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ABSTRACT
This paper presents a new and simple method for calculating
the common poles of a room. A set of impulse responses is
measured inside a room. ARMA models are computed for
each of these measured impulse responses. Since the mea-
sured linear systems are stable, the poles of the ARMA mod-
els are located inside the unit circle of the Z plane. A cluster-
ing technique can be used to group these points into clusters.
The centroids of these clusters can be interpreted as the com-
mon poles of the room. The analysis was carried out in a sub-
band basis considering only the poles inside the pass-band of
the bandpass filter. The clustering technique shows a consid-
erable improvement compared to the averaging method pro-
posed by Haneda et al., and the stability of the new common
acoustical poles models can be theoretically assured.

1. INTRODUCTION

According to [1], the acoustic path between any pair of points
inside a given room can be described by an ARMA model
where the AR coefficients are common to any pair of points
inside that particular room. From this point of view, a room
behaves as any linear network where the resonances are a
characteristic of the network, while the zeros depend on the
particular input-output pair being considered.

Because of the zeros of the room, not every acoustical
pole can be observed in a single impulse response. There-
fore, to find the common acoustical poles of a room the first
step always consists in measuring a set of impulse responses
between different pairs of points inside the room. The out-
come of these measurements is a set of FIR filters. We can
mention three different methods that can be used to obtain
ARMA models with common poles out of these FIR filters:
least squares, averaging, and clustering. The first and the sec-
ond were proposed by Haneda et al. [1] and the third one is
proposed as a novelty into this paper.

The least squares method, based on the minimization of
a cost function associated to the error between the measured
FIR filters and the common acoustical poles ARMA models,
requires much more computational effort than the others.

The averaging method is based upon averaging the AR
coefficients of the ARMA models obtained after different im-
pulse response measurements. This method requires much
less computational effort than the first one, but the stability

of the resulting common poles models can not be theoreti-
cally ensured.

The third and novel approach tackles the common poles
problem not as AR polynomial coefficients but as the roots
of the denominator of the ARMA models inside the Z plane.
The poles of ARMA models corresponding to the impulse
response measurements are located into the Z plane; then a
clustering technique is used to group these poles in different
clusters. The centroids of these clusters are assumed to be
the common poles of the room.

ARMA models of acoustic systems is a very well mo-
tivated problem with applications ranging from room and
loudspeakers responses analysis, or acoustic systems equal-
ization, to modelling of instrument sounds [2]. ARMA
models of room impulse responses using common acousti-
cal poles principles can be very useful, leading to simplified
filtering and processing structures [1], thus saving compu-
tational effort. For instance, it becomes a meaningful ap-
proach to be used in equalization of multichannel reproduc-
tion systems with large arrays of loudspeaker such as those
used in wavefield synthesis systems [3]. As it was already
briefly explained, previously published methods shown sev-
eral problems such as computational effort (least squares), or
stability of common poles models (averaging). The proposed
method overcomes both problems: computational effort ap-
proach remains much lower than in the least squares case,
and the stability of the resulting common poles models can
be theoretically ensured.

As suggested by Karjalainen et al. [2] the accuracy of
the analysis can be improved performing a sub-band filter-
ing and downsampling of the measured impulse responses.
This is the approach followed throughout this paper. Since a
bandpass filter is implemented, only the poles that fall within
the filter’s pass-band are considered in the analysis.

A comparison between the results obtained with averag-
ing and clustering methods is also carried out.

This paper is organized as follows. In section 2, a de-
scription of the experimental setup used for impulse re-
sponses measurement is carried out. Section 3 contains a
brief description of the bandpass filtering and downsampling
process. Individual ARMA models by means of the Shanks’
method [4] are calculated in section 4. After that, the com-
mon acoustical poles analysis is described, implemented and
evaluated in section 5. A statistical analysis of the results is
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carried out in section 6. Finally conclusions are exposed in
section 7.

2. IMPULSE RESPONSE MEASUREMENT

A set of 4 arrays of 8 loudspeakers each was used to mea-
sure the acoustical impulse response between 32 loudspeak-
ers and a total of 196 points distributed into a 14x14 square.
Therefore a total of 6272 impulse responses were obtained.
The location of the loudspeakers and the capture points can
be seen in Fig. 1. The walls of the room have absorbing ma-
terial, and its dimensions are 561cm x 460cm x 308cm. The
measurements were simultaneously performed [5] using fre-
quency sweeps, measuring 32 acoustical channels each time.
The sampling frequency was 8000Hz. After the measure-
ment process, impulse responses were lowpass filtered and
downsampled to 4000Hz.

Fig. 1. Loudspeaker and microphone position for impulse response mea-
surements. Distance between microphones is 5cm in vertical and horizontal
directions. All distances are in cm.

3. IMPULSE RESPONSE FILTERING AND
DOWNSAMPLING

As we already mentioned a bandpass filtering and downsam-
pling stage was introduced. We used a bandpass filter that is
a modulated version of a uniform filter bank basic window
of width 2π/32 implemented according to the principles de-
scribed by Cvetkovic in [6]. With a sampling frequency of
4000Hz the window width corresponds to 125Hz. The win-
dow was modulated to the frequency range of 312.5Hz to
437.5Hz. Only positive frequencies were filtered, thus the
filtered impulse responses are complex valued.

As the filter bandwidth is 2π/32 the filtered impulse re-
sponses can be downsampled by a factor of 32. To diminish
aliasing artifacts a factor of 16 was used. The filtered and
downsampled impulse responses are 150 samples length.

4. INDIVIDUAL ARMA MODELS FOR MEASURED
IMPULSE RESPONSES

For implementing averaging and clustering methods, firstly,
individual ARMA models must be computed. The Shanks’

method [4] was very useful at this point, and, as will be seen,
shown to have enough accuracy to model the acoustical mea-
sured channels. Individual ARMA models can be mathemat-
ically expressed as follows:

Ĥi(z) =
∑q

k=0bi(k)z−k

1+∑p
k=1ai(k)z−k

, (1)

where z is the independent complex variable of the Z-
transform,Ĥi(z) is the ARMA model of thei-th measured
impulse response,q andp are the numerator and denomina-
tor orders of the model respectively, andbi(k) andai(k) are
the numerator and denominator coefficients respectively cor-
responding to thei-th impulse response. We usedp= 60 and
q = 20. Once the 6272 models were calculated the error was
evaluated according to the following expression:

εdB = 10log10

(
∑L−1

n=0 |h(n)− ĥ(n)|2

∑L−1
n=0 |h(n)|2

)
, (2)

whereh(n) is the measured impulse response after filtering
and downsampling,̂h(n) is the time response of the ARMA
model obtained with the Shanks’ method,L is the length of
h(n) andĥ(n), andεdB is the normalized energy of the error
signal between the measured and modelled acoustic channel
in dB. A histogram of the error values can be seen in Fig. 2.
The energy error values lead us to consider that the models
are accurate enough.

Fig. 2. Histogram of the values of the normalized energy of the error
signal.

5. COMMON ACOUSTICAL POLES MODELLING

5.1 Averaging

Averaging method states that common AR coefficients can be
found by averaging AR coefficients of the individual ARMA
models computed in section 4 according to the following
equation:

aCAP(k) =
1
M

M

∑
i=1

ai(k), (3)

whereM is the number of measured impulse responses, and
aCAP(k) is the coefficient of orderk of the common denomi-
nator.
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We applied Eq. 3 to the individual ARMA models of the
196 acoustic channels between loudspeaker 1 of array 1 and
all the points of the measurement grid.

We can go one step further to reduce the order and com-
plexity of our common acoustical poles ARMA models. As,
to reduce aliasing artifacts, the downsampling factor was 16
instead of 32, the pass-band of the downsampled bandpass
filter does not occupy the whole frequency range[0,2π].
Therefore, we can reduce the common poles of the model
to the ones that have more influence into the filter pass-band.
Figs. 3 and 4 show a graphical representation of this concept.

It should be noticed that the frequency response of the
common poles model fades outside the pass-band of the filter.
This characteristic of our models should not be considered a
drawback, but in fact is a strong advantage. The sub-band
processing is usually performed in several contiguous fre-
quency bands, thus, the stop band of one filter overlaps with
the pass-band of the contiguous one. The less the energy falls
into the stop band of the filters, the more accurate the results
will be after the reconstruction filter bank is applied.

The order of the common acoustical poles ARMA mod-
els restricting the poles to the pass-band of the filter isp= 38
andq = 20. Using the common poles into the pass-band and
the Shanks algorithm, new MA coefficients were found for
the 6272 ARMA models. As the accuracy of the model is
restricted to the pass-band frequencies, the error should be
evaluated only in this frequency range. Thus, Eq. 2 should
be modified to:

εBP = 10log10

∑k1
k=k0

∣∣H(k)− Ĥ(k)
∣∣2

∑k1
k=k0

|H(k)|2

 , (4)

wherek0 andk1 are the lower and upper limits respectively
of the pass-band of the filter,H(k) is the frequency response
of the measured acoustic channel after filtering and down-
sampling,Ĥ(k) is the frequency response of the common
acoustical poles model with pole restriction, andεBP is the
normalized energy in dB of the error signal restricted to the
filter pass-band.

Fig. 6 shows a histogram of the values of error according
to Eq. 4 together with other error histograms that will be ana-
lyzed latter in this paper together with the clustering method
results.

5.2 Clustering

As we already mentioned, the clustering approach uses the
location of the poles in the Z plane instead of the AR coeffi-
cients of the Z transform. As for the averaging case, we used
the individual ARMA models of the 196 acoustic channels
between loudspeaker 1 of array 1 and all the points of the
measurement grid. Following the principles stated in the de-
scribed implementation of the average method, the poles of
the 196 ARMA models have been restricted to the ones with
more influence into the pass-band of the filter. Fig. 5 shows
the result of this operation.

A clustering technique can be used to group the poles
of Fig. 5 into different clusters. We used fuzzy c-means al-
gorithm [7] [8]. The clustering approach gives an extra de-
gree of freedom to solve our mathematical problem. Differ-
ent values for the number of clusters can be used. The final
selected value would be the one that shows lower error val-
ues according to Eq. 4. We used 37, 35, 32 and 28 clusters,

Fig. 3. Frequency domain representation of downsampled bandpass filter
(upper continuous curve), filtered and downsampled acoustic channel be-
tween loudspeaker 5 of array 2 and point X=6 and Y=14 of the measurement
grid (lower continuous curve), and common acoustical poles ARMA model
restricting the poles to the ones that have more influence into the pass-band
of the filter (dotted).

Fig. 4. Representation into the Z plane of the averaging common acous-
tical poles. Whole band poles (x), and poles restricted to the ones that have
more influence into the pass-band of the bandpass filter (o).

calculating each time common poles ARMA models with the
corresponding centroids of the clusters. As in the averaging
case, new MA coefficients were found for the 6272 ARMA
models. The histograms of the frequency of appearance of
the error values for the 6272 models is shown in Fig. 6.

6. RESULTS ANALYSIS AND COMPARISON

The results obtained as the outcome of the different ap-
proaches followed in this paper are statistically analyzed in
this section.

A one-way anova was performed showing that the means
are significatively different at a level of 0.0001. Multiple
comparisons amongst the means were performed. The means
of the groups obtained with 35 and 28 centroids clustering
are not significatively different between them. However, the
other three groups 32 centroids clustering, averaging, and 37
centroids clustering have means different amongst them and
different of the two means 35 and 28 centroids clustering.

Errors obtained with 32 centroids clustering have, with a
significance level of 0.0001, the lowest mean value compared
to the errors obtained with the other methods implemented in
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Fig. 5. Location into the Z plane of the poles of the 196 individual ARMA
models of the acoustic responses between loudspeaker 1 of array 1 and all
the points of the measurement grid. The poles are obviously restricted to
the ones that more influence the systems’ response into the pass-band of the
implemented bandpass filter.

Fig. 6. Histograms of normalized error values according to Eq. 4 for av-
eraging and posterior restriction of poles to the ones with more influence
into the filter pass-band (..), restriction of poles to the ones with more in-
fluence into the filter pass-band and posterior application of fuzzy c-means
clustering algorithm with 37 (- -), 35 (.+.), 32(continuous line) and 28 (-.-)
centroids.

this work (see table 1).

7. CONCLUSIONS

In this paper a new approach to find the common acoustical
poles of a room was proposed. Several acoustic channels
of the room must be measured. Individual (non common
poles) ARMA models must be calculated for the measured
channels. As the analysis is performed in a sub-band basis,
only the poles that fall within the pass-band of correspond-
ing bandpass filter are considered in the process. Using the
location of the poles of these ARMA models into the Z plane
a clustering algorithm is used to group them into different
clusters. The centroids of the clusters are assumed to be the
common acoustical poles of the room in the considered fre-
quency range.

Simulations with 37, 35, 32 and 28 centroids have been
done and the results have been compared with the results ob-
tained with the averaging technique proposed by Haneda in
[1]. The histograms of error values in Fig. 6 show that the

Mean error values [dB]
Method Subset 1 Subset 2 Subset 3 Subset 4
32 centroids
clustering

-17.6955

Averaging -17.3993
37 centroids
clustering

-17.0115

28 centroids
clustering

-16.0206

35 centroids
clustering

-15.9346

Table 1. Results of one-way anova test using a significance level of 0.0001
carried out with error values obtained with Eq. 4 for the 6272 measured im-
pulse responses. The test points out that significantly different mean values
can be grouped in 4 subsets.

accuracy attained by the common acoustical poles ARMA
models is high enough for all the cases considered and simu-
lated in this paper.

The statistical analysis shows that the mean of the er-
rors obtained with the novel approach using 32 centroids is
the lowest amongst all error mean values obtained in our
simulations. Furthermore, the mean obtained with 32 cen-
troids clustering is significatively different (with a level of
0.0001) to the other means. Therefore, 32 centroids clus-
tering shows the better performance compared to the other
simulated methods.

If all the poles used as starting point for the clustering
technique are inside the unit circle, the resulting centroids
will be inside the unit circle too. This way, the stability of
the common poles models is guaranteed, in contrast to the
averaging case where the stability of the resulting common
poles models could not be theoretically demonstrated.

The two main drawbacks (computational effort and pos-
sible unstable solutions) of previously published methods for
acoustical common poles computation are overcome with the
new implemented approach.
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[3] Laura Fuster, Jośe-Javier Ĺopez, Alberto Gonźalez, and
Pedro Zuccarello, “Room compensation using mul-
tichannel inverse filters for wave field synthesis sys-
tems,” in118th Audio Engineering Society Convention,

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Barcelona, Spain, May 2005, Audio Engineering Soci-
ety.

[4] Monson H. Hayes,Statistical digital signal processing
and modeling, John Wiley & Sons, Inc., 1996.
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