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ABSTRACT and support vector machines (SVMs) [8]. Such structures

Linear equalizers underperform in dispersive channel&wit Usually outperform the LTE, especially when non-minimum
additive white noise, because optimal decision functioas a Phase channels are encountered. They can also compen-
nonlinear. In this paper we present Gaussian Processesate for nonlinearities in the channel. The major drawback
(GPs) for regression as new nonlinear equalizer for digi-Of Such schemes is the need for long training sequences to
tal communication systems. GPs can be cast as nonliRchieve optimal equalization (Bayes error).
ear MMSE, a commom criterion in digital communications.  |n this paper, we present a nonlinear estimation technique
Unlike other nonlinear kernel based methods, such as keknown as Gaussian Processes (GPs) for regression [9] as a
nel adaline or support vector machines, the solutions pronovel channel equalization tool. This approach has been al-
duced by GPs are analytical, and the hyperparameters caready successfully applied to the multiuser detection prob
be readily learnt by maximum likelihood. Hence, we avoidem in CDMA systems [10, 11]. GPs provide analytical
cross-validation or noise estimation, and improve converanswers to the estimation problem. Compared to the pre-
gence speed. We present experimental results, over lineglous nonlinear tools, it does not need to pre-specify astru
and nonlinear channel models, to show that GP-equalizersure/hyperparameters beforehand and therefore it caidarov
outperform linear and nonlinear state-of-the-art solutso more accurate results as its hyperparameters are learnt for
each instantiation of the problem. These properties ressilt

1. INTRODUCTION illustrated in the experiments, in a remarkable reduction i
o . D . _the number of needed training samples, even when increased
Channel equalization is a major issue in digital communicag, o o der of the equali
X : qualizer.
tions, because the channel affects the transmitted seguenc
with both linear and nonlinear distortions. Inter-symbo! i
terference, which accounts for the linear distortion, os@as
a consequence of the limited bandwidth of the channel and 2 GAUSSIAN PROCESSES FOR REGRESSION
consists of spreading the received symbol energy through
several time intervals. The channel cannot be considere
linear due to the presence of nonlinear devices such as arg
plifiers and converters [1]. Channel equalization miniraize
those distortions to recover the transmitted sequence.

aussian Processes (GPs) for regression [12] is a Bayesian
chnique for nonlinear regression estimation. It assumes
g‘ero—mean GP prior over the space of possible functions and

wireless communications, in which bandwidth is a scarce Gaussian likelihood model. The posterior can be analyt-

esource and e need 0 send a vraiming sequence n evdy ComPUee L 5 Gaissian densiy fncton, and e
burst, short training sequences are a prerequisite. 9 y .

Traditionally, equalization of linear channels has bee of presenting it from its GPs point of view, we present it as

considered equivalent to inverse filtering, where a linea Bayesian linear regression mokléhe believe the latter is
quivi X rng, b simpler way to understand GPs for regression and it allows
transversal equalizer (LTE) is used to invert the channel re

. ; : -a straightforward comparison between the GP-equalizér wit
sponse and its parameters are usually adjusted using mif;

imum mean square error (MMSE) criterion. The optimal e MMSE one.

solution based on maximum likelihood sequence estimation Given a labelled training data seD(= {x;,y:}!" .
has a complexity that grows exponentially with the dimen-where the inputx; € R?*! and the output; € R) and
sion of the channel impulsive response (Viterbi Algorithm) a new input locationc*, we aim to predict the probability
and an unknown delay. Alternatively, neural networks (NNsXistribution for its outputy*, i.e. p(y*|x*,D). If we as-
can be used to solve this problem at a lower computationaume a Gaussian linear prediction modelfop(y|x, w) =
cost. Several NNs schemes have been proposed to addrw§y;wT¢(X)7gg), whereg(-) defines a transformation of
this problem with varying degrees of success, such as th@e input space, and a zero-mean Gaussian prior aver

multi-layered perceptron (MLP) [2], radiz_al_basis functson p(w) = N(W;O,J‘QNI), we can compute the posterior for
(RBFs) [3], recurrent RBFs [4], self-organizing featurepgsma

[5], wavelet neural networks [6], Kernel Adaline (KA) [7]

* Supported through the Spanish MCYT Agency (TIC2003-02602) 1n [9], Williams introduces both views in a tutorial surveydashows
 Supported through the Spanish MCYT Agency (TIC2003-03781) their equivalency
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the weight vectow using Bayes theorem: The hyperparameteks; and~, have to be non-negative to

ensure thak(x;,x;) is a kernel function, i.e., every matrix
Py X, wp(w) (i %) y

p(w|D) = = C formed by any set of input vectors must be positive semi-
p(y[X) definite. This covariance function contains 3 terms. The sec
(y; — wT p(x;))? ||w]|? ond term is the linear covariance function. Therefore, tRe G
1 n_ €Xp (—202 ) < 902 > model contains as a particular case thge linear regressor (i.
p(y1X) };[1 \/my (27r03v)d72 = ap = 0). Thg th.ird term correspond tggjéij in the defini-
tion of C, which is considered as an extra hyperparameter of
N(W; s D) (1) the covariance function. The first term is a radial basiséern
where iy = So®y/o2, So! = &' ®/02 + 1/02 with a different length-scale for each input dimension. sThi
w T vt oW g W' term allows to construct generic nonlinear regression-func
y = [yla---Ta ynl 2 @ = [Pp(x1),... @(xn)]" @NAX = 4550 and eliminate those components that do not affect the
[x1,...,%xn] . Actually, the mean of the posterior can be gqytion, by setting its, to zero.
computed as the maximum a posteriori (MAP) of (1), = To set the hyperparameters of the covariance function

argmaXv {log p(y|X, w) +logp(w)}. The prediction for 4 aach specific problem, we define the likelihood function
y* are obtained integrating out the posterior owetimes its  giyen the training set and compute its maximum. The max-
likelihood: imum likelihood hyperparameters are used in (3) and (4) to
- . S _ ] predict the outputs to new input vectors. We can also de-
ply"lx ’D)_/p(y X", w)p(w[D)dw = N(y; iy=,0y*)  fine a prior over these hyperparameters, compute its poste-
(2)  rior, and integrate them out to obtain predictions (sinylar

where as we did for the weight vector in (2)). But, the posterior is
T Tl non-analytical and the integration has to be done using sam-
pyr =@ (X )pw =k CTy (3 pling. Although this second approach is more principled, it

03* = ¢T(X*)§3w¢(x*) = k(x*,x*) + k'C 1k 4) is computational intensive and it will not be feasible fonco
’ ) munications systems. For the interested readers, further d
beingk(x;,x;) = ¢ ' (x:)p(x;), (C)i; = k(x;,x;)+2d;;  tails can be found in [9].
andk — [k(jx* x1), ... k(xf‘ ) jThe nontiivial vétejps The likelihood function of the hyperparamters is defined

needed to obtain (3) and (4) are detailed in [9]. The predicteas'

value fory* in (3) is the inner product of the MAP estimate 1 1
of w, jiw, and the input vectogp(x*). p(ylx,0) = ——=exp (——yT091Y> (6)
\/ |27TCg| 2
2.1 Covariance Matrix
wheref = [log a1, log as,log az,log vy, .. ., log 4] repre-

To get the estimation given by a GP model for regressionge s the hyperparameters of the covariance function and we
we only need to specify its covariance functibfi, -). This

: " . have added the subscri@tto Cg to explicitly indicate that
matrix C represents the covariance matrix between the trangp. covariance matrix depends on the hyperparamters. We
formations¢(x;) of then training examples, which present ’

. have used the logarithm of the hyperparamters to deal with

a joint zero-mean Gaussian distribution (due to the GP prio, \\nconstrained optimization problem ogefThe negative

over the space of functions). This covariance function®lay | il o ; Pl
the same role as the kernel in SVMs, or any other kern ! pgtilrlrfiilé?_OOd of (6) can be minimised with any off-the-she

method, see [13] for further details. Gaussian Processes for regression is a general nonlinear
. If we design the regressor to be linear, welseti, ;) = regression tool that, given the covariance function, tesi
x; X; (notice thatp(x) = x). We then need to specify the an analytical solution to any regression estimation proble
value ofo? /o3, to reach the desired solution. If this value |t does not only provide point estimates, but it also gives-co
is set to a small constant, which ensures that the métix  fidence intervals for them. In GPs for regression, we per-
non-singular, the GP provides the same solution as therlinegorm the optimization step to train the hyperparameters of
MMSE regressor. the covariance function by maximum likelihood. These hy-
We can also specify other covariance functions that yieldperparameters have to be pre-specified for other nonlinear
nonlinear regression estimates. The definition of the ¢ovarestimation tools as SVMs, or estimated by means of cross-
ance function must capture any available information abowalidation. However, cross-validation needs long trairse-
the problem at hand. Typically a parametric form is propose@uences, limiting the number of hyperparameters that can be
and its hyperparameters adjusted for each particulamitista adjusted. Besides, it means solving multiple optimization
ation of the regression problem. The chosen covariance fungroblems first to obtain the best hyperparameters, inargasi
tion must construct positive definite matrices, for any det othe computational burden. These are remarkable drawbacks
input vectors{x; };;, as it represents the covariance matrixin channel equalization, since we face hard nonlinear prob-
of a multidimensional Gaussian distribution. A versatite ¢ |ems at limited computational resources and short training
variance function, typically used in the literature, iscfé®ed  sequences. By exploiting the GPs framework, as stated in
as follows: this paper, we avoid them.

d
k(xi,x;) = aiexp (—Zw(m - xjé)2> + 3. CHANNEL EQUALIZATION
=1

In Figure 1 we depict a simple band-based model to describe
+ asx] X; + azdy; (5) adispersive communication channel, yet typically used.[14
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n(t) Noi The only difference with the MMSE criterion is due to the
Channel oise second term in (11), i.e. theg of the prior. But its effects
on the solution will fade away as we increase the number of
C2) _|_ Equalizer examples and th_e sum in the first term wil! converge to its
0 i’(t)Ux(t) bt — 1) expectation. As in general GPs for regression will not use a
covariance function that yields linear regressors, itssites
can be interpreted as a nonlinear MMSE-equalizer.
The transmitter will need to send a known sequence to
Figure 1: Simple discrete-time transmission channel modelthe receiver to train the hyperparameters of the covariance
function, which are obtained as explained in Section 2.1,
and construct the weight vect@—'y. For each new in-
The transmitted signal(¢) is a BPSK modulated signal, i.e., put samplex*, we need to compute the kernel vector=
an independent and equiprobable sequence of symbols wih(x*, x;1), ..., k(x*, x,,)] and predict the incoming symbol,
values{—1,+1}, andn(t) represents additive white Gaus- sign(k"C~'y). HenceC~'y is a prespecified vector, given
sian noise (AWGN). The linear time-invariant impulse re-py the training set, and predictions are obtained by its in-

sponse for the channel is given by: ner product with the kernel vector of the new input with the
training set. In Section 2 we mention that GPs provide error
ne—l 4 bars for our estimates (4). These error bars are obtained as-
Clz)=> iz (7)  suming we are solving a regression problem with Gaussian
i=0 noise. But as we are actually solving a detection problem,

. herefore they are meaningless for our application. Still i
wheren. denotes the channel length. A linear transversalqr regression problems they provide accurate desamipti
equalizer (LTE) is typically used to invert the channel re-q¢ e standard deviation of our predictions. The mean pre-
sponse for recovering the transmitted signals [15]. The I-Tlﬂiction still provides a good estimate of the transmittets bi
linearly combines the last samples from the channel to es- 5 1he square-loss can be used as a proxy to solve classifica-

timate the transmitted bit, i.e.: tion problems.
j . T 8 The covariance function in (5) is a good kernel for solv-
(t—7) = sign (w'x(t)) (8)  ing the GP-equalizer, because it contains a linear and a non-
. linear part. The optimal decision surface is nonlinear. In
wherex(t) = [z(t), z(t — 1),...,z(t —m + 1] and7is  minimum-phase channels a linear solution can provide an

a delay to ensure that enough information is available in thg,hoximation to the optimal solution, but still it will beils-
LTE to estimate the transmitted bit. The weight veators ontimal and a nonlinear part is needed to improve the results
typically computed applying the MMSE criterion [15], as it ghiained by the linear equalizer. In this sense the proposed
offers a trade-off between minimising the effects of the dis Gp_covariance function is ideal for the problem. The lin-
persive nature of the channel and its noise. Nonlinear chansar part can mimic the best linear decision boundary and the
nel equalizers transform(t) prior to computing the weight gnlinear part modifies it, where the linear explanatiorois n
vector to obtain solutions that achieve minimum BER. gntima. Also using a radial basis kernel for the nonlinear
The linear channel above can be modified by introducingyayt js a good choice to achieve nonlinear decisions. Be-
a nonlinear function to model the receiver distortion; i.e. cause, the received symbols form a constellation of clofids o
. points with Gaussian spread around its centres.

w(t) = f(&(t)) +n(t) ©) GPs provide a great advantage compare to other non-
linear tools for solving the channel equalization problem.
SVMs, KA or NNs use the training sequence to adjust the
weights in a predefined nonlinear structure. GP uses the
training sequence to search for the best nonlinear streictur
4. GAUSSIAN PROCESSES FOR CHANNEL for each instantiation of the problem, because the set of

EQUALIZATION weights can be computed analytically. SVMs or KA need to

GPs predictions are analytical and can be computed usirféx the width of the kernel a priori, as the only way to search
(3). The GP-equalizer for a dispersive channel decidestwhicfor its optimum is by cross-validation means, while GPs find
was the transmitted bit according to: this optimal width parameter. MLP or RBFN have to specify
their structure a priori (number of layers, neurons perraye
Db ) — ) — g T (4o i To-1 etc.), while GPs find their structure by maximum likelihood.
b(t=r) = sign(uy-) = sign(¢ " (x)uw) = sign(k C (1}3 This advantages will allow GP-equalizer to outperform ¢hes
where x* is the input vector to the equalizer. The GP-nonlinear tools to solve the channel equalization problem.

equalizer is similar to the LTE, as it computes the inner prod KA uses the same criterion to train the equalizer as GP
uct between the received symbols and a pre-specified vectéloes (least squares). But while KA trains the equalizer with

Furthermore, wheip(x) = x, 11 iS computed as: a fix kernel using early stopping [7], GPs solve the equalizer
analytically and trains for the best kernel parameters.cden

using the same criterion is able to train the equalizer much
more accurately. Finally, we believe GP is the natural way to
) 1 <& o w2 extend the MMSE criterion for nonlinear estimations. If the
argmim g 55 Z(bi —wix;)+ 052 (11)  nonlinear structure is known its solution is straight forsva
V=1 w as in the linear case. Furthermore, its structure is leaont f

wheref(-) is the nonlinear function modelling the nonlinear-
ities in the receiver.

piw = argmin{—log p(b|X, w) — log p(w)} =
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the data, so optimal results are expected if a versatile- par:
metric form for the covariance matrix can be described for 10
each problem at hand.

5. EXPERIMENTAL RESULTS 10

In this section we include some experimental results of char
nel equalization for a linear and a nonlinear channel. linbot u
cases we first focus on the performance for different number
of training samples at fixed-length equalizer and then fordi = 10
ferent equalizer lengths at a fixed-number of training sam
ples. In all cases we depict the bit error rate (BER) along th:
normalized signal to noise ratio (SNR) for the linear MMSE, 10 ¢
GP and SVM. The SVM-equalizer has been trained using
Gaussian kernel with its width equal to the noise standard de¢
viation, as reported in [16], and itS parameter was chosen
to minimise the BER. The optimum Bayesian equalizer will SNR(dB)

be also included as reference. : ) . . : .
As linear channel we used Figure 2: BER for a linear channel with optimal Bayesian
(dotted), linear MMSEY), SVM (+) and GP’s §) equaliza-
1 5 tion with m = 4 andr = 1, trained with 50 (dash-dotted),
C(z) = 0.3482 4 0.8704z" + 0.34822 (12) 100 (dashed) and 400 (solid) training samples.

10°

as proposed in [7] to model radiocommunication channels
In Figure 2 we depict the BER for the linear MMSE)(
SVM (+) and GPs <€) equalizers trained withh = 50, 100 10
and400 samples. The length and delay of the equalizer was
respectively, set to 4 and 1. We include the averaged re
sults for100 independent experiments amo® test samples
in each run. GP-equalizer provides remarkably the best re
sults, close to optimal performance for= 400. Besides, it~ 107;
can be seen that the MMSE-equalizer BER is always abovu.l
102, even for high SNRs.

In Figure 3 we repeated the same experiment for differen
equalizer lengthen = 4 (7 = 1), 6 (r = 2) and8 (r = 3),
and 50 training samples. We observe that SVM and MMSE 10
performance deteriorates as the equalizer length incsgase
while GPs performance improves towards the optimum. Be R
sides, it is also interesting to point out that far = 6 and 0% ; ‘
m = 8 the GP-equalizer provides a good solution for just 0 5 10 15 20
50 training samples. Notice that, being a linear channel, . SNR(dB)
higher equalizer length helps designing good linear eguali

rs. Thank he linear part of the GP kernel, we reach th o X =
go?utiori; WSitLOjIJS?afZ\?V tegirtli%gt szr(ﬁpleg. e wereachine M (+) and GP's ¢) equalization withn = 50 training
. . . samples and lengtlm = 4 (dash-dotted);n = 6 (dashed)

We have repeated the previous experiments adding a NORL 4, — 8 (solid).
linearity to the receiver to show that GP-equalizers alsd de
with nonlinearities in the channel model. We have used the
nonlinear model in [7] that models typical nonlinearities i
digital communication receivers:

10

-4|

10

jgure 3: BER for a linear channel with linear MMSE)(

6. CONCLUSIONS

In this paper, we have presented a novel channel equalizer
f(@(t)) = &(t) +0.22%(t) — 0.123(t) (13) based on Gaussian Processes for regression. GPs are used

to construct nonlinear regressors, according to the Minimu
Similar remarkable conclusions to those for Figure 2 andMean Square Error criterion. The solution given by the GPs
3 can be drawn. The GP-equalizer clearly outperforms thés analytical, given its covariance matrix. Furthermore th
other approaches, even if the channel is nonlinear, cldsing covariance matrix in GPs can be learnt by maximum likeli-
the optimal Bayesian solution. Figure 5 depicts the resifilts hood. These characteristics differentiate them with retspe
the same scenario as in Figure 3 but for this nonlinear charether nonlinear tools as SVMs or Neural Nets, in which an
nel andn = 400 training samples. Since in this experiment optimization step is needed to obtain weight vector, and its
the channel is nonlinear, GPs do not clearly improve witthyperparameters/structure will have to be prespecified.
the length of the equalizer. Besides, we need a large enough We have shown that this framework is very useful for
number of training samples to tune the non-linear part of theolving the channel equalization problem in digital commu-
GP kernel. Anyway, the GPs again present quite better rerication systems. GPs covariance matrix can include a lin-
sults than the other equalizers. ear term to improve convergence and we do not need a pre-
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