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ABSTRACT

We consider the general problem of blindly separating time-
varying mixtures. Physical phenomena, such as varying at-
tenuation and the doppler effect, can be represented as spe-
cial cases of a time-varying mixing model. This model can
be considered as a linear mixing of time-varying attenuated-
and-delayed versions of fixed channel distortions. In this spe-
cial case, we use Zadeh’s transform to project the signals to
the time-frequency domain. In this domain, sparse source
distribution highlights geometric properties of the mixing co-
efficients. These coefficients can be used in turn, for invert-
ing the mixing system, and thereby, recover the time-varying
filtered versions of the original sources.

1. INTRODUCTION

The problem of blind source separation (BSS) has attracted
a great deal of attention of many researchers in recent years.
This problem is concerned with estimating some unknown
sources from their observed mixtures, without any a-priori
knowledge about the mixing system. The BSS problem deals
with a wide range of setups and scenarios wherein several
sensors receive mixtures of some unknown physical sources,
such as acoustic, seismic, RF or biological signals.
Approaches and techniques, used for solving the BSS
problem of linear mixtures, can be roughly divided into two
categories: independent component analysis (ICA) and blind
separation using sparse component analysis (SCA). ICA as-
sumes that the sources are statistically independent and,
therefore, utilizes separation cost functions based on mu-
tual independency, non-linear correlation, non-gaussianity,
or high order statistics (for a review of such methods see
[1]). Blind separation using SCA assumes that the sources
are sparse or can be projected onto a space of sparse repre-
sentations by using a proper transform, such as wavelet pack-
ets [2]. The sources need not be statistically independent
but one should be able to represent them differently in some
domain (i.e. there are atoms in the dictionary or moments
in time in which only one source is represented or active).
This approach adopts a geometric interpretation of the mix-
ing coefficients and the entries of the mixing matrix can be
retrieved from the scatter plot of the sparsified mixtures [3].
The majority of the available techniques, have been de-
veloped for solving the instantaneous blind source separa-
tion (IBSS) problem. In this case the sources are mixed
with constant weights and without time delays. This prob-
lem is unrealistic in most sensing problems, but applicable
for separating mixed images from semi-reflecting lens [4], or
in blind separation of MRI tissue signatures [5]. Only in the
last decade, researches have begun to address the problem

of blind separation of convolutive mixtures (CBSS), wherein
the sources are convolved with some kernel before being
mixed. Time delays, multipath and channel distortion can be
represented by this kernel. Techniques used for solving the
CBSS problem consist of finding a time-domain inverse filter
with an ICA-based separation cost function or, alternatively,
finding a frequency-domain complex inverse matrix which is
an IBSS problem for every frequency (see [6] for a review of
relevant methods).

Only few studies have addressed the generalized BSS
problem, in which the mixing system is time-varying. In
this generalized problem, the channel distortion can change
over time (due to temperature changes, for example) and the
sources or the sensors can move, thus causing the multipath
effect, amplitudes and time delays to vary with time. At-
tempts to solve this problem have mainly focused on an adap-
tive online version of the algorithms used for IBSS and CBSS
([71, [8]), or used particle filters for time-varying IBSS prob-
lems (see for example [9]).

In this paper we address a special case of time-varying
mixtures that can be modelled as a linear mixing of time-
varying attenuated-and-delayed versions of fixed channel
distortions. This special case accounts for amplitude changes
due to signal geometric dissipation, and for delays or fre-
quency change resulting, for example, from the doppler ef-
fect. Time varying multipath effects are not represented by
this model. In order to solve this blind separation problem
of time-varying mixtures, we implement a windowed ver-
sion of Zadeh’s transform, considering the problem in the
combined time-frequency domain. The amplitudes and the
phases of sparse (or sparsified) sources plotted in this domain
lend themselves to a geometric interpretation of the mixing
coefficients, used for deriving the unmixing system.

In this paper, results of separating a simulated time-
varying mixture are presented and the constraints on the sam-
pling frequency, signal bandwidth, and local stationarity of
the mixing system, are discussed

We first present in section 2 the problem of blind sep-
aration of time-varying mixtures. The special case of lin-
ear mixing of time-varying attenuated-and-delayed version
of fixed channel distortions is formulated and the relevances
to known physical scenarios is discussed. Section 3 defines
Zadeh’s transform as well as its modified windowed ver-
sion. Section 4 illustrates the geometric interpretation of the
mixing coefficient as can be retrieved from the mixtures of
sparse sources in Zadeh’s time-frequency domain. Section
5 presents a method for inverting the mixing system. Fi-
nally, simulation results of applying this methods to separate
blindly time-varying mixtures are shown in section 6.
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2. THE GENERALIZED BSS PROBLEM

The generalized BSS problem is defined as follows:

Let x;(t) be the observed mixture received by the i’ sensor.

0
H ™=

/ (t,7) - s;(T)dr, )

where s;(7) is the j" source signal and h;;(t,) is the re-

sponse of the channel from the source j to the sensor i to an
impulse given at the time 7.

Time domain blind separation of N signals using M mix-
tures can be defined as follows:

M=

/°° hji(t (1)d, @

i=1"

where /1j;(, ) is the response of the unmixing channel from
the sensor i, to the source j to an impulse given at time ¢, and
§j(r) is the restored source signal j.

We want to address a special case of time-varying mix-
tures, in which h;;(z, T) can be written as:

= f(1)-g(k(1) = 7), ©)

where g(.) is a fixed (over time) channel distortion, f(¢) is
time-varying attenuation and k(¢) is a time-varying delay.

Although this special case does not account for time-
varying multipath effects, it represents many important phys-
ical phenomena and scenarios . For example, f(7) can be in-
terpreted as the attenuation of the source signal, which is a
function of the distance between the source and the sensor
or, in the context of images, f(¢) can be viewed as image ac-
quisition under non-uniform illumination (where ¢ stands for
the spatial coordinates). k(r) can be interpreted as the time
delay between the emission of the source signal to receiving
it at the sensor. This time delay is a function of the distance
between the source and the sensor and the speed of the prop-
agating signal and can account for the doppler effect (change
in the frequency of the received signal). In images, k(¢) can
be interpreted as taking a picture through a distorted medium
or lens (e.g. a hyperbolic lens).

The time-varying mixing model for this special case is as
follows:

h(t,7)

.
=X [ stk -0 sz @
=1

where f;;(¢) is the attenuation function, k;;(z) is the time de-
lay function and g;;(.) is a fixed channel distortion from the
source j to the sensor i.

To illustrate this special case, consider the setup depicted
in figure 1, illustrating a semi-realistic acoustic scenario. A
reporter is speaking to a 2-microphone array, while an emer-
gency vehicle is passing in the nearby road. The functions
fij(t) and k;;(z) are calculated for this scenario as:

1 ' r,'j(l)
W7 kl](t)_t_Tv (5)

where c is the speed of sound.

fij(t) =

(% +V,t,0)
s(t)~

(0:0) (d.0)

Fig. 1: An acoustic generalized BSS scenario. A reporter, s;(f), is
speaking to a 2-microphone array, x{(¢) and x;(¢), while an emer-
gency vehicle, s,(¢), is passing in the nearby road. The left mi-
crophone stands at the origin. The coordinates of the sources and
microphones as a function of time are indicated in the figure. v, is
the vehicle speed vy is the reporter speed, and r;; are the distances
between the /" jih

microphone and the j'"* source.

We define p;;(1) to be the ratio:

fij(t)
fuj(t)’

where the index M stands for the last sensor. We define a
variable time interval T,(r) in which p;;(z) is locally station-
ary:

pij(t) = (6)

pij(t)
ng(t) ’

Ta(t) =&~ @)

where g, is some small constant and p/ j(t) is the derivative
of p;j. we define g;;(r) to be the difference:

kij(t)

we define the variable time interval T,(r) in which g;;(¢) is
locally stationary:

qij(t) = — kg (2). (®)

©))

where g; is some small constant and ¢; ; (¢) is the derivative

of g;j. we assume that for all time instances the following are
valid:

pii(t) << Tu(t), qij(t) << Ty(t). (10)

The motivation for this assumption is given at the end of sec-
tion 5.

The required solution, using the ICA approach, would be
to find h;(t,7) such that the restored signals §;(¢) are sta-
tistically independent. A possible solution using sparseness
would be to identify fi;(), k;;(¢) and g;;(.) through their geo-
metric properties and then mvert the system to restore ().
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3. ZADEH’S TRANSFORM

Zadeh was the first to present an approach suitable for the
analysis of linear time-varying systems in the context of fre-
quency analysis [10] .He proposed to use a function H (¢, ®),
obtained by using a non-compatible transform, as if it was
the frequency response of a time-invariant system. Zadeh’s
approach was found to be useful for system synthesis, but
had limited value in practice for system analysis. Therefore,
Zadeh’s transform has rarely been used and was almost for-
gotten.
A time-invariant system can be defined as follows:

= /h(t—f)-s(f)d’r. (1

The frequency response of the system to a unit impulse ap-
pliedatz =0, is H(@) = [ h(t)e /®dt.

A linear time-varying system is defined as follows:
x(0) = [ h(e,%)-s(x)dz. (12)

Zadeh defined the frequency response of the time-varying
system, to a unit impulse applied at t =y as:

H(ty, /h 10,7) e 1@ gr, (13)

Note that in the case of time-invariant system, A(#,7) = h(r —
7), and Zadeh’s frequency response is equivalent to the time-
invariant frequency response: H(t,®) = H(®).

Zadeh showed that for linear time-varying systems, x(#)
can be found by:

:%/S(w) H(t, o)

where S(®) is the fourier transform of the source signal s(¢).
In the special case of a time-varying system, that its im-

pulse response can be written in the form of (3), Zadeh’s

time-varying frequency response can be written as:

e do, (14)

H(t,0) = (1) ¢ 7 G(a), (15)
where G(w) is the fourier transform of g. Assuming 4(z, 7)
has final support, meaning h(f,7 <t —T) =0 and h(t,7 >
t+T) =0, x(t) can be written as:

/htr

where w(z — 7) is a unit window function centered at 7 = ¢
with support greater or equal 27. Or, equivalently, we can
write x(¢) as:

-s(T)d, (16)

x(1) = / h(t,7)-s(t, 7)d, (17)

where s(¢,7) = w(t — 7) - s(7). Then, x(#) can be found from
the windowed version of the time frequency representation
as:

x(t) = % /X(t,co)ej“”da), (18)

where X (t,0) = H(t,®) - S(¢,®). X (¢, ®) can be interpreted
as the frequency content of x(¢) in the moment t, as a result
of applying a time-invariant filter on s(¢). Note that S(¢, ®)
can be calculated from:

S(t, o) /W S(w—¢)-e?do, (19)

where W (@) is the fourier transform of w(f). Due to the
additivity of Zadeh’s transform [11], and in the special case
defined by (15), the mixing system can be written in the time-
frequency domain as:

qu

4. GEOMETRIC INTERPRETATION OF THE
MIXING SYSTEM FOR SPARSE SOURCES

Sparse sources in the time-frequency domain enables track-
ing of the mixing system, since there are many frequencies
and time instances, in which only one source is active. We
define the angle o;(#, ®) as follows:

0;(t, ®) = tan™" <X"(t’w) ) Q21

[ Xn (2, @)

e 10Uk 1) G, () (1, @), (20)

where Xy (¢, @) is the mixture received at the last sensor.

For naturally sparse (or sparsified) sources in the time-
frequency domain, there are instants #, and frequencies @,
where only one source is not zero. In those combinations
of time and frequency, the mixtures projected onto the time-
frequency domain can be written as:

= fij(tn) ’

where j is the index of the non-zero source.

The points (0 (fy, @), 0 (tn, O, -y Ops—1 (tns O, 1)
in an M dimensional space, lie on one of the curves
(ﬁ]j(l,0))7ﬁ2j(l,(1)),...,ﬁ(M,Uj(l,(D),t), where B,‘j(l,a)) is
defined as follows:

Xi(tna wm) eijwm([nikijan)) : Gij(a)m) : Sj(tm wm)7

(22)

fij(0) - |Gij(w))|
Juj(0)- \GMJ((D)|> @

Note that the above curve is continuous, since f;;(z,®) does

not depend on the value of the source j. Therefore, if we

assume that f(r) is a continuous functions of ¢, fB;;(r, ®) is

also a continuous function of ¢, bounded between 0 and %
We define the phase shift Ag;(7, ®) as follows:

ﬁij(l,(i)) = tan~! <

Agi(t, ) = /Xi(t,0) — LXu(t, ), 24)

where / stands for the phase of X.
The points (A (ty, Om), AP (tn, D), ...
in an M-dimensional space,

7A¢M—1(tn7wm)7t)
lie on one of the curves
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(Ay (1, @), Ay j(t, @), ...,AW(M,I)]-(t, o),1), where

Avy;j(t, w) is defined as follows:

Ayj(t, @) = LGij(@) = LGy j(@) + @ (kij (1) — k(1))
(25)
In this case too, the above curve is continuous, since
Avy;j(t,) does not depend on the value of the source j.
Therefore, if we assume that k(z) is a continuous functions
of t, Ay;;(t,w) is also a continuous function of ¢ bounded
between 0 and 27t with a 27 fold.

For sparse sources, it is possible to identify the continu-
ous curves (B1;(t,),B2;(t, @), ....Bw—1);(t, ®),t) from the
non-continuous curve (@ (t,®),0,(f,®),..., ay—1(t,0),t) ,
since there are more moments and frequencies, in which
only one source is active, than moments and frequencies re-
flecting simultaneous source activity. Those sparse points
(a1 (tn, @), 00 (ty, @), -, 01 —1 (80, @), 1,) lie densely on
the continuous curves.

It is possible to identify the curves (Ay;(t, ),
Ayyj(t, ®),...,.AWy_1);(t,®),t) from the non-continuous
curve (A¢;(t,0),Ap (¢, ®),...,Adp—1(t,®),t) for the same
reason. The sparse points (A (t,, W), AP (1, Op),---,
A¢pr—1(ty, Om),t,) would lie densely on the continuous
curves. Methods for such identification of curves in clut-
ter can be borrowed from image processing and computer
vision.

S. SEPARATION OF THE SOURCES

It is known that the IBSS problem can be solved up to a
scaled version of the original sources. It is also known that
the CBSS problem can be solved up to a filtered version
of the sources. This leads to the assumption that the blind
separation of time-varying mixtures can be solved up to a
time-varying filtered version of the sources. Dividing and
multiplying the right side of (20) by fas;(t) - e /@ —ku; (1))
Gy j(w) introduces B;;(f,w) and Ayj;;(f,®) into the time-
frequency mixing model:

Xi (ta (D) = tan(ﬁij (tv CO)) ' ejAWij(t’w) : SA] (t? CO), (26)
where
SAj(t7 CO) = Sj(t7 CO) : fMj(t) : eijw(tiij(l» : GMj(w)a (27)

is a time-varying filtered version of S;(¢, w).

If B;;(t, @) = 7, a different sensor should be taken as the
M™ sensor (since tan(B;;(t, @) = %) ).

Defining X (1, ) as the column vector of X;(t, ®), E(t, o)
as the column vector of §;(¢,®) and A(t, @) as the matrix of
the mixing coefficients, tan(B;;(f, )) - e/A¥i®)  the mixing
model in the time-frequency domain can be represented by:

X(1,0)=A(t,0)-8(, 0). (28)
The system can be inverted by:

S(t,0) = AT (1,0) - X(1,0), (29)
where AT (1, ®) is the pseudo-inverse of A(¢, ®):

ATt 0) = (A(t,0)T-A(r,0) " -A(r, @), (30)

The separation and reconstruction of §;() can be done using
the inverse fourier transform:

1 7. )
50 =5 /Sj(t,a))~e](‘”da). 31)

For practical use, the separation can only be done on a dis-
crete version of the received mixtures. Therefore, going into
a discrete version entails some constraints:

e The input and output signals should be band limited, and
the sampling rate should obey the nyquist rule (both for
xi(t) and s;(t).

e The duration of the window should allow enough fre-
quency resolution for the sources to be represented
sparsely in the time-frequency domain.

X;(t,w), which is the frequency content of x(¢) in the mo-
ment t assuming the mixing system was stationary, can only
be approximated. The approximation can be calculated the
same way S(¢, @) is calculated using some window w:

Xi(t,0)~ [W(p)-Xi(@-9)-e/"dp,  (32)

The choice of the window is of much importance since
Bij(t,w) and Ay;;(r, @) can only be identified if they are lo-
cally stationary in this window. (10) reveals a possible choice
for the window duration:

max (gij) < T <max (Ta(t), Tu(t)), (33)

where T is the window duration and max(-) stands for
the maximum over all elements and time instances. Other
choices of windows shape and duration are also possible us-
ing for example multiple Gabor windows.

6. SIMULATION RESULTS

An acoustic scenario similar to the one depicted in figure 1
was generated. The records of the reporter and the emer-
gency vehicle where sampled with anti-aliasing filter in the
rate of 4K samples per second. L was set to 30 meters,
vy =40 m/s, v, = 0.05 m/s, ¢ = 340 m/s, d = 0.2 me-
ter, Xyenicle = — 162 meters and Xpeporrer = 0.2 meter. The
time invariant atmospheric transfer function, g; j(.), was con-
sidered to be identical for all ij’s. X;(z,®) was obtained
using a window of length 400 samples. Figure 2a shows
|Xi(z,w)|. The doppler effect can clearly be seen. Figure
2b shows o;(f, ®), which is equal to every ®, since the at-
mospheric transfer function, G;;(®) is equal for all sensors.

The grey lines indicate f3;;(z, ). Figure 2c shows 20it.0)

[0
where the grey lines indicate AW”T(”O) Due to the doppler ef-

. . Ay;i(t,
fect, the observations deviate from W for one of the

sources, but it does not interfere with the ability to sepa-
rate the sources (as mentioned before, the restored sources
can be a time-varying filtered version of the true sources).
Bij(t,w) and Aw;;(t,®) were approximated using a poly-
nomial fit. Figure 2d and 2e shows the recovered signals
S;(t, ) obtained by inverting the mixing system. The mix-
tures and the recovered sources can be downloaded from
http://visl.technion.ac.il/ kaftory/eusipco2006.
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7. SUMMARY

The proposed new approach to blind separation of time-
varying mixtures, projects the signals onto a space of sparse
representation. Zadeh’s transform enables the identification
of the mixing coefficients in the combined time-frequency
domain. These coefficients can be inverted, to derive the re-
stored time-varying filtered version of the original sources.
The identification of the mixing coefficients can benefit from
a prior knowledge regarding the time-varying characteris-
tics. Further extension of this study is now in progress using
Zadeh'’s transform in the time-frequency domain and the ICA
approach. In this approach the sources need not be sparse,
but should be statistically independent. The minimization of
a cost function of the independency of $;(f,®) in Zadeh’s
time-frequency domain, restores the sources and the mixing
system.

8. ACKNOWLEDGEMENT

Research supported in part by the Ollendorff Minerva cen-
ter, by the HASSIP Research Network Program HPRN-CT-
2002-00285, sponsored by the European Commission, and
by the Fund for Promotion of Research at the Technion. R.
K. gratefully acknowledges the special doctoral fellowship
awarded by HP.

REFERENCES

[1] A. Hyvarinen, J. Karhunen, and E. Oja, Independent
Component Analysis. John Wiley and Sons, 2001.

[2] P. Kisilev, M. Zibulevsky, and Y.Y. Zeevi, “A Multiscale
Framework For Blind Source Separation,” J. of Machine
Learning Research, vol. 4, pp. 1339-1363, 2003.

[3] P.Kisilev, M. Zibulevsky, and Y. Y. Zeevi, “Blind source
separation using multinode sparse representation,” in
Proc. ICIP 2001, pp. 202-205.

[4] A.M. Bronstein, M.M. Bronstein, M. Zibulevsky and
Y.Y. Zeevi, “Sparse ICA for Blind Separation of Trans-
mitted and Reflected Images”,International J. of Imag-
ing Science and Technology, Vol. 15, pp. 84-91, 2005.

[5] E. Orian abd Y. Y. Zeevi, “Blind Separation of Complex-
Valued Mixtures of Images: Sparse Representation in
Polar And Cartesian Scatter-Plots,” in Proc. EUSIPCO
2005, Antalya, Turkey, September 7-10, 2005.

[6] K. E. Hild, ”Blind Separation of Convolutive Mixtures
Using Renyi’s Divergence”,PhD dissertanion. Univer-
sity of Florida, 2001.

[7] V. Kuivunen, M. Enescu, and E. Oja , “Adaptive Al-
gorithm for Blind Separation from Noisy Time-Varying
Mixtures,”Neural Computation, vol. 13, pp. 2339-2358,
October. 2001.

[8] R. Mukai, H. Sawada, S Araki, and S. Makino, “Robust
real-time blind source separation for moving speakers in
aroom, ” Proc. ICASSP’03, 2003, Vol. 5, pp. 469-472.

[9] RM. Everson, S.J. Roberts, Particle Filters for Non-
stationary ICA. Advances in Independent Component
Analysis, pp. 23—41, Springer, 2000.

[10] L. A. Zadeh, “Frequency Analysis of Variable Net-
works,” IRE Proc., vol. 38, pp. 291-299, 1950.

[11] H. D’angelo, Linear Time-Varying Systems: Analysis
and Synthesis. Allyn and Bacon, Inc., 1970.

X, (t)]
> - .
£ 1000 g : 3 + |
g 1500
o
= 2000
1 2 3 4 5 6 7 8
(a) time (sec)
a(t,w)
w
3
E/ ‘Jvt\'%\n){“‘fl‘)ﬁ/‘ . wm,\\»ﬁ,%m#-«,?-#.-
/3\1 Yo pp A # A
s 0
1 2 3 4 5 6 7 8
(b) time (sec)
Ag(t,w)/w
m : : ;
e :
E : S ST
§ or -: i\‘
1 2 3 4 5 6 7 8
(c) time (sec)
1S, (to)
N
5 S IMWWWWWWWWWVVWWVWA
)
< 1000} ]
[<H)
g 1500
e
*= 2000 .
1 2 3 4 5 6 7 8
©) time (sec)
1S, (t.0)
¥ Ser Hoar IRIHEE [ BTh
< 500 iﬁf' :?ﬁ VAYE BN\ I8 E |
> ¥ F ~ o = F
S 1o00|ffE 7 3% ¥
Q +
g 1500
L
*= 2000 = .
1 2 3 4 5 6 7 8
(e) time (sec)

Fig. 2: (a) The amplitude of X; (¢, w) as was estimated using (32)
with a window of 400 samples. (b) o(z, ): B;;(¢,w) can be clearly

identified. (c) w: A doppler eftected version of 7Al"’fé)t’w) can

be easily identified. (d),(e) The restored time-frequency sources
S] (t, (O) and S'z(t, w)



