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ABSTRACT

In this paper we present a novel second-order statistics
method for the blind deconvolution of a real signal propagat-
ing through a complex channel. The method is computation-
ally very efficient since it involves only one SVD computa-
tion for the time-delayed output covariance matrix. No other
optimization is involved. The subspaces corresponding to the
left and right singular value matrices can be used to “deflate”
the channel: projecting the output signal on either subspace
reduces the filter length to 1, thus source reconstruction is
simplified. The method is suitable for any channel length
and it offers performance improvement compared to well es-
tablished methods.

1. INTRODUCTION

In a typical digital / wireless broadcast process involving a
single transmission and multiple receptions, the encoding -
modulation - transmission stage, accompanied by the inverse
transformations of demodulation - decoding, requires the re-
moval of the effects of the transmission channel upon the
received signal. Communication channels are typically mod-
elled by complex, FIR filters that incorporate signal attenu-
ation and multipath propagation effects. Depending on the
coding scheme, the input sequence is either real (e.g. using
BPSK modulation) or complex (e.g. using QAM modula-
tion). Deconvolution can be achieved efficiently using pre-
defined training sequences and supervised filter identification
techniques. However in many situations we do not have the
luxury of training sets to determine the filter’s impulse re-
sponse; hence the need for the so-called blind deconvolution
techniques which circumvent this shortcoming, arises natu-
rally.

The blind deconvolution or blind channel equalization
problem has attracted the attention of the research commu-
nity from early on. The problem has been treated under dif-
ferent research angles, yielding a rich bibliography on the
topic [1, 2, 4, 5]. Following the taxonomy elucidated in [16],
we can classify the schemes used for blind deconvolution, or
equalization, as statistical or deterministic, depending on the
assumptions made regarding the characteristics of the signals
involved. Each of these classes can be further subdivided in
two subclasses, namely the Maximum Likelihood (ML) and
the Moment Estimation (ME) methods. Blind deconvolution
methods can be also grouped according to the mathematical
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tool used: Second-Order Statistics (SOS) [13, 14], Higher-
Order Statistics (HOS) [17, 18], and, lately, Geometric Prop-
erties of the observation signal [20, 19]. Recent SOS based
techniques [3] showed superior or similar performance, com-
pared to their HOS counterparts. This is mainly due to the
fact that standard HOS techniques, cannot efficiently treat
limited observation signals [12]. This can overcome certain
design restrictions in the implementation of large multipath -
channel telecommunication systems, though it does not set-
tle every issue of the problem, as can be demonstrated by the
steady and persistent use of HOS techniques.

Obtaining generalized algorithms for the complete chan-
nel identification and/or channel equalization, i.e. closed-
form solutions, has not yet been successful, although there
are some significant case-wise results, e.g. blind chan-
nel identification when MSK inputs are used [8], analytical
SISO equalization solutions when using D-PSK sources [9],
and analytical blind identification of SISO channels in MSK
modulations [10].

In what follows, we shall focus on SOS methods only.
Our communications model involves a single complex FIR
channel and a single user transmitting a sequence of real
symbols. This is a realistic scenario, for example, if the
transmitter uses a BPSK or a Multilevel PAM modulation
scheme. Considering separately the real and imaginary parts
of the channel the problem can be easily set into a SIMO
formulation with one input and two outputs without the need
for oversampling. It is straightforward to extend our method
to cover the general complex SIMO case if oversampling
is incorporated. The literature contains a large number of
SOS methods suitable for the treatment of the SIMO case.
The treatment of the corresponding MIMO cases will not be
considered in this paper. Blind identification of general FIR
MIMO channels poses many interesting challenges of itself,
and the subspace methods have been successfully utilized in
this area using further ramifications, e.g. sequential subspace
methods [6], or group decorrelation methods [7].

In the single complex FIR channel and single user sce-
nario we may distinguish the differences between two classes
of algorithms, namely the so-called TXK methods [13] and
the Subspace methods [14]. We will select a representative
and present its characteristics, as this facilitates comparison
and indicates new directions to be investigated for possible
improvements.

TXK methods (named after Tong, Xu, and Kailath) pro-
vide exact identification of (possibly) non-minimum phase
channels, in the absence of noise, or, in a more realistic case,
yield asymptotically exact results. They exploit the oversam-
pling technique, as used in fractionally spaced equalization.
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This increases the robustness of the algorithm and its resis-
tance to noise degrading. The scheme used is non—iterative,
avoiding the usual pitfalls of such methods, typically used
in HOS techniques (e.g. convergence to the wrong attrac-
tor in the state space, or not converging at all). This class
of algorithms performs well when the driven signals exhibit
cyclostationary properties, i.e. are periodically correlated.

The subspace method of Moulines et al. [14, 15] yields
an improvement over TXK methods (at least in their initial
setup formulations), as it is computationally more efficient
(a single EVD is required, as opposed to two in TXK), and
statistically more efficient (in the Monte Carlo sense, i.e. it
has lower estimation variance over TXK). It exploits the sub-
space structure of the system, resulting in the so called signal
subspace and the noise subspace, after performing the EVD.
A modification of this technique facilitates the estimation of
the channel coefficients, i.e. determination of the channel
impulse response, even in the case where only few vectors
of the noise subspace are computed (this also requires some
conditions, not too restrictive, to be met).

It is in the view of the characteristics of the methods just
presented, that the new method can be discussed. While
numerical simulations [11] show that TXK performs better
than the subspace method for the low Signal-to—Noise Ratio
(SNR) and again that TXK is more robust in the Normal-
ized Mean Square Error (NMSE) sense, there are trade—offs
in the implementations of those methods that can alter this
outcome.

A key point is the exploitation of the structure of the
signal and null (noise) subspaces. By performing a single
SVD operation of a specially constructed covariance matrix
(see Section 2), we can obtain a specific subspace projector,
which annihilates all columns of this matrix except for one.
This can be used to deconvolve the signal. Simulations re-
veal that the presented method compared with the subspace
method of Moulines et al., offers significant performance im-
provement.

The rest of the paper is organized as follows: in Sec-
tion 2, we present the basic formulation of the problem and
the assumptions made. Section 3 presents a novel channel
deflation approach which reduces the channel length from L
down to 1 thus facilitating the immediate extraction of the
source signal. Section 4 discusses numerical simulations and
comparisons with the well known subspace method referred
above.

2. PROBLEM FORMULATION AND
ASSUMPTIONS

Consider the following complex SISO, FIR channel with real
input s(k):

L-1
x(k) =Y ms(k—1)+ek), k=1,...K (1)
1=0
where hy, [ =0,...,L — 1, are unknown complex filter taps
and e(k) is additive white noise. We make the following as-
sumptions
Al) The input samples are i.i.d., so

E{s(k)s(k —m)} = (m) ®)

Furthermore, the real and imaginary noise components
el (k), e\ (k), are both white and independent of each

other, so, we have

E{e" (ke (k—m)} = o78(m) )
E{et (k)et) (k—m)} 0, 8(m) 4)
E{e"()e (k—m)} = 0,anyk, m.  (5)

Call hl(r) and h}i) the real and imaginary parts of A; re-

spectively, and similarly, let x(") (k) and x{) (k) be the real
and imaginary parts of x(k). Forming the vector sequence
X(k) using time-windows of the real and imaginary parts of
the output sequence of length W we obtain

")
(k) = H5(k) + 8(k) = { EG) }§(k)+é(k) ©)
where
k) = KO&),-- XV k—W+1),
XDk), - D k—w+D]T @)
sk) = [s(k),---,s(k—=W—L+2)]" ®)
ak) = [e"(k), eV (k=W +1),

(k) eDk—w+ DT (9

The Toeplitz matrices H") H() ¢ RW*XAW=1 are com-
posed of the real and imaginary parts of the filter A:

]
H) = . . (10)
R}
R
HY = . . (11)
L n

Let the vectors h;, i =1,--- ,L+ W — 1, denote the columns
of the total block-Toeplitz matrix H with size (2W) x (L+
W —1). The following two assumptions relate to H

A2) The window length W is such that 2W > L4+ W — 1, i.e.,

W>L-1. (12)
Consequently, H is a tall matrix (it has at least as many
rows as columns).

A3) The rank of the matrix H is L+ W — 1, so its columns are
linearly independent.

3. CHANNEL DEFLATION TRANSFORMATIONS

Our method will be based on the subspace properties of the
output covariance matrix. Define the input covariance matrix
function R(1) = E{8(k)s(k—1)T } which is independent of k
due to the stationarity of the source signal. Using Eq. (6) we
can compute the output covariance matrix function Rx(1) =
E{x(k)x(k—1)T} as

Ri(!) = HR;()HT + Ry(l) (13)
where the noise covariance Rg(l) is defined using €(k) in
entirely analogous way as Ry(!) and Rx(1).
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Since both the input and the noise are temporally white,
the corresponding covariance matrices, for [ = 1, are

0 0 0 0
1 0 00
Ry1)=J—| 0 I 00
00 - 10
J 0
Ry -o?[ 5 9] (14)
SO,
Ri(1) = Hien HY g + R(1) (15)
where
Hleft = [h27' o :hL-&-W—lL (16)
Hright = [hla e ahL+W72} . (17)

The noise component R (1) can be removed from (15) using
(14). We need an estimate of the noise power G,_,z which can
be obtained by the smallest eigenvalue of R3(0) = HH” +
021. Thus we can obtain the noiseless covariance

Ri(1) =R;—Ry(1) = H;;H (18)

right
The matrices H;.r; and H, ;g are equal to H except for lack-

ing the first and the last column, respectively. By assumption
(A2) both matrices are “tall”. We have

rank{R3(1)} = rank{H s, } = rank{Hjgn¢ } = L+ W — 2.
Therefore, the SVD of Rx(1)

Ri{(1)=UzVT = [U|Uy] { 2 0 } Vi[V2]" (19)

has only L+ W — 2 non-zero singular values, forming the
submatrix X1. The sizes of the matrices U, Uy, are (2W) x
(L+W —2) and (2W) x (W — L+2), respectively. It follows
that the column span of U} is the same as the column span of
H;.f; and consequently, the left null-subspace is orthogonal
to Hleft3

UlH,; =0. (20)
The left multiplication of (6) by the matrix U2T yields
y'(k) = UIx(k)
= [UZh | U7 Hyep]S(k) + UT&()
= Ulhs(k)+Uls(k). (1)

Transformation (21) will be called “left” channel deflation
because it involves the left singular vectors of R3(1) and it
reduces the length of the multi-channel filter from L to 1. By
an entirely analogous argument we have

VIHign =0, (22)
yielding the “right” channel deflation:
y' (k) Vi x(k)
= Vings(k—d+1)+VIek), (23)
with d=L+W—1. (24)

3.1 Estimating the source signal

We may use the left (or the right) deflation transformation
alone in order to estimate the source signal s. Observe, for
example, that the left transformation vector y'(k) involves
multiple copies of the source in the elements of the vec-
tor UThys(k), in addition to the noise component UZ&(k).
Then, s can be estimated by an appropriate linear combina-
tion of the components yf of y'.

It is, however, more efficient to combine both left and
right deflations into a single estimator. To that end we form
the combination vector

y(k) = [yl(kyT(i)H)] (25)

which, by Egs. (21) and (23), becomes

s = | Vi |searns | LY
= gs(k—d—i—l)—i—&‘(k) (26)

with the obvious definitions of g and €(k). Our source esti-
mator will be a linear combination of the elements y; of y:

S(k—d+1) =cly(k). (27)

so that the signal component ¢’ gs is enhanced over the noise
component ¢’ ¢. This is achieved by selecting ¢ = g and
we estimate this vector by the principal eigenvector of the
covariance matrix R, (0) = gg’ + R (0).

4. SIMULATIONS

The proposed method has been tested under two sets of ex-
periments. First, we investigated the impact of the data set
length, N, in the estimation accuracy. We let the SNR vary
between 10 and 20 dB and for each SNR level we tested
various data lengths N = 1000, 2000, 5000 and 10000 sam-
ples. For every (SNR, N) pair we created 100 random binary
source signals. In each Monte Carlo experiment the source
was convolved the following complex 5-tap filter:

h®) = [—0.0032 —0.8762i, —0.7501 — 1.0260i,
—0.6695 —0.1583i, —2.5327+0.1237i,
—0.0791 + 1.4844i].

In Fig. 1 we present the mean Bit Error Rate (BER) over
the data set length. At low SNR’s the BER decreases rather
slowly as N grows. The impact of N is more pronounced
as the SNR becomes higher. This can be explained by the
fact that in the high SNR case, the performance error is
mostly due to the covariance estimation error due to finite
data length. As N increases, the covariance estimation im-
proves leading to a noticeable improvement of the BER.
Secondly, we compared our method against the subspace
method of Moulines et al. [14]. For the comparison we cre-
ated 1000 binary source signals which were convolved with
the same complex filter h®®) as above. The two methods were
compared for different SNR levels between 10dB and 25dB.
The following parameters were used: data set size N = 2000
and window size W = 10. Figure 2 shows the significant
BER improvement of the deflation method over the of the
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Figure 1: The mean BER as a function of the data length N
for different levels of the SNR.

subspace method. For SNR > 15dB the mean BER of the
deflation method was zero.

In Fig. 3 we show the results of a similar experiment with
N =2000, W = 20 and the following 10-tap filter:

h(19 = [1.0179 +0.4219i, 0.5940 4 0.4343i,
—0.378442.0393i, —0.5234 —0.1811i,
—1.2114 —2.0426i, 0.8468 + 1.9619i,
0.3974 — 1.1626i, 1.1647 +0.25861i,

0.1033 —0.7832i, —1.6711 +2.0388i].

Deflation method
— — — Subspace method

mean BER

SNR (dB)

Figure 2: Comparison between the deflation and the sub-
space methods based on the average BER after 1000 Monte

Carlo experiments using filter h(®).

5. CONCLUSION

In this paper we presented a new method for the blind de-
convolution of real signals when convolved with a complex-
valued FIR filter. Our batch approach relies exclusively on

T T
Deflation method
— — — Subspace method

mean BER

| | | | |
10 12 14 16 18 20 22 24 26 28 30
SNR (dB)

Figure 3: Comparison between the deflation and the sub-
space methods based on the average BER after 1000 Monte

Carlo experiments using filter h(10),

the second-order statistics of the observation signal. The ba-
sic idea is to find the appropriate projection that will annihi-
late all but one of the columns of the system block-Toeplitz
operator. We showed that the left and the right subspaces
of a specific delayed covariance matrix SVD can be used to
achieve this. This projection on either one of the two sub-
spaces will be called channel deflation transformation since
it reduces the filter length to 1. Our method does not use any
inverse equalizer filter and it directly estimates the source
signal without prior channel identification. The efficiency
of our technique was compared against the well known sub-
space blind deconvolution method. The simulation exper-
iments showed that the deflation method offers significant
performance improvement over the subspace method. Fur-
thermore, it is straightforward to see that deflation can be
easily extended to treat the general SIMO setup if oversam-
pling is employed.
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