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ABSTRACT
Forward-Backward modified Fractional Lower Order
Moment-MUSIC (FB-FLOM-MUSIC), a high resolution
spectral estimation algorithm, is proposed for time of arrival
(TOA) estimation under a non-Gaussian noise model that ac-
curately represents the impulsive outliers in indoor wireless
channels. FB-FLOM-MUSIC is designed for theα-stable
noise model, and the first peak of its pseudospectrum is
assumed to give the TOA estimate. Simulation results
indicate that FLOM-MUSIC clearly outperforms MUSIC
in impulsive noise, and that FB-FLOM-MUSIC provides
reduced estimation variance at the expense of a slight loss
of peakfinding success in moderately dispersed and highly
impulsive noise.

1. INTRODUCTION

The popularity of positioning services has been boosted by
the recent developments in wireless communication tech-
nology. Location awareness has a wide range of applica-
tion areas both in indoor and outdoor environments. Cel-
lular phone localization in 911 calls, event-localization such
as forest-fire detection, earthquake detection, target tracking,
etc., patient/child-positioning are some examples of location-
based applications. Although the Global Positioning System
(GPS) has been quite popular, it does not accurately estimate
the target position in environments whose propagation char-
acteristics are not taken into account, e.g., indoor, urban or
undersea.

Time-of-arrival (TOA) estimation is used in range-based
localization by obtaining the distance between the transmit-
ter and receiver from the flying time of the signal. Once the
distances of an object to at least three reference points are
measured, its position is calculated by trilateration. TOA es-
timation has attracted interest for years and it is employed in
positioning systems in various wireless telecommunications
settings such as GSM, GPS, etc.

One TOA estimation approach which is still in use con-
sists of applying the inverse Fourier transform (IFT) on
frequency-domain measurement data [1]. Some researchers
have focused on the maximum likelihood (ML) optimiza-
tion to estimate the propagation delay, which they achieve
by maximizing the correlation function of the received sig-
nal in [2, 3]. In [4], superresolution methods such as MUl-
tiple SIgnal Classification (MUSIC), which are based on the
covariance matrix estimates, are used to estimate the TOA.
Although ML estimators have the edge in performance, su-
perresolution techniques seem more advantageous when it
comes to computational complexity. In [4], it is shown that
MUSIC can be used to estimate the TOA of signals that suf-
fer from multipath in the indoor radio channel and it performs

better than traditional IFT and direct-sequence spread spec-
trum signal-based cross-correlation techniques.

The common assumption of the aforementioned studies
for TOA, as well as the signal processing applications in gen-
eral is that noise is Gaussian. This assumption is justified
by the central limit theorem and is very attractive because
the Gaussian probability density function is mathematically
tractable and the resulting algorithms are computationally
less complex. On the other hand, underwater acoustic sig-
nals, low-frequency atmospheric noise and the interference
emanating from many man-made devices in an office envi-
ronment are of impulsive nature, and they need to be modeled
with distributions that possess heavier tails than the Gaussian
[5]. Impulsive noise can be modeled through theα-stable
family of distributions, whose appropriateness is theoreti-
cally justified by the generalized central limit theorem [5, 6].
Severe performance degradation is inevitable for Gaussian-
optimal systems when the acting noise is impulsive.

Tsakalides and Nikias [7] introduce a “covariation ma-
trix” based on the fractional-lower order moments (FLOMs)
to replace the covariance matrix of the conventional MU-
SIC, which is based on the second-order-statistics (SOS-
MUSIC). In robust covariation-based (ROC)-MUSIC, both
noise and signal components are modeled as complex sym-
metric alpha-stable (SαS) processes. Liu and Mendel [8]
introduce the FLOM-based matrices that can be used with
MUSIC applied to angle-of-arrival estimation for finite-
variance circular signals under SαS noise (the FLOM-
MUSIC method). While FLOM-MUSIC outperforms ROC-
MUSIC for signal constellations such as phase modulation
(PM) and quadriphase shift-keying (QPSK), ROC-MUSIC
is still preferable in cases such as binary phase shift-keying
(BPSK) [8]. Altınkaya et al. [9], on the other hand, employ
the generalized covariation coefficient, a fractional lower or-
der statistic to replace the correlation matrix.

The objective of this paper is to apply the forward-
backward (FB) modified FLOM-MUSIC technique to the
frequency response of an indoor communication channel to
estimate the TOA in the presence of complex symmetricα-
stable noise, and to compare its performance with FLOM-
MUSIC and the more conventional SOS-MUSIC and FB-
SOS-MUSIC.

2. SIGNAL AND NOISE MODEL

Multipath fading results in the reception of a superposition
of multiple delayed and scaled versions of the transmitted
signal, leading to phase and amplitude distortion.

Although many objects in the physical environment may
not be stationary, the channel variation due to their motion
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is relatively slow compared to the signal rate in the wireless
communication system. In this paper, the channel is consid-
ered as locally time-invariant [10]. The low-pass equivalent
of such a frequency-selective indoor radio channel’s impulse
response is given by

h(t) =
P−1

∑
k=0

bkδ (t− τk) (1)

where P is the number of multipath components,bk =
|bk|ejθk andτk are the complex attenuation and propagation
delay of thekth path, respectively. In an indoor channel with
or without the presence of line-of-sight (LOS), it is assumed
thatτ0 represents the TOA. The channel gainbk is complex
Gaussian; that is,|bk| has the Rayleigh distribution andθk
is uniformly distributed on[0,2π). Thekth multipath signal
component undergoes a time delay ofτk.

The received signaly(t) includes the convolution of the
channelh(t) and the transmitted signals(t), together with the
additive noisen(t), i.e.,

y(t) =
∫ ∞

−∞
s(τ)h(t− τ)dτ +n(t). (2)

The additive noise termn(t) in (2) is assumed to be white,
complex isotropic SαS.

A real zero-mean SαS random variableX is character-
ized by two parameters:α, the characteristic exponent and
γ , the scale/dispersion parameter. The characteristic expo-
nent, for which0< α ≤ 2, parameterizes the thickness of the
tail of the distribution. Ifα = 2, the distribution is Gaussian.
As α decreases, the tail becomes thicker and the frequency
of occurrence of large-amplitude noise realizations increases.
The dispersionγ plays a role that is equivalent to variance. In
fact, whenα = 2, the dispersionγ equals half the variance.

For a complex isotropicSαS random variableZ = X1 +
jX2, whereX1 andX2 are jointly SαS, the characteristic func-
tion is φ(ω) = exp( j(Re(ωZ∗))) = exp(−γ|ω|α), for which
ω = ω1 + jω2 and ‘*’ represents the complex conjugate.

By taking the Fourier transform ofh(t) in (1), the fre-
quency domain channel response becomes

H( f ) =
P−1

∑
k=0

bke
− j2π f τk. (3)

If we exchange the roles of time and frequency in (3), we
obtain a harmonic signal model as in [4]. Most time-domain
spectral estimation techniques are also applicable to the fre-
quency response of the multipath indoor radio channel. The
sampled frequency response hasM coefficients atM equally
spaced frequencies. Assigning∆ f as the frequency incre-
ment, themth sample is

H(m∆ f ) =
P−1

∑
k=0

bke
− j2π( f0+m∆ f ),τk (4)

wherem = 0,1, . . . ,M− 1. If the channel response is low-
pass equivalent, thenf0 = 0 as it is assumed in this work.

The observed channel response at sampled discrete fre-
quencies includes environmental noise, modeled as a com-
plex isotropic SαS distributed random process. Therefore

x(m) = H(m∆ f )+n(m), i.e.,

x(m) =
P−1

∑
k=0

bke
− j2πm(∆ f )τk +n(m). (5)

This can also be written in vector form as

x = H+n (6)
= Ab+n.

where

x = [x(0) x(1) · · · x(M−1)]T

H = [H(0) H(∆ f ) · · · H((M−1)∆ f )]T

n = [n(0) n(1) · · · n(M−1)]T
A = [a(τ0) a(τ1) · · · a(τP−1)]

a(τk) = [1 e− j2π∆ f τk · · · e− j2π(M−1)∆ f τk]T

b = [b0 b1 · · · bP−1]T

whereT denotes the transpose.
Under the infinite variance model, which is a conse-

quence of the SαS model, MUSIC cannot be directly ap-
plied using the second order statistics of a covariance matrix.
Instead, FLOMs are used to form a covariation matrix, the
FLOM-based covariation matrix [8]. The basic assumptions
of in the derivation of the proposed TOA estimation algo-
rithm are as follows:
• A1: In bk = |bk|ejθk, the amplitude|bk| and the phase

θk are independent and identically distributed (iid) statis-
tically independent real random variables, with the for-
mer Rayleigh distributed while the latter uniformly dis-
tributed in[0,2π).

• A2: n(m) is the sequence of zero-mean iid complex
isotropic SαS distributed variables with1 < α ≤ 2.

• A3: A has full rank.
Note from A1 and A2 thatx given by (6) is zero-mean.

The problem addressed under this model is that of the
estimation of the TOA of the first arrival in the impulse re-
sponse of the channel assuming that this impulse corresponds
to the LOS path.

3. TOA ESTIMATION IN IMPULSIVE NOISE

In this section, MUSIC-based TOA estimation under SαS
noise is implemented by utilizing the FLOM-based covaria-
tion matrix instead of the correlation matrix, which is com-
posed of second order moments. The covariation matrixC is
defined as

C = E[x(|x|p−2¯x)†] (7)

where p < α, ‘¯’ represents elementwise product and ‘†’
represents conjugate transpose [8]. The covariation coeffi-
cientsλXY, whose estimation leads to the covariation ma-
trix of FLOM-MUSIC, can be determined through FLOMs
as λXY = E[XY<p−1>]/E[|Y|p] for any 1 ≤ p < α where
Y<p−1> = |Y|p−1sgn(Y).

Based on the signal model in the preceding section, it can
be shown that

C = ASA† + γI (8)

with A as in (6), andS a positive real diagonal matrix [8].
The values of the diagonal ofS andγ are complicated func-
tions of the fractional lower order statistics ofx as in [8] with
the following properties:
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• Its elements are finite sincep < α except whenα < 1.
• It is Hermitian symmetric and the elements of its diago-

nal are identical.
• S is nonsingular.

Based on the covariation matrixC, the FLOM-MUSIC algo-
rithm is implemented as follows:
1. Build a frequency domain data matrix fromN snapshots

of received data. Thenth snapshotxn is a vector mod-
elled as in (6) and it has lengthM. Compose a data ma-
trix X = [x0 · · · xN−1] is M×N where each column cor-
responds to a snapshot.(In practice, snapshotn of data
is obtained by measuring, at timet = nTs, a set of si-
multaneously emitted narrowband pulses at frequencies
f0 + m∆ f , m = 1, · · · ,M. Then, themth component of
the nth snapshot[xn]m corresponds to the measurement
at the frequencyf0 +m∆ f . Note thatTs should be larger
than1/(∆ f ).)

2. Obtain theM × M FLOM-based covariation matrix,
C which replaces the correlation matrix in MUSIC.
The covariation matrix estimate is given bŷC =
(1/N)X(|X|p−2¯X)†.

3. Using singular value decomposition (SVD), perform the
eigenanalysis ofC,

C = PDP† (9)

whereD is anM×M diagonal matrix,P is theM×M
matrix whosemth column is an eigenvector whose cor-
responding eigenvalue is themth element of the diagonal
of P.

The number of frequency samplesM must be chosen to be
greater than the number of pathsP for the lastM−P eigen-
values to correspond to noise only. MUSIC splits the space of
x into two subspaces: a signal subspace which is spanned by
the eigenvectors ofC corresponding to the largestP eigen-
values, and a noise subspace spanned by the remainingM−P
eigenvectors. Let

Ks = [e0 e1 · · · eP−1] (10)

be the matrix whoseP columns correspond to signal sub-
space eigenvectorse0, . . . ,eP−1, and

Kn = [eP eP+1 · · · eN−1] (11)

be the matrix whoseN−P columns correspond to the noise
subspace eigenvectors. Note thatP = [Ks Kn]. The multi-
path delaysτk, k = 0, . . . ,P− 1 are then obtained from the
peaks of the FLOM-MUSIC pseudospectrum

SFLOM−MUSIC(τ) =
1

a(τ)†KnK
†
na(τ)

, (12)

wherea(τ) is defined in (6). The first (leftmost) peak of this
pseudospectrum is considered to be the TOA estimate.

The covariation matrixĈ estimated from (9) does not
satisfy the Toeplitz requirement. There are two variations on
MUSIC that take into account the structural properties of the
covariation matrix [11]: The first and simplest, the so-called
general improvement method simply ensures the Hermitian
symmetry of the covariation matrix estimate:

ĈG =
1
2
(Ĉ+ Ĉ†). (13)

The second one sets an additional the persymmetry structure
to this matrix estimate:

ĈFB =
1
2
(Ĉ+JĈ†J) (14)

whereJ is the anti-diagonalM×M exchange matrix. This
is called FLOM-MUSIC with forward-backward (FB) im-
provement [11], which is applicable to both the classical co-
variance and the new covariation matrix estimates and is ex-
pected to enhance performance by increasing the SNR of the
correlation matrix.

4. SIMULATION RESULTS

The simulations in this work compare the TOA estima-
tion performance of FLOM-MUSIC to SOS-MUSIC (sec-
ond order statistics-MUSIC) under SαS noise. Both FLOM-
MUSIC and SOS-MUSIC are implemented with and with-
out their FB matrix modification. For a givenα, complex
isotropic SαS noise is generated according to [6] and [12].

The observation data vectorx represents the channel fre-
quency response sampled uniformly over a frequency band as
in (3). For indoor multipath channels, it can be assumed that
the maximum delayτmax is less than 500 ns [13]. Therefore,
the frequency sampling interval∆ f is chosen to be1/2τmax=
1 MHz. The bandwidth is chosen as 100 MHz and this re-
sults in a snapshot size of 200 points. Note that the complex
low-pass equivalent of the transfer function is simulated.

Two performance criteria are considered: (1) success rate
which is the rate at which the first measured arriving peak
falls in the interval[τ0− ∆τ/2,τ0 + ∆τ/2]; (2) the mean-
absolute error (MAE) of the first measured arriving path,
which is taken as the TOA estimate.

Since noise is SαS, the signal-to-noise ratio (SNR) para-
meter, which requires finite noise variance, is invalid. There-
fore a generalized signal to noise ratio (GSNR) is defined as
[8]

GNSR= 10log10
E[|h(t)|2]

σα (15)

whereσ = 2(γ1/α).
The resulting pseudospectra of our TOA estimation algo-

rithm have peaks around the delays of the indoor radio chan-
nel paths if the estimation is successful. The locations of
those peaks are registered as estimates of path delays.

In the simulations, the channel contains two pulses at 100
ns and 200 ns corresponding to a two-path indoor radio chan-
nel. The parameters of stable noise are assumed known con-
sidering that there are several parameter estimation methods
for stable random processes [5]. In each graph, 4000 realiza-
tions are used to generate the data.

In Figures 1 and 2, the effect of noise dispersion on the
algorithm is studied by varying the GSNR while keeping the
characteristic exponentα and the fractional orderp of the
moment fixed at 1.5 and 0.75, respectively. With thisα,
noise is moderately impulsive. FLOM-MUSIC clearly out-
performs SOS-MUSIC for GSNR≥ 7 dB with or without
FB. While the general FLOM-MUSIC (without FB) outper-
forms FB-FLOM-MUSIC marginally in terms of the success
rate, the latter seems to have better MAE performance for
GSNR≤ 19 dB. This can be interpreted as general FLOM-
MUSIC having very slightly better peak-finding success than
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its FB version, while FB provides reduced estimation vari-
ance until GSNR = 19 dB. For GSNR≥ 20 dB, the FB im-
provement does not yield any tangible performance gain. A
similar relationship between the use and non-use of FB can
be observed in the SOS-MUSIC case.

In Figures 3 and 4, the same analysis is repeated, but
this time withα = 1.8 and p = 0.9. This corresponds to a
scenario where noise is slightly impulsive. While general
FLOM-MUSIC’s success rate is higher up to GSNR = 15-16
dB, especially with FB improvement, the conventional SOS-
MUSIC takes over above 16 dB, and it has also the lowest
variance for GSNR≥ 20dB. The FB modification in FLOM-
MUSIC provides less MAE only below 10-dB GSNR.

The more the noise distribution deviates from the
Gaussian, the harder it becomes for the SOS-based TOA es-
timators to catch up with the FLOM-MUSIC performance.
Whenα = 1.5, a minimum GSNR of 30 dB is required for
the SOS-MUSIC success rate to approach that of FLOM-
MUSIC whereas GNSR = 15 dB is sufficient forα = 1.8.

In Figures 5 and 6,α is varied for a fixed GSNR (20
dB) and the fractional order momentp is systematically cho-
sen to be half ofα. Therefore, the impact of the frequency
of outliers in noise on the algorithm’s performance is con-
sidered. The lower the value ofα, the more frequent the
impulsive components. The moment orderp is chosen to
provide near-maximal FLOM performance for eachα. For
α < 1.8, the general FLOM-MUSIC has the highest success
rate, and with FB is also has uniformly lower MAE than the
general SOS-MUSIC. The noise distribution starts becoming
Gaussian-like whenα ≥ 1.8, in which case the SOS-MUSIC
begins to overtake the FLOM-based estimators.

5. CONCLUSION

FLOM-MUSIC and its modified FB version are proposed
for the TOA estimation of the first arriving path of a radio
channel whose impulsive noise is modelled as complex SαS.
The effects of GSNR, the characteristic exponentα, and
the fractional lower order momentp on the performances
of the estimators are studied. The use of FLOM-MUSIC
is clearly advantageous for scenarios with moderate-to-
high impulsiveness (α < 1.8), and the FB modification to
FLOM-MUSIC provides even lower estimation variance at
the expense of a little drop in the success rate for moderate
GSNR and lowα.

This work is supported under contract number 06A207
by the Bǒgaziçi University Research Fund.
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Figure 1: Effect of GSNR on the success-rate for moderately
impulsive noise (α = 1.5, p = 0.75, 4000 realizations).
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Figure 2: Effect of GSNR on the mean-absolute error for
moderately impulsive noise. (α = 1.5,p = 0.75, 4000 real-
izations).
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Figure 3: Effect of GSNR on the success-rate for slightly
impulsive noise (α = 1.8, p = 0.9, 4000 realizations).
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Figure 4: Effect of GSNR on the mean-absolute error for
slightly impulsive noise (α = 1.8, p = 0.9, 4000 realiza-
tions).
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Figure 5: Effect ofα on the success-rate for 20 dB GSNR
(p = α/2, 4000 realizations). The lower theα-level, the
higher the frequency of impulsive components.
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Figure 6: Effect ofα on the mean-absolute error for 20 dB
GSNR (p = α/2, 4000 realizations). The lower theα-level,
the higher the frequency of impulsive components.
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