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ABSTRACT

In multiuser OFDMA FDD systems with resource allocation based
on the instantaneous channel quality of the users, the feedback over-
head can be very large. In this paper, a method to significantly re-
duce this feedback is proposed. The idea is to let the users feed back
the channel quality (the SNR in this paper) of only a sub-set of their
strongest sub-carriers. The SNRs on the other sub-carriers are in-
stead estimated from the fed back values. We derive the MMSE
estimator of the SNR of a sub-carrier, which uses two fed back
SNRs as input. As a comparison, we also study the performance
of the LMMSE estimator as well as spline interpolation. Numerical
results show that the LMMSE estimator tends to underestimate the
SNR compared to the other two estimators, whereas the interpola-
tion tends to overestimate the SNR. System simulations including
adaptive modulation and packet losses indicate that the MMSE es-
timator is the best choice in practice.

1. INTRODUCTION

Opportunistic communication promises increased data rates in mul-
tiuser systems [1]. It relies on the principle of multiuser diversity,
which exploits the fact that users fade independently. By giving
channel access to users with favorable channel conditions and using
adaptive modulation, the system throughput can be increased com-
pared with a system that uses fixed user scheduling. Opportunis-
tic scheduling has already entered existing single-carrier standards,
like 1xEV-DO [2] and HSDPA [3].

A strong candidate for future wireless standards is orthogonal
frequency division multiple access (OFDMA), in particular for the
downlink. In OFDMA, several users can simultaneously be sched-
uled on different frequency sub-carriers. This opens the possibility
to exploit the frequency fading that users typically experience. By
scheduling users on time instants and frequencies where their chan-
nel is strong, transmit power is not wasted on channels with poor
conditions.

A problem with channel-aware scheduling for the OFDMA
downlink in frequency division duplex (FDD) systems, is the total
feedback load which can be very high. To schedule users on differ-
ent sub-carriers, the base-station requires knowledge of the chan-
nel quality on the sub-carriers of all active users. If the number of
sub-carriers is high and the users fade fast, the total feedback rate
will be overwhelming, even if the channel quality is highly quan-
tized. Different approaches to deal with this problem were treated
in [4, 5]. In [4], the sub-carriers are divided into groups of adjacent
sub-carriers, called clusters. The users feed back only one channel
quality indicator (CQI) per cluster, e.g. the minimum SNR within
the cluster. Furthermore, only the CQIs for the strongest clusters
are fed back. In [5], the approach was to let each user feed back
only one bit per sub-carrier, which signifies if the sub-carrier chan-
nel quality is above a threshold. The threshold was adapted as a
function of the number of users in order to allow for higher order
modulation. In this paper, we use the sub-carrier SNR as the CQI.

In classical pilot-symbol aided OFDM channel estimation, the
transmitter sends known pilots on predefined positions on the time-
frequency grid. The receiver can then estimate the frequency re-
sponse of the channel and receive data coherently. In this paper, we

reverse this process, by letting the users feed back SNRs from a grid
of sub-carriers to the base-station, which then estimates the channel
quality on the sub-carriers that were not fed back. In fact, since we
consider an opportunistic system, the users only need to feed back
SNRs for the parts of the spectrum where the channel gain is high.
Consequently, the base-station considers the users for scheduling
only in those parts. This effectively reduces the feedback load. We
propose and evaluate MMSE and LMMSE estimators as well as
simple interpolation.

2. SYSTEM MODEL
2.1 OFDMA Model

The OFDMA downlink of an FDD cellular wireless communica-
tion system is considered. Perfect time and frequency synchro-
nization is assumed as well as a wide-sense quasi-stationary (con-
stant during each OFDM symbol) channel with an impulse response
that is shorter than the cyclic prefix. Then, the received signal on
sub-carrier n € .4 = {0,...,N—1} at OFDM symbol ¢ for user
k€{0,...,K—1} can be written as

Yk (t) =Cn (t)Hk,n(t) + Wk,n(t)

where ¢ is the OFDM symbol, c¢,(¢) is the transmitted symbol,
Hy ,(2) is the sub-carrier frequency response and wy , (¢) is additive

Gaussian noise with user- and sub-carrier-specific variance sz .- In

this paper, inter-cell interference is neglected. The sub-carrier SNR,
[y u(t), is defined as

In the following presentation, the time-index # is omitted for brevity.

2.2 Reduced Feedback Scheme

On each sub-carrier, a different user can be scheduled. The schedul-
ing is updated regularly with an interval of several OFDM symbols,
here called a block. The scheduling is based on feedback from all
users in the form of sub-carrier SNRs. In each block, user k feeds
back I'y , foralln € A"y C A ¢, C A" The feedback sub-carriers,
A fp, are a set of uniformly spaced sub-carriers across the OFDM
symbol. The spacing should be dense enough to fulfil the Nyquist
sampling theorem for reconstruction. The users select the S = | 4/ |
sub-carriers with highest SNR, T ,,, for feedback. The set .47 is
different for different users, since their channels are assumed to be
independent.

As an example, consider a system with 128 sub-carriers,
ie. A ={0,1,...,127}. The sub-carriers eligible for feedback
is chosen as every eighth, i.e. 4 g, = {0,8,...122}. From A4 ¢,
user k selects the S = 8 sub-carriers with highest SNR, for instance
N = {8,16,32,40,48,96,104,112}, as in Figure 1. In order to
schedule users on sub-carriers that are not in .4 f;,, the base-station
has to estimate the SNR on the sub-carriers in 4"\ .4 for each
user. This estimation problem is the topic of this paper and is treated
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Figure 1: An example feedback and estimation scenario. The user
k has chosen sub-carriers .4, = {8,16,32,40,48,96, 104,112} for
feedback from .4 4, = {0,8,...,120}. The base-station estimates
the sub-carrier SNRs in between using 2-tap LMMSE, and esti-
mates the others as zero.

in detail in Section 3. Since the users only feed back the SNRs for a
subset of the sub-carriers in .4 ;, many sub-carriers can not be re-
liably estimated. This can be solved by only estimating sub-carriers
close to those fed back in .47, and estimating the others as zero.
This is typically not a problem, since the strongest sub-carriers of
a user are located close to those in .#";. To clarify, a sub-carrier
SNR of user k is estimated only if the two closest sub-carriers in
A pp were actually fed back in .4";. If not, the sub-carrier SNR is
estimated as zero, for the sake of robustness. In the following, the
user index k is omitted for brevity.

2.3 Channel Model

Time-dispersive sample-spaced Rayleigh fading channels are con-
sidered, with channel impulse response

L-1
h(m) = Y, Bi8(m—1)
1=0
with an exponentially decaying power delay profile,
E |:|ﬁ[|2] :Ae—ZT/2T

where L is the number of taps, [3; are independent zero-mean
complex Gaussian, T is the sample period, T is the root-mean-
square delay spread and A is a normalization constant set so that
SV E[|B*] = 1. This normalization also gives E[|H,|?] = 1,
where H,, is the zero-mean complex Gaussian n'" point in the DFT
of h(m). For this channel model, it is possible to compute the co-
variance between two sub-carriers as

(I_L,—T/Z'r)(I_L,—LT/ZT—jZnL(nl—nz)/N)
(1,€—LT/21) 176—’1'/217,;'2::(;117;12)//\/) : (1

E[H, H; | =

The sub-carrier SNR is exponentially distributed with mean

_ 1 1
T,= —E [ H, 2] - 2
n O',% ‘ n| O',% ( )
and cross-covariance
E[[,,[,] =T Ty = B [H Hy ] 3)
nptny nptny O_r%lo_’%z

which follows from (13) in Appendix A and can be computed
from (1). The notation x means the expected value of the random x.

The sub-carrier covariance in (1) is needed for the MMSE es-
timator presented in Section 3.1 and the SNR mean and covariance
in (2)-(3) is needed for the LMMSE estimator in Section 3.2.

2.4 Covariance Information at the Transmitter

The MMSE estimators presented in the next section assume that the
transmitter knows the cross-covariance between sub-carriers. This
information can be obtained in several ways. Since the channel co-
variance typically is a slowly changing parameter, compared to the
instantaneous SNR, the additional overhead of feeding back the co-
variance from each user would be rather small. Additionally, the
covariance can often be parameterized, for instance by L and 7/t
in (1), in order to reduce the feedback even more. An alternative,
that implies no extra feedback, is that the base-station estimates the
sub-carrier covariance from the fed back SNRs of the sub-carriers
in 4. A third option for obtaining downlink covariance informa-
tion at the base-station without feedback is to estimate it from the
uplink [6].

3. SNR ESTIMATORS

In this section, three estimators for estimating sub-carrier SNRs at
the transmitter based on the few fed back SNRs of the sub-carriers
in A" are presented. Since the fed back SNR values are concen-
trated to those frequencies where the channel gain is high, it is dif-
ficult to reliably estimate the sub-carriers with low SNR. We solve
this by only estimating sub-carrier SNR that can be reliably esti-
mated, i.e. those with high SNR, as in Figure 1. All other estimates
are set to zero. This is not a problem since an opportunistic sys-
tem is considered, where users are to be scheduled on their best
sub-carriers.

3.1 MMSE

The MMSE estimator of the SNR takes advantage of the underlying
PDF of the SNRs. To derive the estimator, it is assumed that the
channel of each sub-carrier is Rayleigh fading, that is, modeled as a
zero-mean complex Gaussian random variable.

The MMSE estimator of the SNR of subcarrier n3, I';; from the
known SNRs of two other sub-carriers, I';, and I';,, is given by [7]

IMMSE — (L, [Ty, Ty @)

Even though the joint PDF f(I',,,T,, ;) cannot, in general, be
expressed in closed form, it is shown in Appendix B that the closed
form expression for the MMSE estimator is

1 (2yy/Tn T
1+a+|B|cos(Zﬁ74Rlz)w
s

E[Fnz‘rnlrnz] = , (3)

-1
R33
where /{-} is the argument (phase) operator, R is the positive def-
inite covariance matrix of h,

H, H,, Hy 1T H 3%3
h:[a:a—n;?’ﬂ , R:E{hh]e({:x, 6)
and the notation R,:ZI is to be interpreted as [R’l} - The functions
Iy (-) and I; (-) denote the modified Bessel functions of the first kind
(zeroth and first order, respectively). The parameters o, § and y are

defined as

R R ? R (RS
A ’ 13‘ ‘ 23‘ 13(23)
o =Ty, — +T, — > | I — ,
Rs3 R3; Rs3
@)
and
R Cov|l['},I
e IRi2] [T'1,T] 7 ®

RiRy — [Rpp|?  Tilp —Cov[ly, )]

where (8) follows from (13) in Appendix A. It should be noted
that v is only a function of the mutual statistics of I'; and I';, and
independent of their relation to I'5.

Note that the computational complexity of evaluating (5) is low,
since the fraction of the modified Bessel functions can be efficiently
computed from a few terms of the series expansions.
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Figure 2: Shows the probability of under- and over-estimating the
SNR, respectively. The filter sizes are 2.

3.2 LMMSE

The linear minimum mean square error estimator of size 2 for the
sub-carrier SNR, I';,, based on the fed back observations I';, and
I',, is given by [7]

TEMMSE T, 4+ Ry xRis (X — X) )
where
x = [[u Tn)”
Rux = E {FMXH} —FmiH

Rxx = E {xxH} —xx.

The covariances are assumed to be known at the transmitter. For the
channel model presented in Section 2.3, the covariances are given
by (3). The LMMSE estimator of size 4 (four fed back SNRs are
used) is of the same form as above.

3.3 Interpolation

The estimation problem in this paper can be seen as an interpolation
based on the fed back SNRs. Therefore, the statistical estimators are
compared with a piecewise cubic spline interpolation that requires
only the fed back SNR values of the sub-carriers in .4#";. For the
case with two input SNRs, the spline interpolation reduces to linear
interpolation.

3.4 Performance Evaluation

The performance of the estimators is evaluated by considering the
SNR estimate of sub-carrier n from the SNRs of the sub-carriers
np =n—38 and n3 = n+ 8 (i.e. filter-size 2). In total, there are
N = 128 sub-carriers, and T/t = 2. In Figure 2 the probability of
under- and over-estimating the SNR by o dB is plotted. As can
be seen, the LMMSE estimate tends to under-estimate, whereas the
interpolation tends to over-estimate the SNR. This behavior is dis-
cussed further in Section 4.1.

4. SYSTEM SIMULATION

In order to evaluate the impact of the estimators in Section 3, a mul-
tiuser OFDMA single-cell system has been simulated. The cell is
populated by K = 10 users with i.i.d. channels according to Sec-
tion 2.3 and temporal block-fading according to Jake’s model [8],
with a carrier frequency assumption of 2 GHz and user speeds of 20
m/s. The number of sub-carriers N = 128, the OFDM symbol du-
ration is 38.33 us and the block length equals 16 OFDM symbols.
The average SNR is 10 dB for all sub-carriers.

In the simulations, the users are assumed to estimate the down-
link channel perfectly. Furthermore, the users are assumed to pre-
dict the sub-carrier SNRs perfectly (e.g. by [9]), so that the fed
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Figure 3: The system throughput for different estimators and filter-
sizes (fs) as a function of the spacing in the feedback grid. The total
feedback rate is equal in all points.

back information is not outdated. The feedback is according to
Section 2.2, with S =5 and the spacing between the sub-carriers
in 4" f;, varies between 8 and 24. Only the sub-carriers that are lo-
cated between two sub-carriers in .4 g, that were actually fed back
are estimated, as in Figure 1. The other sub-carrier SNRs are esti-
mated as zero. On each sub-carrier, the user with highest estimated
SNR is scheduled and assigned a modulation order from BPSK,
QPSK, 16-QAM, 64-QAM or 256-QAM. The adaptive modulation
thresholds are based on a target bit error rate of 10~ and the trans-
mit power is allocated equally over the sub-carriers. The throughput
is computed as the number of bits in the successfully received pack-
ets, which are 128 bits long. A packet is considered erroneous if at
least one bit is erroneous.

4.1 Results

For a spacing of 8 sub-carriers, the estimation quality of the es-
timated sub-carriers is relatively good resulting in few erroneous
decisions. A large spacing gives poorer SNR estimates at the base-
station. On the other hand, a large feedback spacing enables more
sub-carriers per user to be estimated. This can give a higher system
throughput, as illustrated in Figure 3, since an overall strong user
can be scheduled on more of its sub-carriers.

The two-tap MMSE estimator gives the highest overall
throughput when the feedback grid is spaced by 16 sub-carriers.
Interestingly, the throughput curves show two distinct peaks, one
at a feedback spacing of 16 and one at a feedback spacing of 22.
This is the result of two effects of changing the feedback spacing.
Up to a feedback spacing of 16, the effect of the reduced estima-
tion quality is more than compensated for by the fact that larger
parts of the channels of the strongest users are estimated. This leads
to more sub-carriers being allocated to strong users, giving a high
throughput. The dip in throughput at feedback spacing 18 is due to
the higher packet error rate, induced by worse SNR estimation and
higher modulation error rates at the scheduler, which apparently is
not compensated for by the ability to give slightly more sub-carriers
to the strong users. Increasing the feedback spacing even further
gives a similar increase that for lower spacings. Also the fact that
some spacings do not divide the number of sub-carriers has an im-
pact on the performance curves. This means that the highest and
the lowest numbered sub-carriers in .4 ¢, will be more correlated
than the other, due to the circular correlation of the OFDM symbol.
This effect gives a slightly decreased throughput for those spacings,
but since it affects all algorithms, it does not change the conclu-
sions. It is interesting that even though the packet error rate of the
LMMSE is slightly lower than for MMSE (not shown here due to
space limitations), MMSE has higher throughput, due to the SNR
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under-estimation tendency of the LMMSE (see Figure 2). The in-
terpolation loses in performance due to the SNR over-estimation,
which gives a higher packet error rate.

Important to note is that the specific feedback spacings that give
a high system throughput depend on parameters like the channel de-
lay spread and the packet size, but also on the choice of scheduling
metric. We foresee a smaller throughput increase for large feedback
spacings if for instance a proportional fair scheduler would have
been used, since the strongest user would not be scheduled on as
many of its estimated sub-carriers.

5. CONCLUSIONS

In this paper, we have proposed a reduced feedback scheme for mul-
tiuser OFDMA systems that employ channel-aware scheduling. The
feedback can be greatly reduced if the base-station is equipped with
the capability to estimate sub-carrier SNRs from a small set of fed
back SNRs. We propose that the users should pick the fed back
values from the part of the channel where the SNR is high, where
the user should typically be scheduled. We derived the MMSE SNR
estimator of size 2, which performed slightly more robustly than the
corresponding LMMSE and interpolation estimators. The proposed
feedback and estimation scheme was also evaluated in a system sim-
ulation. The results showed that a suitable operating point for the
spacing of the fed back SNRs can be found, which is a good trade-
off between estimator performance and the number of sub-carriers
per user that can be estimated.

A. DERIVATION OF THE RELATION BETWEEN
SUB-CARRIER AND SNR COVARIANCE

Since the noise power of each carrier n, 0',% is assumed known and
static, the SNRs of the carriers are fully determined by the chan-
nel coefficients, H,. The joint PDF of the SNRs, f(I',,...,I)
can thus be expressed in terms of the channel coefficient statistics,
f(Hp,,...,Hy,). In particular we are interested in the joint PDF,
f (T ,Tn, ), in order to derive the covariance between two SNRs.
The derivations are simplified by stacking H,, and H,,, normal-
ized with the standard deviation of the noise in the vector,
Serl
Ou Ony |

where h is normalized such that |h;|> = I'y,. For Rayleigh fading
channel coefficients, that is, zero-mean complex Gaussian channels,
the PDF of h becomes

Hp -1
efh R 'h 1

= e—Rﬁl|h1\Z—Rz}l\hz\z—m{szlhlhﬁ}7
m2detR m2detR

f(h) =

where R is the positive definite covariance matrix
R =E[hh]| e c?2 (10)

and R,;l is to be interpreted as [R~!];;. The notation R and 3 is
used to denote real and imaginary parts, respectively. The channel
coefficients can be expressed in terms of the SNR as h; = \/F—,,, el
where ¢; is distributed uniformly in [0,27). By noting that

d(h] h?)
8(1",1[,(15,')

dr,, d¢;

dr, dg; = =%

dndt dh? = ‘

the joint PDF of T, T',, ¢1 and ¢, is obtained as

o Rii Ty Ry Ty —2%{Ry} /T, T,/ 019}

4r?detR

f(rnlvrllga¢]7¢2): .
(11)

The PDF f(I',,,T;,) is thus obtained by integrating over ¢; and ¢;.
This integration can be done by introducing the change of coordi-
nates (¢1,0) = (o1, 91 — ¢o) which results in

7R'171| Loy 7R272] L, 21 N )
e / ¢ IMRE VT } g
0

SOy Tay) = 2rdetR
(12)

e*Rfll 1",,] *szl Fnz 1
~ gm0 (2[R2| VL)

where the integral is given by (16) in Appendix C.
Using (12) the cross correlation of I',, and I';, is computed as

E[Fnlrnz] = /O /0 I_‘Vlll—‘ﬂz f(rm >Fnz) drnl drnz

w0 Ry L
(@ 1 r ‘ 2| 5 T
- detR/o szl R Tt dry,
Ri1)™ Ry)

’ 2

= detR+2|Rpa> = Ry Roo + |Rua[?,

2
where R;zl — ‘szl‘ / Ril =detR™!/ Rfll =1/ Ril detR, and

Integral (17) were used in (a). The expression for the covariance
between I',, and I, thus has the surprisingly simple form

2
_ E|H, H*
Hmmﬁfm@ﬂm#=LLiﬂl. (13)

B. DERIVATION OF THE MMSE ESTIMATOR

In order to find the MMSE estimate, TNMSE = E[I',,,|T,,, Ty, ], of
the SNR of subcarrier n3, I';, from known SNRs of two other sub-
carriers, I';, and I'y,, it is necessary to analyze their joint statistics.

Similar to the approach used in Appendix A for deriving
f(Tn,,Tn,), the MMSE estimate, TNMSE, will be derived from the
PDF of

ha [Huy Hy Hy]?
On, Ow, Ony |

As in Appendix A, h is re-parameterized as h; = /T};,e/%. The
PDE, f(T'y,,Tn,,Tnyy 01,02, 03) is given by a straight forward ex-
tension of (11) as
f(rn17rn271—‘n37¢17%7¢3) =
__ 1 san.R T
8n3detR
efzsx{‘ /s (VI R 0004 /T Ryledo205)) |

TRy i}

ol

where R =E [hhH] € C3*3 is the covariance matrix of h. By a
change of phase variables,

(¢37$7A¢> = (¢37¢1 _¢37¢1 _¢2)7

it is possible to compute a closed form expression for the joint PDF,
f(Tn, Ty, Ty, A@), by integrating over ¢3 and ¢,

2r 21 ~ ~
,]C(I_‘I’Ll71—‘11271—‘7137A¢):\/0 0 f(F1117F7127Fn37¢33¢7A¢)d¢3d¢

2
_ Jo"dés A
8713 detR

" /Z”e—zs)t{,/_rn3( T R /T, Ryl 74 ) it } i
0

R —2R{ /Ty T R &/ }

e_r"l Rfll Ly R;zl
2ndetR

<o (2| VI Ry + /T Ryle | VT,

o T Ra 28 { /T, T, Ry e/}
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where Integral (16) derived in Appendix C was used in the last step.
The argument of I (+) is computed using the law of cosines as

. 2
VTR + TRy e | =1,

RiJ Ry |cos(/R{ ~ /R +49)

—1? —1?
R13’ +I, RZS’ +

P
2Ry} [a+%{ﬁejA¢}],
where o and f8 are defined in (7). The conditional PDF is given

by, f(rnst(b‘rnzvrn}) £ ST, 7Fnzvrn37A¢)/f(rn| sy ), which
if written out becomes

o a{fe)
27f(T,, . Ty, ) detR

X e_R§3lr"3IO <2\/Fn3 R;SI {OC‘FEK{B@]A(P}]> ’ (14)

f(rn3:A¢‘Fn| 7Fn2) =

where
a2, R +TR,,, B 22T, TRy (15)

Even though it is intractable to compute f (I, |Ty,,y,) due to
the complicated dependence on A¢ it is possible to compute closed
form expressions for E[[y, |, , [, ], that is, the MMSE estimator
of I';,. This is a fortunate consequence of the fact that the depen-
dence on A¢ can be simplified by first integrating over I';,,. Note
that only the last factors in (14) depend on I';;, and the integration
with respect to I',; can be performed in closed form.

27 oo
E[Fn3|rn1~,rnz] :/0 /0 [y, f(rmaA‘Mrnlarnz) dl'y, dA¢

= e 2n —%{Eem}
7W/0 € g(A¢) dAg,

where g(A¢) is given by Integral (17) as

é/rns ‘9711373l Ty Io (2\/1—‘”3 R;:)'l |:OC +R {BejA¢ } ] > 4
0

_m (1+a+n{pe}) e,
33

The conditional expected value is thus given by

eOC*(X

ZE(R )f(Fn”Fnz)detR
.2ne9t{(ﬁ—ﬁ)ew}d¢+%{ﬁ/ ej¢em{(ﬁ_ﬁ)ejw}d¢}:|
0

E [Ty [Cny T ] =

(1+a)/

0

which can be evaluated in closed form as

eafa
E[Fn3|rnlvrnz] = X

—1)\2
(R3;') detR f(Ty,,T,)

e ((p-7) it g‘ (-3

where the integrals are given by (16) and o, 3, a and 3 are de-
fined in (7) and (15), respectively. Let ,,R denote the m:th princi-
pal submatrix of R, i.e. the matrix formed by the first m rows and
columns of R. Hence 7R is the correlation matrix of the first two
entries in h, as defined in (10), and is the correlation matrix used
in (12), where f(I'y,, T, ) is stated. This allows the expression for
the MMSE estimate to be simplified by noting:

1. R;; detR = detoR

2. 00—0 = —(2R)1_ll Fnl - (ZR)Z_ZI F112
3. BB =-2y/TuTn, GR);;
4

. Since 4(2R)f21 = /Ry + 7 it follows that %{ﬁeé(ﬂ**g*)} =
|Blcos(£B — ZRy3).
This, combined with (12), results in the MMSE estimate in (5).

C. COMMON INTEGRALS

Two integrals frequently used in this work, found in well sorted
tables of integrals, are evaluated as:

/ T ind o (%} g — / i R g
0

méh /27T
0

21
méh/ cos n¢ a|h\cos¢d¢
0

n(o—2Lh) oc\h| cos(q)féh)dq)

W T (B} (16)

where n € Z, a € Rand h € C, and

b2 »
4+
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