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ABSTRACT 
 
It is generally believed that the external noise added to speech 
signal corrupts speech spectrum and so speech features. This feature 
corruption degrades speech recognition systems performance. One 
solution to cope with the speech feature corruption is reducing the 
noise effects on the speech spectrum. In this paper, we propose to 
filter speech spectrum in order to enhance its spectral peaks in 
presence of noise. Then, we extract robust features from the 
spectrum with enhanced peaks. In addition, we apply the proposed 
filtering to another form of speech spectral representation known as 
modified group delay function (GDF). Phoneme and word 
recognition results show that MFCC features extracted from the 
spectrum with enhanced peaks are more robust to noise than MFCC 
derived from main noisy spectrum. In addition, MFCC features 
extracted from filtered GDF are more robust to noise than other 
MFCC features, especially in low SNR values. 
 

1. INTRODUCTION 
 
Traditional speech features are typically extracted from power 
spectrum or amplitude spectrum of speech signal. Then, when 
speech spectrum is changed due to presence of additive noise, these 
features show a high sensitivity to the noise. This usually results in 
performance degradation of speech recognition system in presence 
of additive noise.   
Several techniques have been proposed to reduce sensitivity of 
features to external noise. In some approaches, a transformation is 
directly applied to feature vectors to remove noise effects such as, 
cepstral mean normalization (CMN) [7] and SNR dependent cepstral 
normalization (SDCN) [7]. Some other methods, work at the spectral 
level. These methods try to reduce the effect of additive noise on the 
speech spectrum and then extract features. Spectral subtraction [7] 
and different spectral filtering techniques are well known examples 
of such methods. Spectral subtraction, subtracts an estimation of 
noise spectrum from speech power spectrum to remove noise effects 
from it. Phase autocorrelation (PAC) is another example of these 
techniques that is recently introduced. It tries to make 
autocorrelation coefficient less sensitive to additive noise [4]. In this 
way, it enhances speech spectral peaks. Group delay function 
(GDF), negative derivative of speech phase spectrum, is another 
technique used for speech spectrum estimation [9] and robust feature 
extraction [3][8]. In group delay function, features derive from 
speech phase spectrum instead of speech power or amplitude 
spectrum [3][5]. 

spectral peaks in presence of noise and then extract MFCC features 
from enhanced spectrum. In this way, we use differential power 
spectrum (DPS) [6] and PAC spectrum for filtering the speech 
spectrum. Furthermore, we use a type of modified group delay 
function as a speech spectral representation less affected by noise. 
Then, we filter this group delay function by DPS and PAC spectrum 
to enhance its spectral peaks in presence of noise. In this way, we 
obtain a spectral representation of speech less affected by noise with 
enhanced spectral peaks. After that, we derive MFCC features from 
this obtained spectrum.  
The remainder of this paper is organized as follows. Section 2 
discusses the differential power spectrum. In section 3, we describe 
phase autocorrelation spectrum and its properties. In section 4, the 
group delay function and its modification are explained. In Section 
5, we explain our proposed filtering method for enhancing spectral 
peaks. Section 6 includes our experiments and results. Finally, our 
conclusions are given in section 7.  
 
 

2. DIFFERENTIAL POWER SPECTRUM 
 

If we denote the power spectrum of the i th frame of speech signal as 
Y(i, k), the differential power spectrum (DPS) can be defined by 
following difference equation [6]: 
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where P1 and P2 are the orders of differential equations, bl 's are 
some real-valued weighting coefficients and 0≤k<K, here K is frame 
length. 
We should to resolve three problems to use DPS in practical speech 
applications. The first one is the selection of proper orders for 
difference equations, named as P1 and P2 in equation (1). The 
second one is the determination of weights bl's in (1). The third one 
is how DPS should be converted to into parameters that can 
represent information included in a speech signal which is necessary 
for recognition purpose. 
Unfortunately, an optimal solution to any of the three listed 
problems is difficult to obtain. We will show here only empirical 
solutions for practical application [6]. For the first two problems, we 
can define three special forms of DPS as following: 
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In this paper, we propose to filter speech spectrum for enhancing its 
 

The third problem has been solved in [2][6] by converting DPS into 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



cepstral coefficients. For this purpose, an absolute operation is 
applied to DPS to make its negative parts positive. Then, MFCC 
features are extracted from DPS magnitude. Based on results in [6], 
MFCC features extracted from DPS give the higher recognition rate 
than MFCC extracted from power spectrum on TI46 database. 
Fig. 1 shows power spectrum and different differential power 
spectra defined in equations (2), (3) and (4) for a sample speech 
frame corresponding to phoneme /ow/. In the figure, the DPS 
magnitude is shown after removing its negative values. As shown in 
the figure, DPS1 represents spectral peaks more accurately than 
DPS2 and DPS3. 

 
(a) Clean Power Spectrum 

 
(b) DPS1 

 
(c) DPS2 

 
(d) DPS3 

 
Fig.1. Power spectrum and different differential spectra for a 
sample frame of phoneme /ow/ where sampling frequency is 16 
kHz. 
 
In this paper, we apply DPS to construct a filter for speech power 
spectrum in order to enhance peaks of power spectrum in presence 
of noise. Based on results in [6] and our observations, we have 
chosen DPS1 to construct our filter.  
 
 

3. PHASE AUTOCORRELATION  
 

Traditional autocorrelation function is computed as a dot product 
between the time delayed speech vectors. Recently, an alternative 
measure of autocorrelation called phase autocorrelation (PAC) has 
been introduced, where the angle between the vectors in the signal 
vector space is used as a measure of autocorrelation [4]. The 
motivation for the use of angle is the fact that angle gets less 
affected in the presence of noise than the dot product [11]. 
We give a short review of the Phase AutoCorrelation (PAC), firstly 
presented in [3], in the following. Consider a speech frame s as: 
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where N is the frame length. Suppose two vectors x0 and xk as: 
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Then, the autocorrelation coefficients of the speech frame are 
computed using dot product by: 

k
T xxkR 0][ =        (7) 

On the other hand, R[k] can be shown by: 
)cos(||][ 2

kxkR θ=        (8) 
where |x|2 denotes the energy of the frame and Өk represents the 
angle between vectors x0 and xk in N dimensional space. PAC 
coefficients are derived from autocorrelation coefficients as below: 
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As angle gets less affected in noise than dot product, PAC 
coefficients are more robust to noise than the regular autocorrelation 
coefficients [11]. The Fourier equivalent of PAC coefficients in 
frequency domain is called PAC spectrum. The computation of PAC 
coefficients from the autocorrelation coefficients using (9) includes 
2 operations: energy normalization and inverse cosine. As explained 
in [4], the inverse cosine transformation has an effect of enhancing 
the spectral peaks out of spectral valleys. This can be seen in the 
Figs. 2(a) and 2(b), where regular and the PAC spectrum are shown 
for a sample speech frame corresponding to phoneme /ow/. 
According to Fig. 1, PAC in one hand enhances spectral peaks, and 
in other hand it gives less weight to some high frequency 
information of the spectrum. Due to this, PAC spectrum does not 
include the same information of clean spectrum, but it can enhance 
the noisy spectrum and, especially, its peaks. Therefore, if we apply 
PAC spectrum as a filter to power spectrum, it can enhance the 
power spectrum spectral peak and save its details. This is shown in 
the Fig. 4(e).   
Similar to the features extracted from the regular spectrum, a class 
of features can be extracted from the PAC spectrum. Mel frequency 
cepstral coefficients extracted from PAC spectrum is called PAC-
MFCC. Experimental results in [1] and [4] show that PAC-MFCC is 
very robust to noise but it does not work well in clean speech 
conditions.  
 

 
(a) Amplitude spectrum 

 
(b) PAC  spectrum 

 
Fig. 2. Amplitude spectrum and PAC spectrum for a sample 
frame of phoneme /ow/. Sampling frequency is 16 kHz. 

 
 

4. GROUP DELAY FUNCTION  
 

It is widely perceived that the magnitude spectrum visually 
represents the speech spectral information much better than phase 
spectrum. It is interesting that unlike the phase spectrum, its 
negative derivative, called the group delay function (GDF) [3][5] 
[9], can be effectively used to extract various speech signal 
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parameters when the signal under consideration is a minimum phase 
signal. This is due to fact that the magnitude spectrum of a minimum 
phase signal and its group delay function are similar to each other. 
The group delay function is defined as: 
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where θ (ω) is the unwrapped phase function. The group delay 
function can also be calculated from the speech signal, by: 
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where the subscripts R and I indicate the real and imaginary parts, 
respectively and X(ω) and Y(ω) are the Fourier transforms of x(n) 
and nx(n), respectively. The group delay function requires that the 
signal be minimum phase or that the poles of the transfer function be 
within the unit circle. The group delay function becomes spiky in 
nature due to pitch peaks, noise and window effects. This has been 
illustrated in [3] and [5]. It is also noticeable that the denominator in 
equation (11) vanishes, at zeros that are located close to the unit 
circle. The next task is therefore to suppress the zeros. The spiky 
nature of the group delay spectrum can be overcome by replacing 
the denominator of the group delay function with its cepstrally 
smoothed version S(ω). This gives the modified group delay 
function (MGDF) as follows [3][5]: 
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In [3], Zhu and Paliwal defined the product spectrum as the  product 
of power spectrum and group delay function as follows: 
  )()()()()(|)(|)( 2 ωωωωωτωω IIRRp YXYXXQ +==    (13) 

The product spectrum, called as PG in this work, is affected by both 
the magnitude spectrum and the phase spectrum. It enhances the 
region at the formants over the MGDF and has an envelope 
comparable to that of the power spectrum. Figs. 3(a) and 3(b) show 
clean power spectrum and the product spectrum for a sample speech 
frame corresponding to phoneme /ow/.  As shown in Fig. 3(b), the 
product spectrum represents well the details of clean speech power 
spectrum, but it can not enhance spectral peaks as well as PAC.  
It is shown in [3] that by using MFCC extracted from product 
spectrum, (named here as PG-MFCC), a higher recognition rate can 
be obtained than using MFCC extracted from modified group delay 
function. So, in this work we used PG-MFCC as our recognition 
features.  

(a) Clean power spectrum 

 
(b) Product spectrum  

 
Fig. 3 clean power spectrum and product spectrum for a sample 
frame of phoneme /ow/ where sampling frequency is 16 kHz. 

 
 

5. SPECTRAL PEAKS ENHANCEMENT 
 

As mentioned in [6], spectral peaks convey the most important 
information in speech signal. In addition, they are affected by noise 
less than other parts of speech signal. Due to this, we believe that 
amplification of spectral peaks (and then increasing spectral peaks 
values and peak to valley ratio) can help to reduce noise effects on 
speech signal and so its features. We showed in section 2 that DPS 
preserve spectral peaks. Based on this, we use DPS1 as a filter 
transfer function on power spectrum to enhance the power spectrum 
peaks in presence of noise. The zero parts of DPS can be considered 
as 1 in the filter. By this filtering, we reinforce power spectrum 
spectral peaks and keep its detail. This can be seen in Fig. 4(d) for 
noisy speech. We name this enhanced power spectrum as PDPS. We 
also call the MFCC features derived from PDPS as PDPS-MFCC. 
We can compute enhanced power spectrum as following equation: 

)(|)(||)()()( 2 ωωωωω DPSXDPSPSPDPS ==       (14) 
 

where PS(ω), DPS(ω), |X(ω)| are speech power spectrum, 
differential power spectrum and speech amplitude spectrum, 
respectively. 
It was also showed that PAC spectrum enhances spectral peaks. 
Therefore, in a similar way, we apply it as a filter transfer function 
to power spectrum and enhances power spectrum peaks, while 
preserving its details. This can be seen in Fig. 4(f) for noisy speech. 
We name this enhanced power spectrum as PPAC.  We call the 
MFCC features extracted from PPAC as PPAC-MFCC. We can 
compute enhanced power spectrum as following: 

|)(||)(||)(|)()( 2 ωωωωω aa PXPPSPPAC ==     (15) 
 
where PS(ω), |Pa(ω)|, |X(ω)| are speech power spectrum, PAC 
spectrum and speech amplitude spectrum, respectively. 
As said in section 4, PG has almost the same information of main 
speech spectrum. In addition, it is more robust to noise than main 
speech spectrum as shown in [3]. Consequently, we propose to apply 
PAC and DPS1 as filters to PG spectrum to enhance its spectral 
peaks and obtain more robustness to noise. This is shown in Figs. 
4(g), 4(h) and 4(i). We named the PG spectrum filtered by PAC and 
DPS1 as PPG and DPG, respectively. We also call the MFCC 
features derived from PPG and DPG as PPG-MFCC and DPG-
MFCC, respectively. Enhanced spectra can be calculated using 
following equations: 

|)(|)(|)(|)()( ωωωωω aa PPGPQPPG ==      (16) 
)()()()()( ωωωωω DPSPGDPSQDPG ==       (17) 

 
 

6. EXPERIMENTS AND RESULTS 
 
We report our results in two parts: phoneme recognition and word 
recognition. Three types of additive noises were used in both cases: 
white and pink and factory noises selected from NOISEX92 
database. In both of word and phone recognition, our feature vectors 
contain 12 MFCC and 12 delta-MFCC that are extracted from each 
of speech main spectrum, PDPS, PAC, PPAC, PG, DPG and PPG 
spectra. We named these feature vectors as MFCC, DP-MFCC, 
PAC-MFCC, PPAC-MFCC, PG-MFCC, DPG-MFCC and PPG-
MFCC respectively. 
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(a) Clean power spectrum 

 
(b) Noisy power spectrum 

 
(c) DPS 

 
(d) PDPS (power spectrum filtered by DPS) 

 
(e) PAC power spectrum 

 
(f) PPAC spectrum (power spectrum filtered by PAC) 

 
(g) PG ( Q(ω) ) 

 
(h)  DPG ( PG filtered by DPS) 

 
(i)  PPG ( PG filtered by PAC) 

 
Fig. 4. Clean power spectrum and different types of noisy power 
spectra for a sample frame of phoneme /ow/ in presence of white 
noise with SNR value of 10 dB. Sampling frequency is 16  kHz 

 
 
6.1. Phoneme Recognition  
 
We report our results on TIMIT database for phoneme recognition. 
We use the same standard train and test set of TIMIT database for 
phonemes. We divide TIMIT phones to 39 phone classes according 
to [10]. Sampling frequency of phonemes is 16 kHz. We use 

CDHMM as recognizer with 3 states and 8 Gaussian mixtures per 
state which is trained on clean speech. We added three mentioned 
noises to testing set only for phoneme recognition in presence o f 
noise. 
Table 1 shows the average correct rate of phoneme recognition in 
presence of different noises for different SNR values. According to 
the table, enhancement of speech spectral peaks using PAC and DPS 
filters increase the phoneme recognition rate in presence of noise. 
This can be seen from comparing results of PDPS-MFCC and   
PPAC-MFCC with MFCC.  In addition, PPAC-MFCC has better 
result than PDPS-MFCC in both of clean and noisy conditions. This 
shows that PAC is more useful than DPS in filtering of main speech 
spectrum for enhancing spectral peaks and so robust feature 
extraction. This is expected, because PAC has more spectral details 
than DPS. The speech spectral representation based on GDF (PG), 
improve recognition rate more than other spectra in clean case and 
SNR Value of 10 dB. But, the best recognition results in SNR value 
of 0 dB is obtained where we filter PG by PAC spectrum. The 
filtering of PG using PAC and DPS, increase the phoneme 
recognition rate in SNR value of 0 dB. In this case, PAC is more 
useful filter than DPS for enhancing the spectral peaks of PG 
spectrum.  
 

 Clean SNR=10 SNR=0 

MFCC 54.20% 38.46% 17.44% 
PDPS-MFCC 49.41% 43.49% 19.99% 
PAC-MFCC 40.72% 37.27% 21.43% 

PPAC-MFCC 53.18% 44.10% 20.34% 
PG-MFCC 53.49% 46.33% 21.03% 

DPG-MFCC 45.45% 42.19% 23.17% 
PPG-MFCC 47.66% 44.80% 25.31% 

 
Table 1. The average of correct phoneme recognition rate in 

different SNR values for 3 different noise types  
(factory, pink and white) 

 
6.2. Word Recognition 
 
We also report our results on TIMIT database for isolated word 
recognition. Two sentences from speakers in two dialect regions 
were selected and were segmented into words. In this way, we have 
21 words spoken by 151 speakers including 49 females and 102 
males. These speakers were divided into train and test speakers 
according to TIMIT speakers division. Our training set contains 
2349 utterances spoken by 114 speakers. The testing set includes 
777 utterances spoken by 37 speakers. Our recognizer is CDHMM 
with 6 states and 8 Gaussian mixtures per state which is trained on 
clean speech. 
Fig. 5 and Fig. 6 show average word error rate in presence of 3 
mentioned different noises (factory, pink and white) for SNR values 
of 10 and 0 dB, respectively. The results are reported for all 3216 
utterances of testing and training noisy database in terms of word 
error rate (WER). As shown in figures, applying PAC and DPS filter 
to main speech spectrum decrease word error rate in both SNR 
values of 10 and 0 dB.  This can be seen from comparing MFCC 
with PDPS-MFCC and PPAC-MFCC. The best results are obtained 
when we filter PG by PAC and DPS and so enhance its spectral 
peaks.  
In this case, PAC performs better in filtering. So, PG filtered by  
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 PAC gives the best word recognition results in both SNR values of 
10 and 0 dB. 
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Fig.5. Average word error rates in presence of different noise types 
for SNR value of 10 dB 
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Fig.6. Average word error rates in presence of different noise types 
for SNR value of  0 dB 

 
 

7. CONCLUSION 
 

We proposed to enhance speech spectral peaks in order to obtain 
more robust speech features. For this purpose, we filtered the speech 
spectrum by PAC and DPS to enhance its spectral peaks. We used 
two types of spectra: main speech spectrum and another speech 
spectral representation based on GDF named here as PG. We filtered 
both of these spectra by PAC and DPS to enhance their spectral 
peaks. Phoneme and word recognition results showed that MFCC 
features extracted from filtered spectra, were more robust to noise 
than MFCC features derived from the main spectra. Moreover, 
based on recognition results, PAC performs better than DPS in 
filtering. In this work, the most robust features and best recognition 
results has been obtained from PG spectrum filtered by PAC. 
As future work, we will try to compare and combine spectral peaks 
enhancement filters with speech enhancement filters to achieve 
noise robust speech features. 
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