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ABSTRACT

Spectral envelope parameters in the form of mel-frequency
cepstral coefficients are often used for capturing timbral in-
formation of music signals in connection with genre classifi-
cation applications. In this paper, we evaluate mel-frequency
cepstral coefficient (MFCC) estimation techniques, namely
the classical FFT and linear prediction based implemen-
tations and an implementation based on the more recent
MVDR spectral estimator. The performance of these meth-
ods are evaluated in genre classification using a probabilis-
tic classifier based on Gaussian Mixture models. MFCCs
based on fixed order, signal independent linear prediction
and MVDR spectral estimators did not exhibit any statisti-
cally significant improvement over MFCCs based on the sim-
pler FFT.

1. INTRODUCTION

Recently, the field of music similarity has received much at-
tention. As people convert their music collections to mp3
and similar formats, and store thousands of songs on their
personal computers, efficient tools for navigating these col-
lections have become necessary. Most navigation tools are
based on metadata, such as artist, album, title, etc. How-
ever, there is an increasing desire to browse audio collections
in a more flexible way. A suitable distance measure based
on the sampled audio signal would allow one to go beyond
the limitations of human-provided metadata. A suitable dis-
tance measure should ideally capture instrumentation, vocal,
melody, rhythm, etc. Since it is a non-trivial task to identify
and quantify the instrumentation and vocal, a popular alter-
native is to capture the timbre [1, 2, 3]. Timbre is defined
as “the auditory sensation in terms of which a listener can
judge that two sounds with same loudness and pitch are dis-
similar” [4]. The timbre is expected to depend heavily on
the instrumentation and the vocals. In many cases, the tim-
bre can be accurately characterized by the spectral envelope.
Extracting the timbre is therefore similar to the problem of
extracting the vocal tract transfer function in speech recogni-
tion. In both cases, the spectral envelope is to be estimated
while minimizing the influence of individual sinusoids.

In speech recognition, mel-frequency cepstral coeffi-
cients (MFCCs) are a widespread method for describing the
vocal tract transfer function [5]. Since timbre similarityand
estimating the vocal tract transfer function are closely re-
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Figure 1: Spectrum of the signal that is excited by impulse
trains in Figure 3. Dots denote multiples of 100 Hz, and
crosses denote multiples of 400 Hz.

lated, it is no surprise that MFCCs have also proven suc-
cessful in the field of music similarity [1, 2, 3, 6, 7]. In
calculating the MFCCs, it is necessary to estimate the mag-
nitude spectrum of an audio frame. In the speech recognition
community, it has been customary to use either fast Fourier
transform (FFT) or linear prediction (LP) analysis to estimate
the frequency spectrum. However, both methods do have
some drawbacks. Minimum variance distortionless response
(MVDR) spectral estimation has been proposed as an alter-
native to FFT and LP analysis [8, 9]. According to [10, 11],
this increases speech recognition rates.

In this paper, we compare MVDR to FFT and LP analysis
in the context of music similarity. For each song in a collec-
tion, MFCCs are computed and a Gaussian mixture model is
trained. The models are used to estimate the genre of each
song, assuming that similar songs share the same genre. We
perform this for different spectrum estimators and evaluate
their performance by the computed genre classification ac-
curacies.

The outline of this paper is as follows. In Section 2, we
summarize how MFCCs are calculated, what the shortcom-
ings of the FFT and LP analysis as spectral estimators are,
the idea of MVDR spectral estimation, and the advantage of
prewarping. Section 3 describes how genre classification is
used to evaluate the spectral estimation techniques. In Sec-
tion 4, we present the results, and in Section 5, the conclusion
is stated.

2. SPECTRAL ESTIMATION TECHNIQUES

In the following descriptions of spectrum estimators, the
spectral envelope in Figure 1 is taken as starting point. When
a signal with this spectrum is excited by an impulse train,
the spectrum becomes a line spectrum that is non-zero only

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



0 1000 2000 3000 4000 5000 6000 7000 8000
10

−4

10
−2

Frequency [Hz]

A
m

pl
itu

de

Figure 2: Mel bands

at multiples of the fundamental frequency. The problem
is to estimate the spectral envelope from the observed line
spectrum. Before looking at spectrum estimation techniques,
we briefly describe the application, i.e. estimation of mel-
frequency cepstral coefficients.

2.1 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients attempt to capture the
perceptually most important parts of the spectral envelope
of audio signals. They are calculated in the following way
[12]:

1. Calculate the frequency spectrum
2. Filter the magnitude spectrum into a number of bands (40

bands are often used) according to the mel-scale, such
that low frequencies are given more weight than high fre-
quencies. In Figure 2, the bandpass filters that are used
in [12] are shown. We have used the same filters.

3. Sum the frequency contents of each band.
4. Take the logarithm of each sum.
5. Compute the discrete cosine transform (DCT) of the log-

arithms.

The first step reflects that the ear is fairly insensitive to phase
information. The averaging in the second and third steps
reflect the frequency selectivity of the human ear, and the
fourth step simulates the perception of loudness. Unlike the
other steps, the fifth step is not directly related to human
sound perception, since its purpose is to decorrelate the in-
puts and reduce the dimensionality.

2.2 Fast Fourier Transform

The fast Fourier transform (FFT) is the Swiss army knife of
digital signal processing. In the context of speech recogni-
tion, its caveat is that it does not attempt to suppress the
effect of the fundamental frequency and the harmonics. In
Figure 3, the magnitude of the FFT of a line spectrum based
on the spectral envelope in Figure 1 is shown. The problem
is most apparent for high fundamental frequencies.

2.3 Linear Prediction Analysis

LP analysis finds the spectral envelope under the assumption
that the excitation signal is white. For voiced speech with
a high fundamental frequency, this is not a good approxi-
mation. Assume thatw(n) is white, wide sense stationary
noise with unity variance that excites a filter having impulse
responseh(n). Let x(n) be the observed outcome of the pro-
cess, i.e.x(n) = w(n)∗h(n) where∗ denotes the convolution
operator, and leta1, a2, . . . , aK be the coefficients of the
optimal least squares prediction filter. The prediction error,

y(n), is then given by

y(n) = x(n)−
K

∑
k=1

akx(n−k). (1)

Now, let A( f ) be the transfer function of the filter that pro-
ducesy(n) from x(n), i.e.,

A( f ) = 1−
K

∑
k=1

ake
−i2π f k. (2)

Moreover, letH( f ) be the Fourier transform ofh(n), and let
Sx( f ) andSy( f ) be the power spectra ofx(n) andy(n), re-
spectively. Assumingy(n) is approximately white with vari-
anceσ2

y , i.e. Sy( f ) = σ2
y , it follows that

Sy( f ) = σ2
y = Sx( f )|A( f )|2

= Sw( f )|H( f )|2|A( f )|2. (3)

Rearranging this, we get

σ2
y

|A( f )|2
= Sw( f )|H( f )|2. (4)

The variables on the left side of Equation (4) can all be com-
puted from the autocorrelation function. Thus, when the ex-
citation signal is white with unity variance, i.e.Sw( f ) = 1,
LP analysis can be used to estimate the transfer function. Un-
fortunately, the excitation signal is often closer to an impulse
train than to white noise. An impulse train with time periodT
has a spectrum which is an impulse train with period 1/T. If
the fundamental frequency is low, the assumption of a white
excitation signal is good, because the impulses are closely
spaced in the frequency domain. However, if the fundamen-
tal frequency is high, the linear predictor will tend to place
zeros such that individual frequencies are nulled, insteadof
approximating the inverse of the autoregressive filterh(n).
This is illustrated in Figure 3, where two spectra with dif-
ferent fundamental frequencies have been estimated by LP
analysis.

2.4 Minimum Variance Distortionless Response

Minimum variance distortionless response (MVDR) spec-
trum estimation has its roots in array processing [8, 9]. Con-
ceptually, the idea is to design a filterg(n) that minimizes the
output power under the constraint that a specific frequency
has unity gain. LetRRRx be the autocorrelation matrix of a
stochastic signalx(n), and letg be a vector representation
of g(n). The expected output power ofx(n) ∗ g(n) is then
equal togHRRRxg. Let f be the frequency at which we wish to
estimate the power spectrum. Define a steering vectorb as

b =
[
1 e−2π i f . . . e−2π iK f

]T
. (5)

Computeg such that the power is minimized under the con-
straint thatg has unity gain at the frequencyf :

g = argmin
g

gHRRRxg s.t. bHg = 1. (6)

The estimated spectral contents,Ŝx( f ), is then given by the
output power ofx(n)∗g(n):

Ŝx( f ) = gHRRRxg. (7)
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Figure 3: Three different spectral estimators. The dots denote the line spectres that can be observed from the input data. To
the left, the fundamental frequency is 100 Hz, and to the right it is 400 Hz.

It turns out that (6) and (7) can be reduced to the following
expression [8, 9]:

Ŝx( f ) =
1

bHRRR−1
x b

. (8)

In Figure 3, the spectral envelope is estimated using the
MVDR technique. Compared to LP analysis with the same
model order, the MVDR spectral estimate will be much
smoother [13]. In MVDR spectrum estimation, the model
order should ideally be chosen such that the filter is able to
cancel all but one sinusoid. If the model order is significantly
higher, the valleys between the harmonics will start to appear,
and if the model order is lower, the bias will be higher [13]. It
was reported in [11] that improvements in speech recognition
had been obtained by using variable order MVDR. Since it
is non-trivial to adapt their approach to music, and since [11]
and [14] also have reported improvements with a fixed model
order, we use a fixed model order in this work. Using a vari-
able model order with music is a topic of current research.

2.5 Prewarping

All the three spectral estimators described above have in
common that they operate on a linear frequency scale. The
mel-scale, however, is approximately linear at low frequen-
cies and logarithmic at high frequencies. This means that the
mel-scale has much higher frequency resolution at low fre-
quencies than at high frequencies. Prewarping is a technique
for approximating a logarithmic frequency scale. It works

by replacing all delay elementsz−1 = e−2π i f by the all-pass
filter

z̃−1 =
e−2π i f −α
1−αe−2π i f . (9)

For a warping parameterα = 0, the all-pass filter reduces
to an ordinary delay. Ifα is chosen appropriately, then the
warped frequency axis can be a fair approximation to the
mel-scale [10, 11]. Prewarping can be applied to both LP
analysis and MVDR spectral estimation [10, 11].

3. GENRE CLASSIFICATION

The considerations above are all relevant to speech recog-
nition. Consequently, the use of MVDR for spectrum esti-
mation has increased speech recognition rates [11, 14, 15].
However, it is not obvious whether the same considerations
hold for music similarity. For instance, in speech there is
only one excitation signal, while in music there may be an
excitation signal and a filter for each instrument. In the fol-
lowing we therefore investigate whether MVDR spectrum
estimation leads to an improved music similarity measure.
Evaluating a music similarity measure directly involves nu-
merous user experiments. Although other means of testing
have been proposed, e.g. [16], genre classification is an easy,
meaningful method for evaluating music similarity [7, 17].
The underlying assumption is that songs from the same genre
are musically similar. For the evaluation, we use the train-
ing data from the ISMIR 2004 genre classification contest
[18], which contains 729 songs that are classified into 6 gen-
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res: classical (320 songs, 40 artists), electronic (115 songs,
30 artists), jazz/blues (26 songs, 5 artists), metal/punk (45
songs, 8 artists), rock/pop (101 songs, 26 artists) and world
(122 songs, 19 artists). Inspired by [2] and [3], we perform
the following for each song:
1. Extract the MFCCs in windows of 23.2 ms with an over-

lap of 11.6 ms. Store the first eight coefficients.
2. Train a Gaussian mixture model with 10 mixtures and

diagonal covariance matrices.
3. Compute the distance between all combinations of songs.
4. Perform nearest neighbor classification by assuming a

song has the same genre as the most similar song apart
from itself (and optionally apart from songs by the same
artist).

We now define the accuracy as the fraction of correctly clas-
sified songs. The MFCCs are calculated in many different
ways. They are calculated with different spectral estimators:
FFT, LP analysis, warped LP analysis, MVDR, and warped
MVDR. Except for the FFT, all spectrum estimators have
been evaluated with different model orders. The non-warped
methods have been tested both with and without the use of
a Hamming window. For the warped estimators, the auto-
correlation has been estimated as in [11]. Before calculating
MFCCs, pre-filtering is often applied. In speech processing,
pre-filtering is performed to cancel a pole in the excitation
signal, which is not completely white as otherwise assumed
[5]. In music, a similar line of reasoning cannot be applied
since the excitation signal is not as well-defined as in speech
due to the diversity of musical instruments. We therefore cal-
culate MFCCs both with and without pre-filtering.

The Gaussian mixture model (GMM) for songl is given
by

pl (x)=
K

∑
k=1

ck
1√

|2πΣΣΣk|
exp

(
− 1

2(x−µk)
TΣΣΣ−1

k (x−µk)
)
, (10)

whereK is the number of mixtures. The parameters of the
GMM, µ1, . . . ,µK andΣΣΣ1, . . . ,ΣΣΣK , are computed with the k-
means-algorithm. The centroids computed with the k-means-
algorithm are used as means for the Gaussian mixture com-
ponents, and the data in the corresponding Voronoi regions
are used to compute the covariance matrices. This is often
used to initialize the EM-algorithm, which then refines the
parameters, but according to [16], and our own experience,
there is no significant improvement by subsequent use of
the EM-algorithm. As distance measure between two songs,
an estimate of the symmetrized Kullback-Leibler distance
between the Gaussian mixture models is used. Letp1(x)
andp2(x) be the GMMs of two songs, and letx11, . . . ,x1N
andx21, . . . ,x2N be random vectors drawn fromp1(x) and
p2(x), respectively. We then compute the distance as in [3]:

d =
N

∑
n=1

(
log(p1(x1n))+ log(p2(x2n))

− log(p1(x2n))− log(p2(x1n))
)
. (11)

In our case, we setN = 200. When generating the random
vectors, we ignore mixtures with weightsck < 0.01 (but not
when evaluating equation (11)). This is to ensure that outliers
do not influence the result too much. When classifying a
song, we either find the most similar song or the most similar

song by another artist. According to [2, 7], this has great
impact on the classification accuracy. When the most similar
song is allowed to be of the same artist, artist identification
is performed instead of genre classification.

4. RESULTS

The computed classification accuracies are shown graphi-
cally in Figure 4. When the most similar song is allowed
to be of the same artist, i.e. songs of the same artist are in-
cluded in the training set, accuracies are around 80%, and
for the case when the same artist is excluded from the train-
ing set, accuracies are around 60%. This is consistent with
[2], which used the same data set. With a confidence inter-
val of 95%, we are not able to conclude that the fixed order
MVDR and LP based methods perform better than the FFT-
based methods.

In terms of complexity, the FFT is the winner in most
cases. When the model order of the other methods gets high,
the calculation of the autocorrelation function is done most
efficiently by FFTs. Since this requires both an FFT and
an inverse FFT, the LPC and MVDR methods will in most
cases be computationally more complex than using the FFT
for spectrum estimation. Furthermore, if the autocorrelation
matrix is ill-conditioned, the standard Levinson-Durbin algo-
rithm fails, and another approach, such as the pseudoinverse,
must be used.

The experiments have been performed both with and
without a preemphasis filter. When allowing the most similar
song to be of the same artist, a preemphasis filter increased
accuracy in 43 out of 46 cases, and it decreased performance
in two cases. When excluding the same artist, a preemphasis
filter always increased accuracy. Of the total of 103 cases
where performance was increased, the 37 were statistically
significant with a 95% confidence interval.

The improvement by using a Hamming window depends
on the spectral estimator. We restrict ourselves to only con-
sider the case with a preemphasis filter, since this practically
always resulted in higher accuracies. For this case, we ob-
served that a Hamming window is beneficial in all tests but
one test using the LPC and two using MVDR. In eight of the
cases with an increase in performance, the result was statis-
tically significant with a 95% confidence interval.

5. CONCLUSION

With MFCCs based on fixed order, signal independent LPC,
warped LPC, MVDR, or warped MVDR, genre classifica-
tion tests did not exhibit any statistically significant improve-
ments over FFT-based methods. This means that a potential
difference must be minor. Since the other spectral estimators
are computationally more complex than the FFT, the FFT is
preferable in music similarity applications. There are at least
three possible explanations why the results are not statisti-
cally significant:
1. The choice of spectral estimator is not important.
2. The test set is too small to show subtle differences.
3. The method of testing is not able to reveal the differences.
The underlying reason is probably a combination of all three.
When averaging the spectral contents of each mel-band (see
Figure 2), the advantage of the MVDR might be evened out.
Although the test set consists of 729 songs, this does not
ensure finding statistically significant results. Many of the
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Figure 4: Classification accuracies. All methods are using preemphasis. The FFT, LP analysis and MVDR methods use a
Hamming window.

songs are easily classifiable by all spectrum estimation meth-
ods, and some songs are impossible to classify correctly with
spectral characteristics only. This might leave only a few
songs that actually depend on the spectral envelope estima-
tion technique. The reason behind the third possibility is
that there is not a one-to-one correspondence between tim-
bre, spectral envelope and genre. This uncertainty might ren-
der the better spectral envelope estimates useless.

REFERENCES

[1] G. Tzanetakis and P. Cook, “Musical genre classifica-
tion of audio signals,”IEEE Trans. Speech Audio Pro-
cessing, vol. 10, pp. 293–301, 2002.

[2] A. Flexer, “Statistical evaluation of music information
retrieval experiments,” Institute of Medical Cybernetics
and Artificial Intelligence, Medical University of Vi-
enna, Tech. Rep., 2005.

[3] J.-J. Aucouturier and F. Pachet, “Improving timbre sim-
ilarity: How high’s the sky?”Journal of Negative Re-
sults in Speech and Audio Sciences, 2004.

[4] B. C. J. Moore,An introduction to the Psychology of
Hearing, 5th ed. Elsevier Academic Press, 2004.

[5] J. John R. Deller, J. H. L. Hansen, and J. G. Proakis,
Discrete-Time Processing of Speech Signals, 2nd ed.
Wiley-IEEE Press, 1999.

[6] B. Logan and A. Salomon, “A music similarity function
based on signal analysis,” inProc. IEEE International
Conference on Multimedia and Expo, Tokyo, Japan,
2001.

[7] E. Pampalk, “Computational models of music similar-
ity and their application to music information retrieval,”
Ph.D. dissertation.

[8] M. N. Murthi and B. Rao, “Minimum variance distor-
tionless response (MVDR) modeling of voiced speech,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-
cessing, Munich, Germany, April 1997.

[9] M. N. Murthi and B. D. Rao, “All-pole modeling of
speech based on the minimum variance distortionless
response spectrum,”IEEE Trans. Speech and Audio
Processing, vol. 8, no. 3, May 2000.

[10] M. Wölfel, J. McDonough, and A. Waibel, “Warp-
ing and scaling of the minimum variance distortion-
less response,” inProc. IEEE Automatic Speech Recog-
nition and Understanding Workshop, November 2003,
pp. 387 – 392.

[11] M. Wölfel and J. McDonough, “Minimum variance dis-
tortionless response spectral estimation,”IEEE Signal
Processing Mag., vol. 22, pp. 117 – 126, Sept. 2005.

[12] M. Slaney, “Auditory toolbox version 2,” Interval Re-
search Corporation, Tech. Rep., 1998.

[13] M. N. Murthi, “All-pole spectral envelope modeling of
speech,” Ph.D. dissertation, University of California,
San Diego, 1999.

[14] U. H. Yapanel and J. H. L. Hansen, “A new perspec-
tive on feature extraction for robust in-vehicle speech
recognition,” inEuropean Conf. on Speech Communi-
cation and Technology, 2003.

[15] S. Dharanipragada and B. D. Rao, “MVDR-based fea-
ture extraction for robust speech recognition,” inProc.
IEEE Int. Conf. Acoust., Speech, Signal Processing,
2001.

[16] A. Berenzweig, B. Logan, D. Ellis, and B. Whitman, “A
large-scale evaluation of acoustic and subjective music
similarity measures,” inProc. Int. Symp. on Music In-
formation Retrieval, 2003.

[17] T. Li and G. Tzanetakis, “Factors in automatic musi-
cal genre classificatin of audio signals,” inProc. IEEE
Workshop on Appl. of Signal Process. to Aud. and
Acoust., 2003.

[18] ISMIR 2004 audio description contest – genre/artist ID
classification and artist similarity. [Online]. Available:
http://ismir2004.ismir.net/genrecontest/index.htm

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


