalizer (Bi-DFE), showed in Fig. 1,
utilizes both the forward and backward DFE; its decisions
are taken on the basis of sequence z(n)

z(n)
�
=

1
2
[z f (n)+zb(n)] (15)

where z f (n) and zb(n) represent the outputs of the forward
and backward equalizers, respectively. More sophisticated
ways to combine z f (n) and zb(n) are not considered here.
An extension could be based on the joint optimization of the
forward and backward filters assuming that they are com-
bined as in Fig. 1.

5. VARIABLE THRESHOLD BIDIRECTIONAL
DECISION-FEEDBACK EQUALIZER

In order to limit the effects of the error propagation on the Bi-
DFE considered in the previous section, we propose here an
original variation of such an equalizer. The structure of the
variable threshold bidirectional DF equalizer (VT-Bi-DFE)
is based on the unidirectional DFEs and on the Bi-DFE. It
operates in two stages: in the first stage it operates as a Bi-
DFE; in the second stage, the equalized sequence obtained in

the previous stage is used as input of the feedback filters in
the forward and backward DFEs; moreover, the final decision
is taken by using a non-standard threshold.

Such a threshold modification refers to the case of binary
shift keying (BPSK) input symbols and it is aimed at max-
imizing the correlation between the equalized sequence and
the outputs of the forward and backward DFE after the first
stage. More specifically, the threshold is set at the end of the
first stage according to the following procedure:
a) determine the pth component of the threshold vector Λ f

such that the decisions D f (n) taken according to the fol-
lowing rule

z f ,1(n)
>
< Λ f

and the decisions Dbi(n) taken according to the following
rule

z f ,1(n)+zb,1(n)
2

>
< 0

provide the smallest value of ∑�
i=1 |D f ,p(n)− Dbi,p(n)|

where � is number of the symbols considered for the de-
cision by the equalizer, D f ,p(n) and Dbi,p(n) are the pth
components of D f (n) and Dbi(n), respectively, z f ,1(n)
is the output sequence obtained by the forward DFE after
the first stage, and zb,1(n) is the output sequence obtained
by the backward DFE after the first stage. The thresholds
Λ f are determined separately for each component by cal-
culating ∑�

i=1 |D f ,p(n)−Dbi,p(n)| for different values of
the variable and choosing the value minimizing it.

b) determine the pth component of the threshold vector Λ b
such that the decisions Db(n) taken according to the fol-
lowing rule

zb,1(n)
>
< Λb

and the decisions Dbi(n) provide the smallest value of
∑�

i=1 |Db,p(n)−Dbi,p(n)|, where Db,p(n) is the pth com-
ponent of Db(n). The thresholds Λb are determined as in
the previous step.

c) the final threshold vector Λ is

Λ
�
=

Λ f +Λb

2

In the second stage, the two feedback filters B f (z) and
Bb(z) are fed with the decisions Dbi(n) while the final deci-
sions are taken according to the following rule

z f ,2(n)+zb,2(n)
2

>
< Λ

where z f ,2(n) is the output sequence obtained by the for-
ward DFE after the second stage, and zb,2(n) is the output
sequence obtained by the backward DFE after the second
stage.

6. PERFORMANCE ANALYSIS

The performance analysis is carried out by computer simula-
tion in a dispersive MIMO scenario with two inputs and two
outputs and a channel memory equal to 6. The average bit
error rate (BER) reported here is obtained by averaging the
BERs of the two BPSK transmissions; the two BERs are ob-
tained by averaging the results over 100 independent trials;
in each trial each tap of the FIR MIMO channel is generated
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Figure 2: The effect of the error propagation on the perfor-
mances of the DFE and the Bi-DFE.

randomly according to a circular complex-valued Gaussian
distribution and with channel taps independent of each other,
106 symbols are observed for each trial. The energy of the re-
sulting MIMO channel impulse response is also normalized.
The signal-to-noise ratio (SNR) is defined as 1

σ 2 where the

noise spectral matrix is Sη(z) = σ2I and the signal spectral
matrix is set to Sx(z) = I.

The filter implementation is based on a FIR structure with
coefficients obtained by truncation of the infinite-length im-
pulse response of each matrix entry. Such a response is cal-
culated by using a symbolic matrix toolbox operating in the
ideal condition where H(z), Sx(z) and Sη (z) are perfectly
known; the feedback filter in the forward DFE is constrained
to be strongly causal while the feedback filter in the back-
ward DFE is constrained to be strongly anticausal. The order
of each FIR filter is chosen sufficiently long to span a signif-
icant portion of its impulse response, whose poles and zeros
are determined by symbolic computation. Note that the an-
ticausal portion of the impulse response of the feedforward
filter in the forward DFE accounts for the implementation
delay and it is chosen to the same value for all the matrix
entries.

Fig. 2 shows the effects of the error propagation on the
forward DFE; since the order of the FIR filters is sufficiently
long, the backward DFE achieves the same performances of
the forward DFE (both in presence and in absence of the
error propagation) and, therefore, its performances are not
reported here. Note that, in terms of the average BER, the
effects of the error propagation is limited.

Fig. 2 also allows one to compare the performances of
the unidirectional and bidirectional DFEs in the ideal sce-
nario where the error propagation is not present and in the
presence of the error propagation. The obtained results show
that the advantage of the Bi-DFE over the unidirectional DFE
is obtained in both cases. Note that also the performances of
the Bi-DFE are affected by the presence of the error propa-
gation. The results reported in Fig. 3 show that the proposed
VT-Bi-DFE achieves enhanced performances with respect to
the bidirectional DFE in presence of the error propagation.

0 1 2 3 4 5 6 7 8
10

−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

A
ve

ra
ge

 B
E

R

Bi−DFE ideal
 
VT−Bi−DFE
 
Bi−DFE real
 

Figure 3: The comparison between the Bi-DFE and the VT-
Bi-DFE.

7. CONCLUSIONS

The bidirectional DF equalizer, already proposed in SISO
scenario [6], is proposed for the MIMO scenario in order
to improve the performance of the classical DF equalizer.
The performance analysis carried out by computer simula-
tion shows that the proposed equalizer improves the perfor-
mances of the classical DFE. An original variation of the
bidirectional DF equalizer, based on a two-stage DF equal-
ization, is able to reduce the performance loss of the Bi-DFE
due to the effects of the error propagation.
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