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ABSTRACT better than traditional IFT and direct-sequence spread spec-
Forward-Backward modified Fractional Lower Ordertrum signal-based cross-correlation techniques.
Moment-MUSIC (FB-FLOM-MUSIC), a high resolution The common assumption of the aforementioned studies
spectral estimation algorithm, is proposed for time of arrivakor TOA, as well as the signal processing applications in gen-
(TOA) estimation under a non-Gaussian noise model that aeral is that noise is Gaussian. This assumption is justified
curately represents the impulsive outliers in indoor wirelesgy the central limit theorem and is very attractive because
channels. FB-FLOM-MUSIC is designed for tliestable  the Gaussian probability density function is mathematically
noise model, and the first peak of its pseudospectrum igactable and the resulting algorithms are computationally
assumed to give the TOA estimate. Simulation resultsess complex. On the other hand, underwater acoustic sig-
indicate that FLOM-MUSIC clearly outperforms MUSIC nals, low-frequency atmospheric noise and the interference
in impulsive noise, and that FB-FLOM-MUSIC provides emanating from many man-made devices in an office envi-
reduced estimation variance at the expense of a slight lo$snment are of impulsive nature, and they need to be modeled
of peakfinding success in moderately dispersed and highlith distributions that possess heavier tails than the Gaussian
impulsive noise. [5]. Impulsive noise can be modeled through thestable

family of distributions, whose appropriateness is theoreti-
1. INTRODUCTION cally justified by the generalized central limit theorem [5, 6].

The popularity of positioning services has been boosted b evere performance degradation is inevitable for Gaussian-

the recent developments in wireless communication tect2Ptimal systems when the acting noise is 'TDUIS'YG;

nology. Location awareness has a wide range of applica-, Tsakalides and Nikias [7] introduce a “covariation ma-
tion areas both in indoor and outdoor environments. CeltfiX” based on the fractional-lower order moments (FLOMs)
lular phone localization in 911 calls, event-localization sucHO replace the covariance matrix of the conventional MU-
as forest-fire detection, earthquake detection, target tracking!C: Which is based on the second-order-statistics (SOS-
etc., patient/child-positioning are some examples of locationMUSIC). In robust covariation-based (ROC)-MUSIC, both
based applications. Although the Global Positioning Systerfi€iS€ and signal components are modeled as complex sym-
(GPS) has been quite popular, it does not accurately estimaf@etric alpha-stable (@S) processes. Liu and Mendel [8]
the target position in environments whose propagation chatitroduce the FLOM-based matrices that can be used with

acteristics are not taken into account, e.g., indoor, urban ¢fUSIC applied to angle-of-arrival estimation for finite-
undersea. variance circular signals underaS noise (the FLOM-

Time-of-arrival (TOA) estimation is used in range-basedMUSIC method). While FLOM-MUSIC outperforms ROC-

localization by obtaining the distance between the transmitMUSIC for signal constellations such as phase modulation

ter and receiver from the flying time of the signal. Once thelPM) and quadriphase shift-keying (QPSK), ROC-MUSIC

distances of an object to at least three reference points a@ Still preferable in cases such as binary phase shift-keying

measured, its position is calculated by trilateration. TOA es{BPSK) [8]. Altinkaya et al. [9], on the other hand, employ

timation has attracted interest for years and it is employed i€ generalized covariation coefficient, a fractional lower or-

positioning systems in various wireless telecommunication§€r Statistic to replace the correlation matrix.

settings such as GSM, GPS, etc. The objective of this paper is to apply the forward-
One TOA estimation approach which is still in use con-backward (FB) modified FLOM-MUSIC technique to the

sists of applying the inverse Fourier transform (IFT) onfrequency response of an indoor communication channel to

frequency-domain measurement data [1]. Some researchéigtimate the TOA in the presence of complex symmetric

have focused on the maximum likelihood (ML) optimiza- Stable noise, and to compare its performance with FLOM-

tion to estimate the propagation delay, which they achiev&USIC and the more conventional SOS-MUSIC and FB-

by maximizing the correlation function of the received sig-SOS-MUSIC.

nal in [2, 3]. In [4], superresolution methods such as MUI-

tiple Signal Classification (MUSIC), which are based on the 2. SIGNAL AND NOISE MODEL

covariance matrix estimates, are used to estimate the TOA.

Although ML estimators have the edge in performance, suMultipath fading results in the reception of a superposition

perresolution techniques seem more advantageous whenoit multiple delayed and scaled versions of the transmitted

comes to computational complexity. In [4], it is shown thatsignal, leading to phase and amplitude distortion.

MUSIC can be used to estimate the TOA of signals that suf- Although many objects in the physical environment may

fer from multipath in the indoor radio channel and it performsnot be stationary, the channel variation due to their motion
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is relatively slow compared to the signal rate in the wirelesx(m) = H(mAf) +n(m), i.e.,

communication system. In this paper, the channel is consid-

ered as locally time-invariant [10]. The low-pass equivalent hl ot

of such a frequency-selective indoor radio channel’s impulse x(m) = Z}bke 2B 4 n(m). (%)
response is given by k=

This can also be written in vector form as

P-1

h(t) = % bkd(t—1) 1) x = H+n (6)
k=0 — Ab+n

where P is the number of multipath componentsy = where

|by|el® and 1y are the complex attenuation and propagation

delay of thekth path, respectively. In an indoor channel with x = [x(0) x(1) s x(M=1)]T

or without the presence of line-of-sight (LOS), itisassumed H = [H(0) H(Af) -~ H((M—1)AH]T

that 79 represents the TOA. The channel ghinis complex n = [n(0) n(1) o nM=1)]"

Gaussian; that ighy| has the Rayleigh distribution ar A = [a(n) a(11) - altp_q)]

is uniformly distributed orj0, 2rr). Thekth multipath signal a() = [1 eiamine . giznM-DafgT

component undergoes a time delayrgf bk - (b by oo bpalT

The received signal(t) includes the convolution of the
channeh(t) and the transmitted signslt), together withthe  \ynereT denotes the transpose.

additive noisen(t), i.e., Under the infinite variance model, which is a conse-
- quence of the 85 model, MUSIC cannot be directly ap-
y(t) = / s(T)h(t — T)dT +n(t). (2)  plied using the second order statistics of a covariance matrix.
—o Instead, FLOMs are used to form a covariation matrix, the

. _ _ _ . FLOM-based covariation matrix [8]. The basic assumptions
The additive noise term(t) in (2) is assumed to be white, of in the derivation of the proposed TOA estimation algo-
complex isotropic &S. rithm are as follows:
A real zero-mean &S random variable is character-  § a1- | b = |bx/el%, the amplitudelby| and the phase
ized by two parametersz, the characteristic exponent and g a6 independent and identically distributed (iid) statis-
y, the scale/dispersion parameter. The characteristic expo- tically independent real random variables, with the for-

nent, for whichD < a < 2, parameterizes the thickness of the o1 Rayleigh distributed while the latter uniformly dis-
tail of the distribution. Ifa = 2, the distribution is Gaussian. tributed in[0, 271).

As a decreases, the tail becomes thicker and the frequency.
of occurrence of large-amplitude noise realizations increases. isotropic S1S distributed variables with < o < 2
The dispersioly plays a role that is equivalent to variance. In ) ==
fact, whena = 2, the dispersiory equals half the variance. o A3: A has full rank. ) _

For a complex isotropi€a S random variable = X; +  Note from Al and A2 thak given by (6) is zero-mean.
jXo, whereX, andX; are jointly SxS, the characteristic func- 1 he problem addressed under this model is that of the
tion is p(w) = exp( j (Re({wZ*))) = exp(—y|w|?), for which ~ €Stimation of the TOA of the first arrival in the impulse re-
w= w; + jar and * represents the complex conjugate. ~ SPonse of the channel assuming that this impulse corresponds

By taking the Fourier transform df(t) in (1), the fre- (0 the LOS path.
quency domain channel response becomes

A2: n(m) is the sequence of zero-mean iid complex

3. TOA ESTIMATION IN IMPULSIVE NOISE

HOF) — P‘lb janfr, ) In this section, MUSIC-based TOA estimation underSs
(f)= ZO k€ : () noiseis implemented by utilizing the FLOM-based covaria-
k= tion matrix instead of the correlation matrix, which is com-

If we exchange the roles of time and frequency in (3), Wegg;ﬁgé);econd order moments. The covariation mélri

obtain a harmonic signal model as in [4]. Most time-domain p—2 t
spectral estimation techniques are also applicable to the fre- C=E[x(Ix[" ox)]] )
quency response of the multipath indoor radio channel. Theherep < a, ‘@’ represents elementwise product artd
sampled frequency response hagoefficients aM equally  represents conjugate transpose [8]. The covariation coeffi-
spaced frequencies. Assignidg as the frequency incre- cientsAxy, whose estimation leads to the covariation ma-

ment, themth sample is trix of FLOM-MUSIC, can be determined through FLOMs
as Axy = E[XY<P=1>]/E[|Y|P] for any 1 < p < a where
P-1 , Y<P=1> — |Y|P-1sgn(Y).
_ —j2m(fo+mAf), , ) ) .
H(mAF) = kZO bye™ 12 forma ) T (4) Based on the signal model in the preceding section, it can

be shown that

wherem=0,1,...,M — 1. If the channel response is low- C=ASA"+y1 (8)
pass equivalent, thefy = 0 as it is assumed in this work. with A as in (6), andS a positive real diagonal matrix [8].

The observed channel response at sampled discrete fréhe values of the diagonal & andy are complicated func-
quencies includes environmental noise, modeled as a cortiens of the fractional lower order statistics:ofs in [8] with
plex isotropic ®S distributed random process. Thereforethe following properties:
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e Its elements are finite singe< a except whero < 1. The second one sets an additional the persymmetry structure
e Itis Hermitian symmetric and the elements of its diago-to this matrix estimate:
nal are identical. 1
e Sis nonsingular. Ceg = =(C+JC) (14)
Based on the covariation mati§¥, the FLOM-MUSIC algo- 2

rithm IS implemented as f°”9W3: i wherelJ is the anti-diagonaM x M exchange matrix. This

1. Build a frequency domain data matrix frdisnapshots s called FLOM-MUSIC with forward-backward (FB) im-
of received data. Thath snapshoky, is a vector mod-  ,rovement [11], which is applicable to both the classical co-
elled as in (6) and it has leng¥. Compose a data ma- yariance and the new covariation matrix estimates and is ex-

trix X = [xo -+ xn-1] iSM x N where each column cor- hected to enhance performance by increasing the SNR of the
responds to a snapshot.(In practice, snapshot data  qrelation matrix.

is obtained by measuring, at tinle= nTg, a set of si-
multaneously emitted narrowband pulses at frequencies
fo+mAf , m=1..- M. Then, themth component of 4. SIMULATION RESULTS

the nth snapshofxn|m corresponds to the measurementThe simulations in this work compare the TOA estima-
at the frequencyfo + mAf. Note thatTs should be larger  tjon performance of FLOM-MUSIC to SOS-MUSIC (sec-
thanl/(Af).) ond order statistics-MUSIC) undeo'S noise. Both FLOM-

2. Obtain theM x M FLOM-based covariation matrix, MUSIC and SOS-MUSIC are implemented with and with-
C which replaces the correlation matrix in MUSIC. out their FB matrix modification. For a givem, complex

The covariation matrix estimate is given b =  isotropic xS noise is generated according to [6] and [12].
(1/N)X(|X|P2oX)T. The observation data vectairepresents the channel fre-
3. Using singular value decomposition (SVD), perform thequency response sampled uniformly over a frequency band as
eigenanalysis o€, in (3). For indoor multipath channels, it can be assumed that
the maximum delaymax is less than 500 ns [13]. Therefore,
C=PDP’ (9)  the frequency sampling intervAf is chosen to b&/2Tmax=

) ) ) ) 1 MHz. The bandwidth is chosen as 100 MHz and this re-
whereD is anM x M diagonal matrixP is theM x M gyjts in a snapshot size of 200 points. Note that the complex
matrix whosemth column is an eigenvector whose cor- |ow-pass equivalent of the transfer function is simulated.
responding eigenvalue is tith element of the diagonal Two performance criteria are considered: (1) success rate
of P. which is the rate at which the first measured arriving peak

The number of frequency sampls must be chosen to be falls in the interval[to — AT/2, 10 4+ AT/2]; (2) the mean-
greater than the number of patRdor the lastM — P eigen-  absolute error (MAE) of the first measured arriving path,
values to correspond to noise only. MUSIC splits the space Gfhich is taken as the TOA estimate.

x into two subspaces: a signal subspace which is spanned by since noise is 8S, the signal-to-noise ratio (SNR) para-
the eigenvectors of® corresponding to the largeBteigen-  meter, which requires finite noise variance, is invalid. There-
values, and a noise subspace spanned by the rem&ini®  fore a generalized signal to noise ratio (GSNR) is defined as

eigenvectors. Let [8]
_ E[|h(t)|?
Ks=[eper - ep_q] (10) GNSR= 10log,,, % (15)
be the matrix whosé columns correspond to signal sub-
space eigenvectors, . ..,ep_1, and whereo = 2(y*/9).
The resulting pseudospectra of our TOA estimation algo-
Kn=[epepi1 - en-1] (11)  rithm have peaks around the delays of the indoor radio chan-

nel paths if the estimation is successful. The locations of
those peaks are registered as estimates of path delays.

In the simulations, the channel contains two pulses at 100
ns and 200 ns corresponding to a two-path indoor radio chan-
nel. The parameters of stable noise are assumed known con-

be the matrix whos& — P columns correspond to the noise
subspace eigenvectors. Note tiat= [Ks K,]. The multi-
path delaysty, k=0,...,P—1 are then obtained from the
peaks of the FLOM-MUSIC pseudospectrum

1 sidering that there are several parameter estimation methods
SrLom-music(T) = ——————— (12)  for stable random processes [5]. In each graph, 4000 realiza-
a(7)"KnKna(1) tions are used to generate the data.

In Figures 1 and 2, the effect of noise dispersion on the
algorithm is studied by varying the GSNR while keeping the

The covariation matrix! estimated from (9) does not characteristic exponert and the fractional ordep of the

. . ; - oment fixed at 1.5 and 0.75, respectively. With this
satisfy the Toeplitz requirement. There are two variationsor) "~ ! L . :
MUSIC that take into account the structural properties of th 'ﬂ]mse is moderately impulsive. FLOM-MUSIC clearly out

g . . : erforms SOS-MUSIC for GSNR- 7 dB with or without
covariation matrix [11]: The first and simplest, the so-called ; VT : )
general improvement method simply ensures the Hermitiah B+ While the general FLOM-MUSIC (without FB) outper

svmmetry of the covariation matrix estimate: forms FB-FLOM-MUSIC marginally in terms of the success
y y : rate, the latter seems to have better MAE performance for
A 1o o~ GSNR< 19dB. This can be interpreted as general FLOM-

Ce=3 (C+Ch). (13)  MUSIC having very slightly better peak-finding success than

wherea(7) is defined in (6). The first (leftmost) peak of this
pseudospectrum is considered to be the TOA estimate.
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