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ABSTRACT present a similar way of alleviating — but not fully cancedi

Channel estimation/symbol detection methods based on s@i$ PDST achieves— the effects of the information data noise
perimposed training (ST) are known to be more bandwidth ef ST. Thisis (_Jlone inan |terat|v.e_manner,.whe.re the equiilise
ficient than those based on traditional time-multiplexeiter ~ SYMPOIS obtained through traditional ST in a first step age fe
ing. In this paper we present an iterative version of the SP2ck to the ST algorithm so that the information noise can
method where the equalised symbols obtained via ST are usB§ "educed, and hence better channel estimation and symbol
in a second step to improve the channel estimation, approacf{€tection is obtained, which in turn can be used in the next
ing the performance of the more recent (and improved) dati€ration. The cancellation of information noise will ortie
dependent ST (DDST), but now with less complexity. ThisPerfect when accurate equal_lsapon is achleyed (.I.e. l@ng d
iterative ST method (IST) is then compared to a different it_repords and high SNR). In this situation the iterative S‘ITQIS.
erative superimposed training method of Meng and Tugnalf/ill @proach the performance of DDST. The novelty of this
(LSST). We show via simulations that the BER of our IST a|_IST_ap_proach is that _by re-using the ST equalised symbols
gorithm is very close to that of the LSST but with a reducec®9@in in the ST algorithm, we get DDST performance, but
computational burden of the order of the channel length Fu@S We Will see later, with relatively little additional comra-
thermore, if the LSST iterative approach (originally based tional burden.

ST) is now implemented using DDST, a faster convergence Analternative iterative approach, s rtore-use the equal-
rate can be achieved for the MSE of the channel estimates. I5€d Symbols in the actual ST algorithm as we have just pro-
posed, but to re-use these symbols for a traditional leastreg

channel estimate of a fully trained system. This least sspiar
ST (LSST) approach is not new, and has previously been used
in [4]. The great disadvantage of LSST is its large computa-
tional complexity when compared with the proposed IST al-

1. INTRODUCTION

Digital communication systems require an estimate of tlameh
nel prior to equalisation. Channel estimation techniqadis f .
into three main categories: blind, semi-blind and trainked. gorithm. : : .
this work we mainly focus on the last category because of Now, given thaF b.Oth lterative procedures (the new IST
its simplicity and satisfactory performance. Normallye th and the already eX|st|ng_ LSST.) discussed here feed back the
training sequence used for channel estimation is allocated equallsed_symbols_ obtained W'.th ST, a better performanc_e 'S
empty time slot in the transmitted frame, thus wasting band?)(pecwfOI ifODST 1S employed_mstead of .ST' Butan iterative
DDST, in the fashion of IST, will not provide better channel

width. This drawback was overcome when the training Seédstimates than DDST since DDST already removes the in-

gljjpeernicripvggesd It?:ut ﬁﬁ% ?g'?)efltc;]thgu(iastﬁ (I:r; ::235:12 gcr)]\g icn?"%rmation noise —which is the desired effect of IST. On the

. P %:‘)_ther hand, a least squares DDST instead of ST is expected
tion point of view, the information interferes with the tnai 0 approach the behavu_)ur of fully trame_d egtlmatlon_qerck
) . . . than the LSST method in [4]. So the objectives of this paper
ing and effectively acts as unwanted noise. Later, in [3], a

modified ST known as data-dependent ST (DDST) was abl8"® then:

to make the information sequence transparent to the t@inin i) To develop a new low complexity iterative ST (IST) and

sequence, thus removing the “information noise” and hence  show that its performance approaches that of DDST.
significantly improving channel estimation. In this paper w
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and BER after equalisation for the new algorithms offrom (1) and (3) we can easily show that
IST and LSDDST along with the existing LSST of [4].

M—-1 M—-1
3) = 2 hm)b( —m)+ Y h(m)e(j —m)+
2. ITERATIVE ST (IST) AND LEAST SQUARES m=0 m=0 4)
DDST (LSDDST) M—1
o , + 37 hm)e(j —m) + 7))
We start with a brief overview of DD(ST). m=0
withj =0, 1, ..., P —1,where
2.1. A review of (data dependent) superimposed training
Np 1
Consider a baseband equivalent digital communications sys b(k) = 1 Z b(iP + k) (5)
tem within the ST/DDST scenario, where a periodic train- Np i—o
ing sequence(k) of length N and periodP is added to the
information bearmg symbolb( ) before transmission over Withk=1—P, 2—P, ..., P—1,and
an FIR channe{h(k) ! contaminated by additive, white, Np—1
- . 1 ) .
Gaussmn noisey (k). In add|t|on for DDSiT a [J:)Vin?dm (pe () = —— Z n(iP + 5) ©)
riod P) data-dependentsequenge) = — 5>, b(iP+ Np —
k:),k::o,l,...,P—lande:%,isalsomcludedatthe o _
transmitter [3]. Note that for SE(k) = 0. Then in general, Withj =0, 1,..., P —1. S0 (4) can now be written as
M-1 M-1 (C+B+Eh=y-i (7)
h(m h k—
X:O )+ mz::() (m)e(k —m)+ whereC andE are P x P circulant matrices with first columns
M1 (D) [e(0) e(1) ... (P —1)]T and[e(0) e(1) ... e(P —1)]7 re-
+ h(m)e(k —m) +n(k) +d spectively, anch = [h(0) k(1) ... h(P — 1)]T, with similar
= expressions fog andn. Now the P x P matan can be
expressed aB = B; + B,, whereB; is circulant with first
wherek =0, 1, ..., N — 1. In matrix form: column[b(0) b(1) ... b(P — 1)]T andBs, is upper triangu-
lar Toeplitz and=""N=k)] gre the elements of theth
Sh+n+d=x (2 (k=1,2, ..., P—1)upperdiagonal.

with s(k) = b(k) + c(k) + e(k). Note thatS is the N x )
M data matrix. We will assume that all terms in (2) can be 2.2. Iterative ST (IST)

complex; thab(k) andn (k) are from independent, identically |n this section we consider two iterative channel estinmatio
dlstrlbuted (i.i.d.) random zero-mean processes, wnhepew schemes for ST. For the ST case (i.e. wies 0 in (7)) we
Ub ando respectively; that(k) is known with powew? = havey = (C + B)h + . And using the channel estimate
5 Z :0 c¢(k)|?; andd is an unknown DC-offset (see [1, 2] C~'y from [2] then
for explanation regardind). The problem is first to estimate R
{h(k)}2L;! from the N received samples af(k), and then hst=C™'y. (8)
via equallsatlon to estimate the transmitted detg. As the
method described in [5] can easily be modified to include thd herefore substituting from (7) we get
iterative process to be described (and this will be shown in
a later paper), we will assume for simplicity of presentatio
that perfect synchronisation and knowledge of the DC-bffse
are provided. So we can, in what follows, set= 0 and
P = M. Note thatP > M is only required if the DC-offset
and/or the synchronisation have to be estimated [5].

Now as in [2] we can write

hst=h+ C 'Bh+ C 'a. (9)

Now we can think of two ways of improving the estimate of

h in the ST scenario. First estimag&in (2) using the ST

algorithm followed by minimum mean square error (MMSE)

equaliser (i.e.Ss7). So the channel estimate using the least-

squares method( ss7) from (2) (i.e. LSST) would become
Np—1 ~ Al A ~

i) = 5= > P+ ) @) bussr = (S5rSsr) ~'Serx (10

=0 which is essentially what was proposed in [4] and wHsse

with j = 0, 1, ..., P — 1, wherej(j) is an estimate of the is a ST estimate d8. The second approach is to use ST fol-
periodic (periodP) cyclic meany( ) = E{z(iP +j)}. So lowed by a MMSE equaliser and make an estim&} ¢f B
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in (7). So we can improve the channel estimate upon ST ir
(9) by using iterative STHs7) via ¢

st = (C +B)'y. (11)

-2

=
o

Therefore substituting from (7) (with E = 0) we get

!
o
T

hist = (C + f’:)’l{[C +Blh + ﬁ}

CHANNEL ESTIMATION ERROR
=
S

N 1 ~ 2 1~ — © — ST (Theoretical) from (11) AN
=(C+B)" (C+Bh+(C+B) i S| | ST ~on
10 F IST- 1st iteration il
) 2 ~ L. —— IST- 2nd iteration ¢
Since we assume thB ~ B then (9) is improved (see (15)) —8—TDM
. B>~ DDST (Theoretical) from (17)
via N & —O— - Fully Trained (Theoretical) from (12)
hsr=(C+B) 'y ~h+(C+B)'a. (12 % 5 10 15 20

SNR (dB)
From (11) improved MMSE equalised symbols are obtained

:_hat é:?n be fed tigﬁ_k agairk; to be utS(Zd in (112 ;—hiﬁhitetr)af:ig. 1. Channel estimation error for IST. Note that IST ap-
ve process (IST) can be repeated as needed. The ;;g'oaches DDST.Fully trained’: all transmitted power used

efits of the iterative processes based on (10) or (11) inste r channel estimation (benchmark for any trained alganjth

of the traditional ST basgd on (8) are now m.ade clear if W& ote that TDM and DDST coincide and so are indistinguish-
compute the channel estimate MSE. We define MBE= . graph

E{ St (k) — h(k)|2}, then we can show that

0, due to the usual choice of a relatively larye.. So from
(13)  (7) with (B + E = 0) then for DDST we have

2 P-1 5 9
MSE(fist) = —— [% Yo |(E)]* + 03

Np O'g
. o2 hppst = C™'§ =h + C'&. (17)
MSE(hLSST) ~—nN (14)

2 2
Np(oy +0¢) Using an equaliser based on the channel estimates of (17), we

can obtain an estimate f@ in (2), Sopst. SO simila[Iy the
optimum channel estimaté(sppst) based on (2) anBppst
using least-squares approach would be

2

MSE(B|3T) ~ (15)

2

po?

assumingsr ~ S andB ~ B in (10) and (11) respectively.
We have assumed training sequences Wi = Po?l, L sppsT = (SBDSTSDDST)_lsgDSTX- (18)
for the usual reasons given in [2, 5]. Since the IST method

of (11) !s.based on first-order statistics, it is computailtyn As before, usingi sppst in (18) and MMSE equalisation a
very efficient compared to the LSST method proposed in [4]peter estimate fa8 can be obtained (taking into account the

and the performance of the IST will approach that of DDSTy,athod to remove(k) proposed in [3]), and then fed back to

(see (19)) when accurate equalisation is achieved (i.eg 10ry1g) to form an iterative process. Again it is not difficult to

data records and high SNR). show that
2
~ O’n
2.3. Least-squares DDST algorithm (L SDDST) MSE(hppst) = Npo? (19)
In this section we present an iterative scheme for DDST. It is )
not difficult to see that if we choosdk) = —b(k)p, with MSE(hspost) ~ Tn (20)
k=0,1, ..., N—1and(-)p implying arithmetic modulo- Np(og,.+02)

P, in (1) —same result as [3] but obtained via a different )
analysis— therE = —B; and so for DDST (7) becomes assumindSppst ~ S in (18). Now from (13) we can observe
- that in ST the data acts as interference, whereas in LSST we
(C+By)h=y —n. (16)  effectively remove the interference from the data and ewen i
_ ) ) Po1 crease the training power as can be seen from (14). Also in
Now if we use a cyclic prefi{b(—k) = b(N —k)}, _ then |ST (15), we remove the intereference of the data but the-trai
B, = 0, but even without a cyclic prefikmy, .. B = 0.  ing power remains the same and so it approaches the DDST
So let us assume a cyclic prefix (as was done in [3]), but iperformance of (19). Finally we can observe from (20) that
practice, no cyclic prefix makes little difference sifBe ~ the training power has effectively been increased.
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Computational Performance
Method burden approaches
ST ([4, 2]) O(M?* + M) -
& O(BQN)
4
i IST for 2 iterations DDST ([3))
& O(NIMT) .
Lz_‘ LSST ([4]) for 1 iteration Fully trained
5 P
i LSDDST O(NM7) Fully trained
o Pa—e for 1 iteration
P4
10l T s TDOM | O(N,(M? + M) + M?) | DDST (3])
—H— LSST - 1st iteration (method in [4] )
—>— LSST - 2nd iteration_ (method in [4] )
} e Faly Tained (Thearstioal) from (12) Table 1. Summary of the performance and computational
07 s 0 s 2 burden of all the methods presented here. Note Miand
SNR (dB) N refer to (1); P refers to the period of(k) in (1); and@

refers to the MMSE equaliser length; refers to the TDM
Fig. 2. Channel estimation error for LSST and LSDDST. training sequence of length; + M — 1.
LSST and LSDDST converge to a fully trained system. Note

that TDM and DDST coincide and so are indistinguishable on
graph. energy of the channel was set to unity. The data was a BPSK

sequence, to which a training sequence fulfil@g" = Po?l
was added before transmission. The training to information

power ratio(TIR = 0‘2’3 ) was set t0-6.9798 dB, P = 7

Traditionally, the training sequence was time division thul and N = 420 and a Iirfgar MMSE equaliser of length= 11
plexed (TDM) with the information sequence. Here we nowtaps and optimum delay was used throughout. In order to
compare both training schemes in a simplified scenario. S@nake a fair comparison, we have included the results of chan-
the first question that arises is how to make a fair comparine| estimation and BER using the traditional TDM scheme.
sion. We have chosen to force DDST and TDM to provideThe channel estimation performance of the DDST scheme is
the same channel estimation error, and then to compare thige same as that of the TDM scheme (for the reasons previ-
BERs of both methods. Now, it can be easily be shown thagusly described), as is verified in Figures 1 and 2, where the

2.4. Time Division Multiplexed Training

the channel estimation error for TDM is number of training symbols in the TDM schemeNs+ M —
R M o2 1 =72, compared to the DDST cyclic prefix af — 1 = 2.
MSE(htpm) = EU_Z (21) So Figure 1 gives the channel estimation MSE for the IST
t

algorithm. It can be seen that there is a significant improve-
where N, is the length of TDM training sequence after the ment in channel estimation and it approaches normal DDST
memory of the channel is full. Comparing (21) with (19), thenand TDM performance just after 2 iterations. Now Figure 2
DDST and TDM will have same channel estimation error ifgives the channel estimation MSE for the LSST algorithm of
No? = N;o?, since we have assumdd = M, i.e. the [4] alongwith the proposed LSDDST. It can be seen that there
period of training sequence is equal to the number of taps iis an even largerimprovement over the normal DDST and that
the channel. Note that to estimate the channel under the TDlhey both approach the performance of fully trained systems
scheme the memory of the channel must already be full anbote that our method of LSDDST only requires 1 iteration to
so N; + M — 1- length training sequence is required with effectively converge as opposed to the LSST method in [4]
N; > M. Finally, note that for DDST, in addition t&/ data  that requires 2 iterations. Figure 3 shows the BER perfor-
samples we requiréM — 1)- length cyclic prefix. And so mance for the proposed IST algorithm along with the TDM
TDM and DDST will have the same M3h), but TDM will  scheme and when the channel is completely known. We can
use significantly more symbo(&V; + M — 1) for training than  see that even with the low complexity IST, after two iteratio
DDST uses for its cyclic prefix¥/ —1)—hence the advantage we get virtually the same BER performance as that obtained
of DDST. when the channel is completely known for the superimposed
training scheme. Figure 4 shows the BER for the proposed
3. SIMULATION RESULTS LSDDST algorithm along with the LSST [4]. Again we can
observe that the performance of LSDDST is similar to the
The results of the simulations are shown in Figures 1-3 fogase when the channel is known completely for superimposed
three-tap Rayleigh fading channels. The channel coeftigientraining scheme as well as to that of LSST [4].
were complex Gaussian, i.i.d. with unit variance. The ayera Even the low complexity IST method after two iterations
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——H— LSST- 1st iteration (method in [4])
LSDDST- 1st iteration

— © — Known Channel- Superimposed Training|
—>—TDM

—%— - Known Channel- Only data

—6— ST- No iteration

—<— IST- 2nd iteration

L — © — Known Channel- Superimposed Training| )
10 g .| ——TDM 108

-2

107E 102k

BER
BER

10k 107
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SNR (dB) SNR (dB)

Fig. 3. BER for IST. Known channel-only data’: BER when  Fig. 4. BER for LSST and LSDDST.Known channel-only

the channel is completely known and full power is given todata’: BER when the channel is completely known and full
data; Known channel superimposedtraining’: BER whenthe power is given to datanown channel superimposed train-
channel is completely known and some of the data power ig\g: BER when the channel is completely known and some
allocated for training. of the data power is allocated for training.

gives Virtua”y the same BER performance as one iteration Of\s far as the BER is Concerned, simulations have shown that
LSST and LSDDST. It can also be observed that while thélll the iterative methods considered here have approxlynate
BER performance of all the proposed methods is very closé1e same limiting performance. So, due to their computation
to the TDM scheme, the latter however consumes more bangurdens itis clear that IST is the algorithm of choice.

width. Table 1 gives the summary of the performance and One possible application of this work is to use ST on the
computational burden of all the methods presented. Note th&lPlink (with the base-station performing IST estimationjia
the computational burden of 2 iterations of IST(§3QN) DDSTon the downlink. In this scenario, we will have DDST

but with O (N M?) per iteration for both LSST and LSDDST, performance in both directions, but with all the additional
yet all have almost the same BER. computational burden at the base-station, and not at mobile
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