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ABSTRACT

Linear equalizers underperform in dispersive channels with
additive white noise, because optimal decision functions are
nonlinear. In this paper we present Gaussian Processes
(GPs) for regression as new nonlinear equalizer for digi-
tal communication systems. GPs can be cast as nonlin-
ear MMSE, a commom criterion in digital communications.
Unlike other nonlinear kernel based methods, such as ker-
nel adaline or support vector machines, the solutions pro-
duced by GPs are analytical, and the hyperparameters can
be readily learnt by maximum likelihood. Hence, we avoid
cross-validation or noise estimation, and improve conver-
gence speed. We present experimental results, over linear
and nonlinear channel models, to show that GP-equalizers
outperform linear and nonlinear state-of-the-art solutions.

1. INTRODUCTION

Channel equalization is a major issue in digital communica-
tions, because the channel affects the transmitted sequence
with both linear and nonlinear distortions. Inter-symbol in-
terference, which accounts for the linear distortion, occurs as
a consequence of the limited bandwidth of the channel and
consists of spreading the received symbol energy through
several time intervals. The channel cannot be considered
linear due to the presence of nonlinear devices such as am-
plifiers and converters [1]. Channel equalization minimizes
those distortions to recover the transmitted sequence. In
wireless communications, in which bandwidth is a scarce
resource and we need to send a training sequence in every
burst, short training sequences are a prerequisite.

Traditionally, equalization of linear channels has been
considered equivalent to inverse filtering, where a linear
transversal equalizer (LTE) is used to invert the channel re-
sponse and its parameters are usually adjusted using min-
imum mean square error (MMSE) criterion. The optimal
solution based on maximum likelihood sequence estimation
has a complexity that grows exponentially with the dimen-
sion of the channel impulsive response (Viterbi Algorithm),
and an unknown delay. Alternatively, neural networks (NNs)
can be used to solve this problem at a lower computational
cost. Several NNs schemes have been proposed to address
this problem with varying degrees of success, such as the
multi-layered perceptron (MLP) [2], radial basis functions
(RBFs) [3], recurrent RBFs [4], self-organizing feature maps
[5], wavelet neural networks [6], Kernel Adaline (KA) [7]
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and support vector machines (SVMs) [8]. Such structures
usually outperform the LTE, especially when non-minimum
phase channels are encountered. They can also compen-
sate for nonlinearities in the channel. The major drawback
of such schemes is the need for long training sequences to
achieve optimal equalization (Bayes error).

In this paper, we present a nonlinear estimation technique
known as Gaussian Processes (GPs) for regression [9] as a
novel channel equalization tool. This approach has been al-
ready successfully applied to the multiuser detection prob-
lem in CDMA systems [10, 11]. GPs provide analytical
answers to the estimation problem. Compared to the pre-
vious nonlinear tools, it does not need to pre-specify a struc-
ture/hyperparameters beforehand and therefore it can provide
more accurate results as its hyperparameters are learnt for
each instantiation of the problem. These properties result, as
illustrated in the experiments, in a remarkable reduction in
the number of needed training samples, even when increased
the order of the equalizer.

2. GAUSSIAN PROCESSES FOR REGRESSION

Gaussian Processes (GPs) for regression [12] is a Bayesian
technique for nonlinear regression estimation. It assumesa
zero-mean GP prior over the space of possible functions and
a Gaussian likelihood model. The posterior can be analyt-
ically computed, it is a Gaussian density function, and the
predictions given by the model are also Gaussians. Instead
of presenting it from its GPs point of view, we present it as
a Bayesian linear regression model1. We believe the latter is
a simpler way to understand GPs for regression and it allows
a straightforward comparison between the GP-equalizer with
the MMSE one.

Given a labelled training data set (D = {xi, yi}n
i=1

,
where the inputxi ∈ R

d×1 and the outputyi ∈ R) and
a new input locationx∗, we aim to predict the probability
distribution for its outputy∗, i.e. p(y∗|x∗,D). If we as-
sume a Gaussian linear prediction model fory: p(y|x,w) =
N (y;w⊤φ(x), σ2

ν), whereφ(·) defines a transformation of
the input space, and a zero-mean Gaussian prior overw,
p(w) = N (w;0, σ2

w
I), we can compute the posterior for

1In [9], Williams introduces both views in a tutorial survey and shows
their equivalency
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the weight vectorw using Bayes theorem:

p(w|D) =
p(y|X,w)p(w)

p(y|X)
=

1

p(y|X)

n
∏

i=1

exp

(

−
(yi − wT φ(xi))

2

2σ2
ν

)

√

2πσ2
ν

exp

(

−
||w||2

2σ2
w

)

(2πσ2
w

)d/2
=

N (w;µw,Σw) (1)

where µw = ΣwΦy/σ2
ν , Σ−1

w
= Φ⊤Φ/σ2

ν + I/σ2
w

,
y = [y1,. . . , yn]⊤, Φ = [φ(x1), . . . ,φ(xn)]⊤ andX =
[x1, . . . ,xn]⊤. Actually, the mean of the posterior can be
computed as the maximum a posteriori (MAP) of (1),µw =
argmaxw {log p(y|X,w) + log p(w)}. The prediction for
y∗ are obtained integrating out the posterior overw times its
likelihood:

p(y∗|x∗,D)=

∫

p(y∗|x∗,w)p(w|D)dw = N (y;µy∗ , σy∗)

(2)
where

µy∗ = φ⊤(x∗)µw = k⊤C−1y (3)

σ2

y∗ = φ⊤(x∗)Σwφ(x∗) = k(x∗,x∗) + k⊤C−1k (4)

beingk(xi,xj) = φ⊤(xi)φ(xj), (C)ij = k(xi,xj)+
σ2

ν

σ2
w

δij

and k = [k(x∗,x1), . . . , k(x∗,xn)]. The nontrivial steps
needed to obtain (3) and (4) are detailed in [9]. The predicted
value fory∗ in (3) is the inner product of the MAP estimate
of w, µw, and the input vector,φ(x∗).

2.1 Covariance Matrix

To get the estimation given by a GP model for regression,
we only need to specify its covariance functionk(·, ·). This
matrixC represents the covariance matrix between the trans-
formationsφ(xi) of then training examples, which present
a joint zero-mean Gaussian distribution (due to the GP prior
over the space of functions). This covariance function plays
the same role as the kernel in SVMs, or any other kernel
method, see [13] for further details.

If we design the regressor to be linear, we setk(xi,xj) =
x⊤

i xj (notice thatφ(x) = x). We then need to specify the
value ofσ2

ν/σ2
w

to reach the desired solution. If this value
is set to a small constant, which ensures that the matrixC is
non-singular, the GP provides the same solution as the linear
MMSE regressor.

We can also specify other covariance functions that yields
nonlinear regression estimates. The definition of the covari-
ance function must capture any available information about
the problem at hand. Typically a parametric form is proposed
and its hyperparameters adjusted for each particular instanti-
ation of the regression problem. The chosen covariance func-
tion must construct positive definite matrices, for any set of
input vectors{xi}n

i=1
, as it represents the covariance matrix

of a multidimensional Gaussian distribution. A versatile co-
variance function, typically used in the literature, is described
as follows:

k(xi,xj) = α1 exp

(

−
d
∑

ℓ=1

γℓ(xiℓ − xjℓ)
2

)

+

+ α2x
⊤

i xj + α3δij (5)

The hyperparametersαi andγℓ have to be non-negative to
ensure thatk(xi,xj) is a kernel function, i.e., every matrix
C formed by any set of input vectors must be positive semi-
definite. This covariance function contains 3 terms. The sec-
ond term is the linear covariance function. Therefore, the GP
model contains as a particular case the linear regressor (i.e.

α1 = 0). The third term correspond toσ
2

ν

σ2
w

δij in the defini-
tion of C, which is considered as an extra hyperparameter of
the covariance function. The first term is a radial basis kernel
with a different length-scale for each input dimension. This
term allows to construct generic nonlinear regression func-
tions and eliminate those components that do not affect the
solution, by setting itsγℓ to zero.

To set the hyperparameters of the covariance function
for each specific problem, we define the likelihood function
given the training set and compute its maximum. The max-
imum likelihood hyperparameters are used in (3) and (4) to
predict the outputs to new input vectors. We can also de-
fine a prior over these hyperparameters, compute its poste-
rior, and integrate them out to obtain predictions (similarly
as we did for the weight vector in (2)). But, the posterior is
non-analytical and the integration has to be done using sam-
pling. Although this second approach is more principled, it
is computational intensive and it will not be feasible for com-
munications systems. For the interested readers, further de-
tails can be found in [9].

The likelihood function of the hyperparamters is defined
as:

p(y|x,θ) =
1

√

|2πCθ|
exp

(

−
1

2
y⊤C−1

θ
y

)

(6)

whereθ = [log α1, log α2, log α3, log γ1, . . . , log γd] repre-
sents the hyperparameters of the covariance function and we
have added the subscriptθ to Cθ to explicitly indicate that
the covariance matrix depends on the hyperparamters. We
have used the logarithm of the hyperparamters to deal with
an unconstrained optimization problem overθ. The negative
log-likelihood of (6) can be minimised with any off-the-shelf
optimiser.

Gaussian Processes for regression is a general nonlinear
regression tool that, given the covariance function, provides
an analytical solution to any regression estimation problem.
It does not only provide point estimates, but it also gives con-
fidence intervals for them. In GPs for regression, we per-
form the optimization step to train the hyperparameters of
the covariance function by maximum likelihood. These hy-
perparameters have to be pre-specified for other nonlinear
estimation tools as SVMs, or estimated by means of cross-
validation. However, cross-validation needs long training se-
quences, limiting the number of hyperparameters that can be
adjusted. Besides, it means solving multiple optimization
problems first to obtain the best hyperparameters, increasing
the computational burden. These are remarkable drawbacks
in channel equalization, since we face hard nonlinear prob-
lems at limited computational resources and short training
sequences. By exploiting the GPs framework, as stated in
this paper, we avoid them.

3. CHANNEL EQUALIZATION

In Figure 1 we depict a simple band-based model to describe
a dispersive communication channel, yet typically used [14].
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Figure 1: Simple discrete-time transmission channel model.

The transmitted signalb(t) is a BPSK modulated signal, i.e.,
an independent and equiprobable sequence of symbols with
values{−1,+1}, andn(t) represents additive white Gaus-
sian noise (AWGN). The linear time-invariant impulse re-
sponse for the channel is given by:

C(z) =

nc−1
∑

i=0

ciz
−i (7)

wherenc denotes the channel length. A linear transversal
equalizer (LTE) is typically used to invert the channel re-
sponse for recovering the transmitted signals [15]. The LTE
linearly combines the lastm samples from the channel to es-
timate the transmitted bit, i.e.:

b̂(t − τ) = sign
(

w⊤x(t)
)

(8)

wherex(t) = [x(t), x(t − 1), . . . , x(t − m + 1)] andτ is
a delay to ensure that enough information is available in the
LTE to estimate the transmitted bit. The weight vectorw is
typically computed applying the MMSE criterion [15], as it
offers a trade-off between minimising the effects of the dis-
persive nature of the channel and its noise. Nonlinear chan-
nel equalizers transformx(t) prior to computing the weight
vector to obtain solutions that achieve minimum BER.

The linear channel above can be modified by introducing
a nonlinear function to model the receiver distortion, i.e.:

x(t) = f(x̂(t)) + n(t) (9)

wheref(·) is the nonlinear function modelling the nonlinear-
ities in the receiver.

4. GAUSSIAN PROCESSES FOR CHANNEL
EQUALIZATION

GPs predictions are analytical and can be computed using
(3). The GP-equalizer for a dispersive channel decides which
was the transmitted bit according to:

b̂(t−τ) = sign(µy∗) = sign(φ⊤(x∗)µw) = sign(k⊤C−1y)
(10)

where x∗ is the input vector to the equalizer. The GP-
equalizer is similar to the LTE, as it computes the inner prod-
uct between the received symbols and a pre-specified vector.
Furthermore, whenφ(x) = x, µw is computed as:

µw = argmin
w

{− log p(b|X,w) − log p(w)} =

argmin
w

{

1

2σ2
ν

n
∑

i=1

(bi − wT xi)
2 +

||w||2

2σ2
w

}

(11)

The only difference with the MMSE criterion is due to the
second term in (11), i.e. thelog of the prior. But its effects
on the solution will fade away as we increase the number of
examples and the sum in the first term will converge to its
expectation. As in general GPs for regression will not use a
covariance function that yields linear regressors, its decisions
can be interpreted as a nonlinear MMSE-equalizer.

The transmitter will need to send a known sequence to
the receiver to train the hyperparameters of the covariance
function, which are obtained as explained in Section 2.1,
and construct the weight vectorC−1y. For each new in-
put samplex∗, we need to compute the kernel vectork =
[k(x∗,x1), . . . , k(x∗,xn)] and predict the incoming symbol,
sign(k⊤C−1y). Hence,C−1y is a prespecified vector, given
by the training set, and predictions are obtained by its in-
ner product with the kernel vector of the new input with the
training set. In Section 2 we mention that GPs provide error
bars for our estimates (4). These error bars are obtained as-
suming we are solving a regression problem with Gaussian
noise. But as we are actually solving a detection problem,
therefore they are meaningless for our application. Still in
other regression problems they provide accurate description
of the standard deviation of our predictions. The mean pre-
diction still provides a good estimate of the transmitted bits
as the square-loss can be used as a proxy to solve classifica-
tion problems.

The covariance function in (5) is a good kernel for solv-
ing the GP-equalizer, because it contains a linear and a non-
linear part. The optimal decision surface is nonlinear. In
minimum-phase channels a linear solution can provide an
approximation to the optimal solution, but still it will be sub-
optimal and a nonlinear part is needed to improve the results
obtained by the linear equalizer. In this sense the proposed
GP-covariance function is ideal for the problem. The lin-
ear part can mimic the best linear decision boundary and the
nonlinear part modifies it, where the linear explanation is not
optimal. Also using a radial basis kernel for the nonlinear
part is a good choice to achieve nonlinear decisions. Be-
cause, the received symbols form a constellation of clouds of
points with Gaussian spread around its centres.

GPs provide a great advantage compare to other non-
linear tools for solving the channel equalization problem.
SVMs, KA or NNs use the training sequence to adjust the
weights in a predefined nonlinear structure. GP uses the
training sequence to search for the best nonlinear structure
for each instantiation of the problem, because the set of
weights can be computed analytically. SVMs or KA need to
fix the width of the kernel a priori, as the only way to search
for its optimum is by cross-validation means, while GPs find
this optimal width parameter. MLP or RBFN have to specify
their structure a priori (number of layers, neurons per layer,
etc.), while GPs find their structure by maximum likelihood.
This advantages will allow GP-equalizer to outperform these
nonlinear tools to solve the channel equalization problem.

KA uses the same criterion to train the equalizer as GP
does (least squares). But while KA trains the equalizer with
a fix kernel using early stopping [7], GPs solve the equalizer
analytically and trains for the best kernel parameters. Hence
using the same criterion is able to train the equalizer much
more accurately. Finally, we believe GP is the natural way to
extend the MMSE criterion for nonlinear estimations. If the
nonlinear structure is known its solution is straight forward,
as in the linear case. Furthermore, its structure is learnt from
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the data, so optimal results are expected if a versatile para-
metric form for the covariance matrix can be described for
each problem at hand.

5. EXPERIMENTAL RESULTS

In this section we include some experimental results of chan-
nel equalization for a linear and a nonlinear channel. In both
cases we first focus on the performance for different numbers
of training samples at fixed-length equalizer and then for dif-
ferent equalizer lengths at a fixed-number of training sam-
ples. In all cases we depict the bit error rate (BER) along the
normalized signal to noise ratio (SNR) for the linear MMSE,
GP and SVM. The SVM-equalizer has been trained using a
Gaussian kernel with its width equal to the noise standard de-
viation, as reported in [16], and itsC parameter was chosen
to minimise the BER. The optimum Bayesian equalizer will
be also included as reference.

As linear channel we used

C(z) = 0.3482 + 0.8704z−1 + 0.3482z−2 (12)

as proposed in [7] to model radiocommunication channels.
In Figure 2 we depict the BER for the linear MMSE (▽),
SVM (+) and GPs (⋄) equalizers trained withn = 50, 100
and400 samples. The length and delay of the equalizer was,
respectively, set to 4 and 1. We include the averaged re-
sults for100 independent experiments and105 test samples
in each run. GP-equalizer provides remarkably the best re-
sults, close to optimal performance forn = 400. Besides, it
can be seen that the MMSE-equalizer BER is always above
10−2, even for high SNRs.

In Figure 3 we repeated the same experiment for different
equalizer lengthsm = 4 (τ = 1), 6 (τ = 2) and8 (τ = 3),
and 50 training samples. We observe that SVM and MMSE
performance deteriorates as the equalizer length increases,
while GPs performance improves towards the optimum. Be-
sides, it is also interesting to point out that form = 6 and
m = 8 the GP-equalizer provides a good solution for just
50 training samples. Notice that, being a linear channel, a
higher equalizer length helps designing good linear equaliz-
ers. Thanks to the linear part of the GP kernel, we reach these
solutions with just a few training samples.

We have repeated the previous experiments adding a non-
linearity to the receiver to show that GP-equalizers also deal
with nonlinearities in the channel model. We have used the
nonlinear model in [7] that models typical nonlinearities in
digital communication receivers:

f(x̂(t)) = x̂(t) + 0.2x̂2(t) − 0.1x̂3(t) (13)

Similar remarkable conclusions to those for Figure 2 and
3 can be drawn. The GP-equalizer clearly outperforms the
other approaches, even if the channel is nonlinear, closingto
the optimal Bayesian solution. Figure 5 depicts the resultsof
the same scenario as in Figure 3 but for this nonlinear chan-
nel andn = 400 training samples. Since in this experiment
the channel is nonlinear, GPs do not clearly improve with
the length of the equalizer. Besides, we need a large enough
number of training samples to tune the non-linear part of the
GP kernel. Anyway, the GPs again present quite better re-
sults than the other equalizers.
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Figure 2: BER for a linear channel with optimal Bayesian
(dotted), linear MMSE (▽), SVM (+) and GP’s (⋄) equaliza-
tion with m = 4 andτ = 1, trained with 50 (dash-dotted),
100 (dashed) and 400 (solid) training samples.
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Figure 3: BER for a linear channel with linear MMSE (▽),
SVM (+) and GP’s (⋄) equalization withn = 50 training
samples and lengthm = 4 (dash-dotted),m = 6 (dashed)
andm = 8 (solid).

6. CONCLUSIONS

In this paper, we have presented a novel channel equalizer
based on Gaussian Processes for regression. GPs are used
to construct nonlinear regressors, according to the Minimum
Mean Square Error criterion. The solution given by the GPs
is analytical, given its covariance matrix. Furthermore the
covariance matrix in GPs can be learnt by maximum likeli-
hood. These characteristics differentiate them with respect to
other nonlinear tools as SVMs or Neural Nets, in which an
optimization step is needed to obtain weight vector, and its
hyperparameters/structure will have to be prespecified.

We have shown that this framework is very useful for
solving the channel equalization problem in digital commu-
nication systems. GPs covariance matrix can include a lin-
ear term to improve convergence and we do not need a pre-
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Figure 4: BER for a nonlinear channel with optimal Bayesian
(dotted), linear MMSE (▽), SVM (+) and GP’s (⋄) equaliza-
tion with m = 4 andτ = 1, trained with 50 (dash-dotted),
100 (dashed) and 400 (solid) training samples.
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Figure 5: BER for a nonlinear channel with linear MMSE
(▽), SVM (+) and GP’s (⋄) equalization withn = 400
training samples and lengthm = 4 (dash-dotted),m = 6
(dashed) andm = 8 (solid).

estimation of the noise in the channel. We have tested the
GP-equalizer in a realistic scenario, including linear andnon-
linear channels. In these scenarios we have shown that the
GP-equalizer is able to provide accurate solutions with very
short training sequences, a critical issue in equalization. Be-
sides, in the experiments included, GPs exhibited a better
performance than the linear MMSE and SVMs, in which the
hyperparameters were specified beforehand. Furthermore,
the GP-equalizer takes advantage of a larger input dimension
to improve separability, while these approaches clearly fail.
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