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ABSTRACT 

This paper introduces an Independent Component Analysis 
(ICA) approach to the separation of nonlinear mixtures in 
the complex domain. Source separation is performed by a 
complex INFOMAX approach. Nonlinear complex functions 
involved in the processing are realized by pairs of spline 
neurons called “splitting functions”, working on the real 
and the imaginary part of the signal respectively. A simple 
adaptation algorithm is derived and some experimental re-
sults that demonstrate the effectiveness of the proposed 
method are shown. 

1. INTRODUCTITON 

In the last years Blind Source Separation (BSS) realized 
through Independent Component Analysis (ICA) have raised 
great interest in the signal processing community (see e.g. 
[1]). Recently the problem of source separation has been 
extended to the complex domain [3]-[5], due to the need of 
frequency domain signal processing which is quite common 
in telecommunication [19] and biomedical applications 
[21],[20].  

One of the most critical issues in ICA is the matching be-
tween the pdf of sources (usually unknown) and the algo-
rithm’s parameters. In order to improve the pdf matching for 
the learning algorithm, the so called Flexible ICA was re-
cently introduced in [13], [14]. Flexible ICA provides faster 
and more accurate learning by estimating the parameters 
related to the pdf of signals. In this context, spline-based 
nonlinear functions seem to be particularly appealing as 
activation functions. In fact splines can model a very large 
number of nonlinear functions and can be easily adapted by 
suitably varying their control points, with low computational 
burden.  

Recent studies on ICA in the real domain showed that 
source separation can be effectively performed also in the 
case of convolutive nonlinear mixing environments (see [9], 
[13] for an overview) but in case of the complex domain 
only linear instantaneous mixtures have been considered 
until now [10], [15], [16] . 

This paper extends the Post Nonlinear (PNL) mixture, 
well-known in literature in the case of the real domain, to 
the complex domain (complex-PNL). This extension re-
quires proper modelling of the nonlinear distorting functions 
and of the activation functions. In this work this modelling 

has been performed by use of the splitting functions de-
scribed in [8]. 

 The paper is organized in the following way. Section II 
describes the complex domain mixing environment and ana-
lyzes the problem of separation. Section III introduces the 
demixing structure, the algorithm and the learning rules used 
to perform separation. Finally, section IV describes some 
experimental results which show the effectiveness of the 
proposed approach.  

2. NONLINEAR COMPLEX MIXING 
ENVIRONMENT 

Let us consider a vector [ ] [ ] [ ]{ }1 ,...,
T

Nn s n s n=s of N 

complex sources at time n ( [ ] 1Nn ×∈s ); the hth source can 

be expressed as [ ] [ ] [ ]h Rh I hs n s n js n= + . The goal of BSS 
realized by conventional ICA is to recover the complex sig-
nal [ ]ns  from some observations of the complex mixture 

[ ] [ ] [ ]{ }1 ,...,
T

Nn x n x n=x .  
In this paper the post nonlinear mixing model is ex-

tended to the complex domain by assuming  

 [ ] [ ] [ ] { } [ ]{ }R In n j n n= + = =x x x s G AsG  (1) 

where the nonlinear function 
[ ] [ ]{ } [ ]{ } [ ]{ }R I R R I In j n n j n+ = +G v v G v G v  is the model 

of the nonlinear distortion in the complex domain in which 

{ } ( ) ( )1 1 , ,G v
T

R R R R RN RNg v g v⎡ ⎤= ⎣ ⎦ and

{ } ( ) ( )1 1 , ,G v
T

I I I I IN INg v g v⎡ ⎤= ⎣ ⎦ . A is an N N×  matrix 

such that ija ∈   and [ ] [ ] [ ] [ ]v v v AsR In n j n n= + = . 
The model of nonlinear complex functions considered in 

this paper is made of two separated functions, one for the 
real and one for the imaginary part of the signal. These 
models, called splitting functions [8], [10], [16], [22], are 
widely used in signal processing because they provide a 
representation of nonlinear environments adequate to most 
applications. In addition they allow a simple realization. 
The complex domain mixing environment (1), represented 
in Figure 1, can be rewritten in the following way: 
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where AR and AI are the real and imaginary parts of the 
complex mixing matrix R jj= +A A A .  

 
Figure 1  Complex mixing model. 

 
Equations (2) with respect to the general model (1) have 

the very attractive property of involving only real quantities, 
thus making it possible to convert complex mixing models 
into real models of increased size. 

3. THE SEPARATION ISSUE AND NETWORK 
ARCHITECTURE 

One of the main issues in designing complex neural net-
works is the presence of complex nonlinear functions in-
volved in the processing [15]-[17], i.e. complex activation 
functions or distorting functions (for the nonlinear mixing 
environment). Let f(z) be a complex nonlinear activation 
function of complex variable. f(z) should satisfy the follow-
ing properties: 

1. ( ) ( ) ( ), ,f z u x y jv x y= +  

2. ( )f z  is bounded 
3. , , ,x y x yu u v v  exist and are bounded 

where x
uu
x
∂

=
∂

, y
uu
y
∂

=
∂

, x
vv
x
∂

=
∂

, y
vv
x
∂

=
∂

.  The main 

challenge is the dichotomy between boundedness and analy-
ticity in the complex domain, as stated by the Liouville theo-
rem: complex functions, bounded on the whole complex 
plane, are either constant or not analytic. Thus this kind of 
complex nonlinear functions is not suitable as activation 
functions of neural networks. 

Georgiou and Koutsougeras [18] defined five properties 
which should be satisfied by complex nonlinear functions in 
neural network applications: 

1. ( ) ( ) ( ) ( ), , ,f z f x y u x y jv x y= = +   is nonlinear 

in x and y 

2. ( )f z  is bounded:  ( )f z c≤ < ∞  

3. , , ,x y x yu u v v exist and are bounded (3) 

4. ( )f z is not entire1 

5. x y y xu v u v≠  

It should be noted that (3) requires the boundedness of the 
nonlinear function and its derivatives even when the func-
tion is defined in a local domain. By the Liouville theorem 
the cost for this restriction is that the function is not analytic. 

According to the properties listed above, in order to 
overcome the dichotomy between boundedness and analy-
ticity, complex nonlinear splitting functions have been intro-
duced. In this approach real and imaginary parts are proc-
essed separately by real-valued nonlinear functions (see [19] 
and further [6] and [8]). The splitting functions 
( ) ( ) ( ) ( ) [ ]( ) [ ]( ), Re ImR Jf z f x y u x jv y f z jf z= = + = +  

avoid the problem of unboundedness of complex nonlineari-
ties, as stated above, but they cannot be analytic. 

It is now possible to define the demixing models and to 
design the network performing the source separation.  

As already mentioned, the linear mixing model is too un-
realistic in a lot of practical situations but the issue of recov-
ering the original sources in the more general non linear 
mixing model (1), with no particular a priori assumptions, is 
affected by a strong non-uniqueness [9], [13].  Several ex-
amples are widely diffused in literature.  

In practice, the main issue becomes the research of theo-
retical conditions in terms of mixing environment and re-
covering architecture capable to guarantee the existence and 
the uniqueness of the solution.  

In this paper an a priori knowledge on the mixing 
model was exploited to design the recovering network: the 
so called Mirror Model; this represents the architectural 
constraint which is sufficient to guarantee the existence 
and uniqueness of the solution (obviously up to some 
trivial indeterminacies). So on the basis of the knowledge 
of the mixing model it is possible to define the demixing 
model able to successfully perform separation. 

Comment on independence 

Two complex random samples [ ]iy n  and [ ]my n  of the 
output random vector y[n], are spatially independent if and 
only if ( ) ( ) ( ), , , , , ,

,

, , ,y R IR i R m I i I m y R h y I h
h i m

p y y y y p y p y
=

= ∏ . 

Considering this issue, two complex valued channels are 
independent not only if they are “separated” but if they have 
the real and imaginary part of the same signal independent.  

In any case the algorithm further introduced will be able 
to grant the source separation also when the real and imagi-
nary parts are not strictly independent. 

                                                           
1 A function ( )f z is said analytic in a point 0z if its derivative exists 

throughout some neighbourhood of 0z . If ( )f z is analytic in all points 

z∈ , it is called entire. 
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3.1 Network architecture 
In detail, from the complex mixing model of (1) the 

complex mirror model is derived: 

[ ] [ ] [ ] [ ]{ }R In n j n n= + = ⋅y y y W F x               (4) 

In (4) W is an N N×  complex matrix and 
[ ] [ ]{ } [ ]{ } [ ]{ }R I R R I In j n n j n+ = +F x x F x F x  models the 

nonlinear compensating functions in the complex domain. 
The nonlinear functions {}⋅F  have been realized as splitting 
functions according to (3).  

According to (2) it is possible to express the complex 
mixing model (4) by using real expressions only: 

 [ ]
[ ]

[ ]{ }
[ ]{ }

[ ]
F

F

xy W W
y W F x

y W W x

R RR R I

I I R I I

nn
n n

⎡ ⎤⎡ ⎤ −⎡ ⎤ ⎢ ⎥= = = ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 (5) 

in which [ ]{ } ( ) ( )1 1 , ,F x
T

R R R R RN RNn f x f x⎡ ⎤= ⎣ ⎦  and 

[ ]{ } ( ) ( )1 1 , ,
T

I I I I IN INn f x f x⎡ ⎤= ⎣ ⎦F x are the real and 
imaginary part of the nonlinear compensating functions. 
Equation (5) represents a real-valued PNL demixing model 
and it preserves all the properties of demixing models in real 
domain.  

Efficient design of the demixing strategy requires the 
choice of a proper demixing model, a cost function able to 
measure the independence of the outputs and an effective op-
timization method. In this paper feedforward neural networks 
will be proposed and investigated as effective demixing mod-
els. Network parameters will be iteratively adapted (i.e. 
learned) on the basis of a measure of the output independence. 

The architecture used to realize the model { },F WF  is 
represented in Figure 2. Nonlinear functions like the com-
pensating function ( ) ( ),Ri Ri Ii Iif x f x  or like the activation 

functions ( ) ( ),Ri Ri Ii Iiy yϕ ϕ are realized by spline adaptive 
neurons (for more detail see [10]-[13]). The closed form 
expression of spline neuron which represents the real and 
the imaginary part of  the ith activation function is:  

 
( )
( )

, 1 2 ( )

, 1 2 ( )

Q T MQ

Q T MQ
Ri Ri Ri Ri Ri Ri Ri

Ii Ii Ii Ii Ii Ii Ii

z u u

z u u

ϕ

ϕ

= =

= =
 (6) 

where RiQ  and IiQ are the i-th vectors of control point  for the 
real and imaginary part, 3 2( ) 1TRi Ri Ri Ri Riu u u u⎡ ⎤= ⎣ ⎦  and 

3 2( ) 1Ii Ii Ii Ii Iiu u u u⎡ ⎤= ⎣ ⎦T   ( 0 1u≤ < ) and M is a matrix 
of coefficients which selects the properties of the interpolating 
curve. In this paper the Catmull-Rom spline has been used. 

4. ALGORITHM DERIVATION 

The demixing algorithm is based on the INFOMAX 
principle [2]. This approach performs separation by maximi-
zation of the joint entropy of the neuron output z. It uses an 

intuitively meaningful contrast function, it usually allows for 
simple learning rules and it is closely related to several other 
approaches. 

 
Figure 2 Demixing neural architecture. 

 
In this work the conventional real-domain INFOMAX 

algorithm needs to be extended to the complex domain. This 
task can be accomplished by exploiting the splitting func-
tions as models of activation functions [6], [8].  

The most attractive property of the splitting activation 
functions is the boundedness of real and imaginary parts. 
Even if they are not strictly analytic, their profile is as 
smooth as required in the domain of existence. Assuming 

( ) ( )
( ) ( )

z y yR R I I

i Ri Ii Ri Ri Ii Ii

j
z z jz y j yϕ ϕ
= +
= + = +
ϕ ϕ

                (7) 

the expression of the complex vector z can be rewritten  (see 
(5) and (2)) by using only real terms: 

  
[ ]
[ ]

[ ]{ }
[ ]{ }

yz
z

z y

R RR

I I I

nn
n n

⎡ ⎤ϕ⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ϕ⎣ ⎦ ⎣ ⎦
                       (8) 

In this way z is a real vector of 2N  elements. Consider-
ing a demixing model with parameters Ф, the cost function 
to be optimized is the entropy of the signals after the activa-
tion functions: 

[ ]{ } ( ) ( )( ){ }
( ) ( ){ }

, log

log

zy Φ z z

x J

n H E p

H E

= = − =

= −

L
           (9) 

In (9) the output pdf ( )z zp has been exploited to express 
the entropy of z as a function of model’s parameters and of 

( )xH which does not depend on model’s parameter: 
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J W
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In (10) J  is the Jacobian matrix of the transformation 
between x  and z , while iz and ir  are the generic elements 
of z  and r .  Having explored the mixing model, the associ-
ated cost function and the recovering network, the next step 
is to derive the learning rules. Equation (9) can be rewritten 
by replacing ( )z zp  as expressed in (10), getting a new func-
tional that should be maximized  by applying the stochastic 
gradient. Maximization of (9) by the stochastic gradient 
method yields the learning rules for the network’s weights 

 
[ ]H H

R I R Ij j−Δ = Δ + Δ = + +W W W W rψ ψ          (11) 
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Im , ,
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h y mSC
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       (13) 

 
In these formulas [ ]1 1

T
R R R RN RNz z z z=ψ , 

[ ]1 1I I I IN INz z z z=ψ  and ( )m
M is a vector composed 

by the mth column of the matrix M.   

5. EXPERIMENTAL RESULTS 

Several experimental tests were performed to assess the 
performance of the proposed architecture, with different 
number of sources, different mixing environments and dif-
ferent nonlinear distorting functions. This section describes 
the most significant results. 

Signals were assumed to lie inside the range 
[ ] [ ]1,1 1,1− × −  and normalized so that each element of vec-

tor v in (see Figure 1) spans the range [ ] [ ]0.8,0.8 0.8,0.8− × −   
(the complex signal is considered as a bidimensional signal).  

For the test three complex signals with different distribu-
tions were considered: a 4-QAM signal, a uniform random 
signal and a PSK signal. The diversity in source distribution 
is properly faced by the flexibility of spline splitting activa-
tion function.  The mixing environment (eq. (1)) is: 

1.125 0.375 0.3 0.3 0.15 0.45
0.375 0.3 1.05 0.675 0.075 0.3
0.15 0.3 0.45 0.6 0.975 0.45

j j j
j j j

j j j

− − − − +⎡ ⎤
⎢ ⎥= − + + − +⎢ ⎥
⎢ ⎥− − + +⎣ ⎦

A  

[ ]
( )

( ) ( )( )
( ) ( )

3 3
1 1 1 1

2 2 2 2

3
3 3 3 3

0.7 0.7

0.7 tanh 3 0.7 tanh 3

0.7 tanh 3 0.7

G v

R R I I

R R I I

R R I I

v v j v v

v v j v v

v v j v v

⎡ ⎤+ + +
⎢ ⎥
⎢ ⎥= + + +
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

 

The spline neurons of the recovering structure had 31 
control points both for the activation functions and the 
nonlinear compensating functions.  

The learning rate were 55*10Wμ
−=  , 65*10Splineμ −= . 

The training was stopped after 500 epochs. 
The effectiveness of the separation is evidenced in Figure 

3 that shows the joint pdf of the original sources (Figure 3 a-
c), of the nonlinear mixture (Figure 3  d-f) and finally of the 
separated signals (Figure 3  g-i). 

 

 
Figure 3 Joint pdf of the signal involved in separation; a)-c) original 

sources,d)-f)  nonlinear mixture, g)-i) recovered sources. 

 
In order to provide a mathematical evaluation of the out-

put separation, different indexes of performance are avail-
able in literature [1]. In this paper the separation index Sj of 
the jth source was adopted; the index was presented in [7] 
applied to real environment but in this work it has been ex-
tended to a complex environment: 

( )( ) ( )( )2 2

, ,10 logj j j j k
k j

S E y E yσ σ
≠

⎡ ⎤⎧ ⎫⎧ ⎫ ⎪ ⎪⎢ ⎥= ⎨ ⎬ ⎨ ⎬⎢ ⎥⎩ ⎭ ⎪ ⎪⎩ ⎭⎣ ⎦
∑     (14) 

In (14) ,i jy  is the ith output signal when only the jth input 
signal is present, while ( )jσ  is the output channel corre-

sponding to the jth input.  
Figure 4 shows that after about 150 epochs the training is 

stable and became more accurate. So the profiles of the 
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separation index Sj for each channel assures the effective-
ness of the learning.  
 

 
Figure 4  Separation index during training. 

6. CONCLUSION 

In this paper a novel complex model of mixing environ-
ment has been introduced and described: the post nonlinear 
complex mixing model. The BSS problem in this new envi-
ronment is solved by exploiting an ICA-based algorithm. In 
particular, the proposed approach extends to complex do-
main the well-known INFOMAX algorithm and is based on 
the use of flexible spline networks to perform local on-line 
estimation of the activation functions and nonlinear com-
pensating functions.  

The extension to the complex domain is realized by ex-
ploiting the attractive properties of splitting functions. 

Several test have been performed to verify the effective-
ness of the proposed approach; the quality of the separation 
has been evaluated in terms of the Separation Index which is 
widely diffused in literature.  
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