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ABSTRACT

This paper proposes a new algorithm for total variation (TV)
image deconvolution under the assumptions of linear observations
and additive white Gaussian noise. By adopting a Bayesian point of
view, the regularization parameter, modeled with a Jeffreys’ prior,
is integrated out. Thus, the resulting crietrion adapts itself to the
data and the critical issue of selecting the regularization parameter
is sidestepped. To implement the resulting criterion, we propose
a majorization-minimizationapproach, which consists in replacing
a difficult optimization problem with a sequence of simpler ones.
The computational complexity of the proposed algorithm isO(N)
for finite support convolutional kernels. The results are competitive
with recent state-of-the-art methods.

1. INTRODUCTION

Image deconvolution is a classical linear inverse problem, appearing
in many application areas such as remote sensing, medical imaging,
astronomy, digital photography [1]. The challenge in most inverse
problems (linear or not) is that they are ill-posed, i.e., either the
direct operator does not have an inverse, or it is nearly singular,
with its inverse thus being highly noise sensitive. To cope with the
ill-posed nature of these problems, a large number of techniques
has been proposed, most of them under the regularization or the
Bayesian frameworks.

Both the regularization and Bayesian approaches are supported
on some form ofa priori knowledge about the original image to be
estimated. Wavelet-based approaches are considered the state-of-
the-art on this respect [2, 3, 4, 5, 6, 7, 8].

Total variation (TV) regularization was introduced by Rudin,
Osher, and Fatemi in [9] and has become popular in recent years
[9, 10, 11, 12, 13, 14]. Recently, the range of application of TV-
based methods has been successfully extended to inpainting, blind
deconvolution [15], and processing of vector-valued images (e.g.,
color) [16]. Arguably, the success of TV-based regularization relies
on a good balance between the ability to describe piecewise smooth
images and the complexity of the resulting algorithms. In fact, the
TV regularizer favors images of bounded variation, without penal-
izing possible discontinuities. Furthermore, the TV regularizer is
convex, though not differentiable, and has stimulated a good amount
of research on efficient algorithms for computing optimal or nearly
optimal solutions [16, 17].

1.1 Contribution

In a recent paper [18], we have developed a new algorithm, of the
majorization-minimization(MM) class [19, Ch.6], to perform im-
age deconvolution under TV regularization. The MM rationale con-
sists in replacing a difficult optimization problem by a sequence of
simpler ones, usually by relying on convexity arguments. In this
sense, MM is similar in spirit toexpectation-maximization(EM).
The advantage of the former resides in the flexibility in the design
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of the sequence of simpler optimization problems. The resulting al-
gorithm for TV deblurring is related to iteratively reweighted least
squares. For finite support convolutional kernels, the obtained al-
gorithm hasO(N) computational complexity. Experimental results
reported in [18] show that the method achieves state-of-the-art per-
formance.

One of the central issues in regularization and Bayesian ap-
proaches is the selection of the so-calledregularization parame-
ter, or hyper-parameter, which controls the relative weights of the
data fidelity and regularization terms. In paper [18], we have used
a hand-tuned empirical rule, which leads to good results but lacks
any formal support. In this paper, we adopt a Bayesian approach
and (as in previous work [22, 24, 25, 26, 27]) integrate out this regu-
larization parameter under a Jeffreys’ prior. Naturally, the resulting
marginal prior is different from the original TV prior. Nevertheless,
we show that an MM-type algorithm, which is a simple variant of
the one proposed in [18], can be used to minimize the new objec-
tive function. Experimental results show that the proposed algo-
rithm achieves state-of-the-art performance, even when compared
with approaches where the regularization parameter is hand tuned
for optimal performance.

2. PROBLEM FORMULATION

Let x andy denote vectors containing the true and the observed
image gray levels, respectively, arranged in column lexicographic
order. Herein, we consider the linear observation model

y = Hx+n, (1)

whereH is the observation matrix andn is a sample of a zero-mean
white Gaussian noise vector with covarianceσ2I (whereI denotes
the identity matrix).

As in many recent publications [9, 10, 11, 12, 13, 14], we adopt
the TV regularizer to handle the ill-posed nature of the problem
of inferring x. This amounts to computing the herein termed TV
estimate, which is given by

x̂ = argmin
x

L(x), (2)

with

L(x) =
1

2σ2 ‖y−Hx‖2 +λ TV(x), (3)

where λ is a hyper-parameter, or regularization parameter, and
TV(x) is next defined. Since we are assuming, from the beginning,
that images are defined on discrete domains, we use the discrete
(isotropic) definition of TV given by

TV(x) = ∑
i

√
(∆h

i x)2 +(∆v
i x)2, (4)

where∆h
i and∆v

i are linear operators corresponding to horizontal
and vertical first order differences, at pixeli, respectively. That is,
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∆h
i x ≡ xi − x j i (where j i is the first order neighbor to the left ofi)

and∆v
i x≡ xi −xki

(whereki is the first order neighbor abovei).
It should be mentioned that quite often thel1 norm, l1(x) =

∑i |(∆h
i x)|+ |(∆v

i x)|, has been used to approximate TV(x), or even
wrongly considered itself as the TV regularizer. However, the dis-
tinction between these two regularizers should be kept in mind,
since, as least in deconvolution problems, TV(x) leads to signifi-
cantly better results, as illustrated in [18].

The TV estimate given by (2) favors images with bounded
variation without penalizing possible discontinuities. Since both
smooth and sharp edges have the same TV(x), this does not mean
that total variation favors sharp edges relatively to smooth ones, but
rather that, for a given value of TV(x), the presence of absence of
an edge (sharp transition) in the estimated image depends funda-
mentally on the observed imagey.

The objective functionL(x) is convex, though nor strictly con-
vex neither differentiable. Its minimization represents a significant
numerical optimization challenge, owing to the non-differentiability
of TV(x). In the next section, we review the MM algorithm intro-
duce in [18] for solving (2) in the case of fixedλ . Then, in the
following section, we extend the approach for the case of unknown
λ by adopting a Bayesian framework.

3. AN MM APPROACH TO TV DECONVOLUTION

Consider the objective function (3) withλ fixed and, for notational
simplicity, let σ2 = 1/2. Let x(t) denote the current image iterate
andQ(x|x(t)) a function that satisfies the following two conditions:

L(x(t)) = Q(x(t)|x(t)) (5)

L(x) ≤ Q(x|x(t)), x 6= x(t), (6)

i.e, Q(x|x(t)), as a function ofx, majorizes (i.e., upper bounds)
L(x). Suppose now thatx(t+1) is obtained by

x(t+1) = argmin
x

Q(x|x(t)); (7)

then,

L(x(t+1))≤Q(x(t+1)|x(t))≤Q(x(t)|x(t)) = L(x(t)), (8)

where the left hand inequality follows from the definition ofQ and
the right hand inequality from the definition ofx(t+1). The se-
quenceL(x(t)), for t = 1,2, . . . , is, therefore, nonincreasing. Un-
der mild conditions, namely assuming thatQ(x|x′) is continuous
in both x and x′, all limit points of the MM sequenceL(x(t))
are stationary points ofL, andL(x(t)) converges monotonically to
L∗ = L(x∗), for some stationary pointx∗. If, in addition,L is strictly
convex, thenx(t) converges to the global minimum ofL. The proof
of these properties parallels that of the EM algorithm, which can be
found in [20].

Observe that in order to haveL(x(t+1)) ≤ L(x(t)), it is not
necessary to minimizeQ(x|x(t)) w.r.t x, but only to assure that
Q(x(t+1)|x(t)) ≤ Q(x(t)|x(t)). This has a relevant impact, namely
when the minimum ofQ can not be found exactly or it is hard to
compute. A similar property underlies the generalized EM algo-
rithm [20]; we thus use the designationgeneralizedMM (GMM) to
refer to such an algorithm.

The majorization relation between functions is closed under
sums, products by nonnegative constants, limits, and composition
with increasing functions [19, Ch.6], [7]. These properties allow us
to tailor goodbound functionsQ, a crucial step in designing MM
algorithms. This topic is extensively addressed in [19].

3.1 A quadratic bound function for L(x)

We now derive a quadratic bound function forL(x). The motiva-
tion is twofold: first, minimizing quadratic functions is equivalent

to solving linear systems; second, we do not need to solve exactly
each linear system, but simply to decrease the associated quadratic
function, which can be achieved by running a few steps of the con-
jugate gradient (CG) algorithm.

Note that the term‖y−Hx‖2, present in the definition ofL in
(3), is already quadratic. Let us then focus our attention on each
term of TV(x) given by (4). Using the fact that

√
x≤√x0 +

1
2
√

x0
(x−x0), (9)

for anyx≥ 0 andx0 > 0, it follows that the functionQTV defined
as

QTV(x|x(t)) = TV(x(t))

+
λ
2 ∑

i

[
(∆h

i x)2− (∆h
i x

(t))2
]

√
(∆h

i x
(t))2 +(∆v

i x
(t))2

+
λ
2 ∑

i

[
(∆v

i x)2− (∆v
i x

(t))2
]

√
(∆h

i x
(t))2 +(∆v

i x
(t))2

satisfies TV(x) ≤ QTV(x|x(t)), for x 6= x(t), and TV(x) =
QTV(x|x(t)), for x=x(t). FunctionQTV(x|x(t)) is thus a quadratic
majorizer for TV(x).

Let Dh andDv denote matrices such thatDhx andDvx yield
the first order horizontal and vertical differences, respectively. De-
fine alsoW(t) ≡ diag(w(t),w(t)), where

w(t) =


 λ/2√

(∆h
i x

(t))2 +(∆v
i x

(t))2
, i = 1,2, . . .


 . (10)

With these definitions,QTV(x|x(t)) can be written in a compact
notation as

QTV(x|x(t)) = xTDTW(t) Dx+cte, (11)

whereD ≡ [(Dh)T (Dv)T ]T , andcte stands for a constant, irrele-
vant for the MM algorithm.

Finally, adding the term‖y−Hx‖2 to QTV(x|x(t)), the fol-
lowing quadratic bound function forL(x) is obtained:

Q(x|x(t)) = ‖y−Hx‖2 +QTV(x|x(t)). (12)

Recall that matrixW(t), in QTV(x|x(t)), is computed fromx(t).
The minimization of (12) leads to the following update equa-

tion:

x(t+1) =
(
HTH+DTW(t)D

)−1
HTy. (13)

Obtainingx(t+1) via (13) is hard from the computational point
of view, as it amounts to solving the huge linear systemA(t)x = y′,
whereA(t) ≡HTH+DTW(t)D andy′ = HTy. We tackle this
difficulty by replacing the minimization ofQ(x|x(t)) with a few CG
iterations, thus assuring the decrease ofQ(x|x(t)), with respect to
x, thus obtaining a GMM algorithm.

4. UNKNOWN λ

In this paper, we assume thatσ2 is known; excellent off-line es-
timates of this parameter can be obtained, for example, using the
MAD rule [6]. In this scenario, only parameterλ controls the de-
gree of regularization. Too small values ofλ yield overly oscillatory
estimates owing to either noise or discontinuities; too large values

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



of λ yield oversmoothed estimates. The selection of the regular-
ization parameter is thus a critical issue to which much attention
has been devoted. Popular approaches, in a regularization frame-
work, are the unbiased predictive risk estimator, generalized cross
validation, and the L-curve method; see [21] for an overview and
references. In Bayesian frameworks, methods to estimate the regu-
larization parameter have been proposed in [22, 23, 24, 25, 26, 27].

In a probabilistic view, the first term of the right hand side of
(3) is the negative logarithm of a Gaussian density with meanHx
and covariance matrixσ2I, while the second term is the negative
logarithm of the priorp(x|λ ) ∝ exp(−λTV(x)). As in [22, 24, 25,
26, 27], we will proceed in Bayesian fashion, by assigning a prior
to λ and integrating it out. In particular, we take a non-informative
Jeffeys’ prior; sinceλ is a scale parameter,p(λ ) ∝ 1/λ , which is
equivalent to a flat prior on a logarithmic-scale.

The difficulty in performing the marginalization w.r.t.λ is that
the partition function (or normalization constant) ofp(x|λ ) is not
easily computed. To approximate it, we assume that each pair of
differences(∆h

i x, ∆v
i x is independent of all the other pairs. This

resembles the pseudo-likelihood method approximation proposed
in [28]. Using this approximation and the fact that

∫

IR2
exp

{
−λ

√
u2 +v2

}
du dv=

2π
λ 2 ,

we can write ∫

IRN
p(x|λ )dx

∼∝ λ α N,

where
∼∝ stands for “is approximately proportional to” andα is an

unknown constant which depends on the exact form of the normal-
ization constant ofp(x|λ ); see [26] for a related derivation. In all
the experiments reported below, we useα = 1/2.

Using this approximate partition function, we are lead to

p(x) =
∫ ∞

0
p(x|λ ) p(λ ) dλ ∼∝ [TV(x)]−αN . (14)

Using this prior to obtain a maximum a posteriori (MAP) estimate
involves the minimization of the following objective function

E(x) = ‖y−Hx‖2 +β Nσ2 logTV(x), (15)

whereβ = 2α.
The minimization ofE(x) in (15) can be performed by a new

GMM algorithm. To this end, notice that, for anyz> 0 andz0 > 0,

logz≤ logz0 +
z−z0

z0
.

Inserting this inequality in the previously derived bound for the
fixed λ case yields an upper bound forE(x) with exactly the same
form as given in (11) and (10), but with the fixedλ in (10) replaced
by λ (t) = β Nσ2/TV(x(t)), which depends on the current estimate.

The final GMM algorithm is summarized in Algorithm 1 (with
ε in line 10 implicitly controlling the number of CG iterations).

5. EXPERIMENTAL RESULTS

We now present a set of three experiments illustrating the perfor-
mance of proposed algorithm; to assess its relative merit, the results
are compared with those of our recent work in [18] as well as with
several other recent wavelet-based [3, 6, 7, 30] and non-wavelet-
based [29] techniques.
Experiment 1: the original image is the well-known “camera-

man” (size256× 256); the blur is uniform of size9× 9; the
noise standard deviation isσ = 0.56, corresponding to an SNR
of the blurred image (BSNR≡ var[Hx]/σ2) of 40dB.

Experiment 2: the original image is the “Shepp-Logan” phan-
tom (256×256); the blur is uniform of size9×9; the BSNR is
40dB, in this case corresponding toσ ' 0.4.

Algorithm 1
1: Sett = 0
2: Computey′ = HTy
3: Set initial estimatex0; for example,x0 = y′.
4: while “stopping criterion not met”do
5: Computeλ (t) = β Nσ2/TV(x(t))
6: Computew(t) using (10) withλ = λ (t)

7: SetW(t) := diag[w(t) w(t)]
8: ComputeA(t) = HTH+DTW(t)D

9: Setx(t+1) := x(t)

10: while ‖A(t)x(t+1)−y′‖ ≥ ε‖y′‖ do
11: x(t+1) := next CG iteration
12: end while
13: end while

a) b)

c)

Figure 1: a) original Shepp-Logan phantom; b) blurred noisy image
(9×9 uniform, BSNR=40dB); c) Image restored using Algorithm
1 (ISNR = 14.23dB).

Experiment 3: the original image is famous “Lena” (256×256);
the blur kernel is[1,4,6,4,1]T [1,4,6,4,1]/256; the BSNR is
17dB, corresponding to a noise standard deviation ofσ = 7.

In Table 1 we show the improvements of SNR (defined as
ISNR≡ ‖y−x‖2/‖x̂−x‖2) of the proposed approach and of the
methods described in [3, 6, 7, 18, 29, 30], for the three experimental
conditions presented. These results show that, in these experiments,
our new algorithm performs basically as well as the one in [18],
whereλ was chosen with a hand-tuned empirical rule1. Notice that
the largest ISNR values are obtained for the Shepp-Logan phantom;
this is in agreement with the type of regularization used, which, ba-
sically, enforces piecewise smooth solutions. Figure 1 shows the
Shepp-Logan phantom of size256×256, a degraded version (uni-
form 9× 9 blur, BSNR=40dB), and the image restored with the
proposed algorithm.

If the observation mechanism is a finite support convolution
kernel, then the productHx can be computed with complexity
O(N). If the support is not finite, this product can still be computed
efficiently with complexityO(N logN) via FFT, by embeddingH in
a larger block-circulant matrix [31]. Thus, for convolution kernels,
the complexity of the proposed algorithm isO(N) andO(N logN)

1The ISNR value reported in [18] for Experiment 2 is wrong; the correct
value obtained by the algorithm therein proposed isISNR= 16.25 dB, as
shown in Table 1
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Table 1: SNR improvement obtained by the proposed algorithm,
compared to several other methods.

SNR improvement (dB)
Method Experiment 1 Experiment 2 Experiment 3

our method 8.41 16.23 2.80
[18] 8.52 16.25 2.97
[6] 8.10 12.02 2.94
[7] 8.16 12.00 -
[29] 8.04 - -
[30] 7.30 – –
[3] 6.70 – –

for finite and non-finite support convolution kernels, respectively. If
the observation mechanism is not a convolution, the complexity of
the algorithm is mainly determined by the complexity of the prod-
uctsHx andHTx.

6. CONCLUDING REMARKS

In this paper, we have extended our recent work on the use of
majorization-minimization (MM) algorithms for image deconvolu-
tion under total variation (TV) regularization [18]. In particular, we
have adopted a Bayesian approach to sidestep the need to adjust the
regularization parameter, by integrating out this parameter, under a
Jeffreys prior. We have then shown how the resulting MAP estimate
can also be obtained by an MM algorithm, which is a simple variant
of the one presented in [18]. The complexity of the algorithm is
O(N) for finite support convolution kernels, whereN is the number
of image pixels. In the set of experiments carried out, the proposed
method reaches a level of performance very close to the one in [18],
whereλ was chosen with a hand-tuned empirical rule.
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