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ABSTRACT

A recent algorithm, the mu-law PNMLS, introduces a step-
size proportionate to the mu-law of the estimated tap coeffi-
cient to cancel sparse echo in telephony over packet-switch
networks. It is derived by optimizing the following criterion:
fastest convergence is obtained when all coefficients reach
the vicinity of their target value at the same time. We present
a study of synchronous convergence as introduced in this al-
gorithm. Simulations for a 2-tap adaptive filter illustrate the
optimality of mu-law PNLMS. We then compare the perfor-
mances of this algorithm on multiple echo paths. This com-
parison shows some restrictions in the applicability of the
optimality criterion and highlights possible improvements in
robustness for this algorithm.

1. INTRODUCTION

The transmission of voice over IP, or other packet switched
networks, has emerged in the past few years as an important
alternative to circuit switched communications. We will fo-
cus in this paper on a common configuration in which the
communication is established using analogue phones which
are connected via network gateways to a core IP network.
This is the situation that will be most frequently met dur-
ing the transition from traditional telephony to IP based tele-
phony. In this typical situation, a talker echo is generated that
is highly disturbing for the user. We begin by briefly explain-
ing the origin and nature of this echo with particular focus on
the sparseness of the echo response and on the deployment
of proportionate algorithms for sparse echo cancellation. We
subsequently carry out investigations on theµ-Law PNLMS
algorithm in this context from which we present some novel
insights.

1.1 Sources of Echo in VoIP Telephony

Let us consider a typical architecture when two users are
communicating via analogue phones and voice over IP. In
this configuration, echo can occur at different stages of the
communication. First there could be acoustic echo, due to
the acoustic coupling at the handset between the speaker and
the microphone. We will not study the causes and conse-
quences of this type of echo here but concentrate instead on
the electrical echo due to impedance mismatch between the
2-wire lines and the circuit at the hybrid. With reference to
Fig. 1, given that user A is speaking, and that there is a hy-
brid at each end of the connection (one for user A, one for
user B), there exist three types of possible electrical echo.

Figure 1: Echos in an integrated PSTN/IP network.

• Side-tone echo: this is the echo produced by a reflection
from the hybrid at A’s side with a delay of a few mil-
liseconds and is therefore perceived only like a side-tone
effect. It does not degrade the level of quality of the con-
versation.

• Talker echo: this echo is produced when A’s voice is re-
flected from the hybrid at B’s side, back to user A. This
talker echo would be delayed by twice the end-to-end de-
lay, which can be relatively large due to all processing
delays, packet management delays, and network conges-
tion delay. As a consequence, speaker A would hear their
own voice with a delay of possibly some hundreds of
milliseconds. This talker echo is very annoying and a
conversation would become impossible as the delay in-
creases. This is the reason why, when the round-trip de-
lay increases, the echo should be better controlled.

• Listener echo: this echo is produced when A’s voice is
reflected twice: once from B’s hybrid, and another time
from A’s hybrid, back to user B. As a consequence of
these consecutive reflections, user B would hear A’s voice
twice. Here also, a conversation would be impossible
even for moderate network delay. However, the listener
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echo can be controlled easily because of loss in the com-
munication channel that makes this echo normally imper-
ceptible.

1.2 Main target: talker echo suppression

To keep a satisfactory quality of service, talker echo must
be controlled as effectively as possible. In order to deal
with echo cancellation in PSTN networks, adaptive filter-
ing techniques [1] have proven to be very efficient, enabling
rapid tracking of the echo and low complexity. The main
objective of this process is the estimate of the echo path
h = [h0,h1, . . . ,hL−1] when L is the length of the echo re-
sponse in samples. With reference to Fig. 1, this filter repre-
sents the echo created at the level of the hybrid H of user B,
denotedHB, plus the attenuation of the two-way tail end cir-
cuit from the hybridHB to user B. As the propagation delay
between the hybridHB and user B is small, the two-way echo
path would consist of a few milliseconds. Accordingly, 32 or
64 coefficients at 8 kHz sampling rate would be enough to
model sufficiently the echo pathh(n). So it is recommended
to place the echo canceller device as close as possible to the
source of the echo, that is the hybridHB, in order to lower
the number of coefficients to be adaptively estimated, and in-
crease convergence speed. Thus the echo canceller that con-
trols user A’s talker echo would ideally be placed in gateway
B. However, this means that the quality of the speech heard
by user A depends on B’s installation. Since it is neither de-
sirable nor practical to rely on other people’s equipment to
ensure toll VoIP call quality, the echo canceller that controls
A’s talker echo has to be placed in A’s gateway.

Figure 2: Echo path in VoIP.

In this case, the echo path that would have to be mod-
elled by the echo canceller of gateway A is quite different:
now echoed speech is transmitted through the IP network
twice and through B’s gateway twice. All added processing
and management delays mean that the echo path is inevitably
much longer. A typical echo path in voice over IP systems is
shown in Fig. 2. It can be observed that, in such echo paths,
only a few coefficients are non-zero with ‘peaks’ occurring
in the echo path impulse response at times corresponding to
the various echo delays. Such responses are denoted ‘sparse’
[1], [4] and we note that, although the region of non-zero
coefficients is this example is located near the start of the re-
sponse, it general it can be arbitrarily located depending on
the network conditions. A typical value in the range 512 to
1024 coefficients is often employed.

2. EXISTING PROPORTIONATE ALGORITHMS

2.1 Fundamentals of existing proportionate algorithms

For a dispersive (meaning ‘not sparse’) echo path, the NLMS
algorithm [1] is able to converge and track the coefficients of
the unknown echo path with low complexity.

In contrast, it does not normally perform well for sparse
systems and several algorithms have been designed specifi-
cally to exploit the specific properties of sparse responses [2].
In the PNLMS algorithm [3], the adaptation of the tap weight
coefficient vector is made to be proportionate to the magni-
tude of the previously estimated weight coefficient vector. As
a consequence, large tap coefficients are adapted with larger
adjustment magnitude, thus contributing highly to a fast de-
crease in the global estimation error. This algorithm exploits
the fact that every weight does not contribute the same way to
the global estimation error. PNLMS algorithm is summarised
in Table 1.

Parameters: M: number of taps
µ̃: adaptation constant
0 < µ̃ < 2
δ : regularization constant

Initialisation. Setŵ(0) = 0
Data.
(a)Given: u(n) = [u(n),u(n−1), ...,u(n−M +1)]T

tap input vector at timen
d(n) = [d(n),d(n−1), ...,d(n−M +1)]T
desired response at time n

(b)To be computed:w(n): estimate of tap-weight vector atn
Computation:
n = 0,1,2, . . .
e(n) = d(n)−wH(n−1)u(n)
gk(n−1) = max{ρ×max{δ , |w0(n−1)|, . . . ,

|wM−1(n−1)|}, |ŵk(n−1)|}
g(n−1) = 1

M ∑M−1
k=0 gk(n−1)

G(n) = diag(g0(n−1)/g(n−1), . . . ,gM−1(n−1)/g(n−1))
w(n) = w(n−1)+ µ̃ G(n)u(n)e∗(n)

δ+u(n)TG(n)u(n)

Table 1: PNLMS algorithm

It is reported in [3] that the initial convergence of PNLMS
is faster but an increase in computational complexity of50%
is suffered compared to NLMS. In PNLMS, the small coef-
ficients are adapted slower than with the NLMS technique.
After the initial phase of convergence, PNLMS convergence
becomes slower than NLMS. Other algorithms including
PNLMS++ [4] and, most notably, IPNLMS [5] have im-
proved performance over PNLMS and benefit from the desir-
able properties of both the PNLMS and NLMS algorithms.

2.2 MPNLMS and the synchronous convergence time

In [6] and [7] , the relationship between the magnitude of
the tap update and the magnitude of the corresponding coef-
ficient is considered. In PNLMS, this relationship is a linear
dependency. It is proposed in [6] that an optimal relationship
can be defined as one under which all coefficients converge to
the region of their optimum values in a number of iterations
that is equal for all coefficients. This is termed synchronous
convergence. It is subsequently shown that this optimality
criterion is satisfied by aµ-law relationship and theµ-law
PNLMS (MPNLMS) algorithm is subsequently derived and
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tested. We can express the adaptation at each step for each
weight as:

wi(n) = wi(n−1)+ µ̃θi(n)
u(n)e∗(n)

δ +u(n)Tu(n)
(1)

where θi controls convergence speed for each coefffi-
cient. Thus the adaptation curve for each weight can be
approximated as|Ai |(1− e−λθin) where|Ai | is the absolute
value of the optimal solution for the i-th weight,λ = µ/M,
and n is the number of iterations. When the algorithm
converges, each weight fluctuates around its optimal value.
These fluctuations are due to gradient noise. We can calcu-
late the sample index when a coefficientwi(n) would reach
the ε-vicinity (meaning substantially close) of its optimal
value:

|Ai |(1−e−λθin
∗
i ) = |Ai |− ε

n∗i =
1

λθi
ln
|Ai |
ε

(2)

where we observe that the optimal sample index depends on
both the optimal value and the control parameterθi . Now,
if we want two weightswi(n) andw j(n) to converge at the
same sample index, we need to have:

n∗i = n∗j
1

λθi
ln
|Ai |
ε

=
1

λθ j
ln
|A j |

ε

θi

θ j
=

ln
|Ai |
ε

ln
|A j |

ε

. (3)

Hence the control factorθi depends on the logarithm of the
optimal value|Ai |. We will explore this relationship to derive
the step-sizeθi . This algorithm differs from the PNLMS al-
gorithm, where the control parameter is proportionate to|Ai |.

In order to obtain the overall fastest convergence, we
choose the control parameter to be proportionate to the loga-
rithm of the estimated optimum value:

θi(k+1)∼ F(ŵi(k)) (4)

where

F(x) =
ln(1+x/ε)
ln(1+1/ε)

. (5)

As this function is defined only in the range[0,1], the filter
coefficient must be normalised at the beginning of the proce-
dure.

The function that controls the update is known as theµ-
law. Figure 3 shows its behaviour for different values ofµ =
1/ε. Using theµ-law update, small coefficients are adapted
with high gain, as the initial slope is very high. Whenµ
increases, the initial slope becomes greater. This is due to
the fact that the initial slope can be expressed as:

F ′(x)|x=0 =
1/ε

ln(1+1/ε)

=
µ

ln(1+ µ)
.

Figure 3: Theµ-law.

The µ-law relationship effectively compensates for the
fact that, when small coefficients need to be estimated, the
error between the initial zeros value and the target coefficient
amplitude is quite small. As the update step is proportionate
to this error, the algorithm improves the convergence rate for
small coefficients through theµ-law relationship. The algo-
rithm is summarised in table 2.

Parameters: M: number of taps
µ̃: adaptation constant
0 < µ̃ < 2
δ : regularization constant

Initialisation. Setŵ(0) = 0
Data.
(a)Given: u(n): M-by-1 tap input vector at timen

d(n): desired response at time n
(b)To be computed:w(n): estimate of tap-weight vector at timen
Computation: n = 0,1,2, . . .

e(n) = d(n)−wH(n−1)u(n)
gk(n) = max{ρ×max{δ ,F(|w0(n)|), . . . ,

F(|wM−1(n)|)},F(|wk(n)|)}
F(x) = ln(1+x/ε)

ln(1+1/ε)
g(n) = 1

M ∑M−1
k=0 gk(n)

G(n) = diag(g0(n)/g(n), . . . ,gM−1(n)/g(n))
w(n) = w(n−1)+ µ̃ G(n)u(n)e∗(n)

δ+u(n)Tu(n)

Table 2:µ-law PNLMS algorithm

As a conclusion, MPNLMS shows better results than
other proportionate algorithms for dispersive echo response.
This algorithm requires a large increase in complexity com-
pared to NLMS, due to the log calculation but it can be sim-
plified by approximating the log function by a two-segment
linear function. Partial updating techniques described in the
next section can also be used with little or no loss of perfor-
mance.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



3. ILLUSTRATION OF COEFFICIENT
TRAJECTORY FOR A 2-TAP ADAPTIVE FILTER

In [4], the influence of proportionate tap updating is high-
lighted through a study of a 2-tap coefficient vector. At each
iteration, NLMS and PNLMS tap estimates become closer to
the target vector, but it is shown that the NLMS algorithm
updates the tap coefficients on a trajectory directly towards
the target value, whereas PNLMS updates along trajectories
roughly parallel to the axes. This can be explained [4] by the
fact PNLMS minimises a cost function that favours moving
the tap coefficients vector on trajectories parallel to the basis
vector. In other words, it favours sparse echo paths.

We now test the influence of non-linear proportionate up-
date on the convergence by comparing PNLMS andµ-law
PNLMS algorithms when trying to estimate a sparse echo
path. It is shown in [6], under the defined criterion for op-
timality, optimal performance is attained using theµ-law
PNLMS algorithm.

Figure 4: Comparison of the behaviour of PNLMS and
MPNLMS algorithms in the estimation of a sparse echo path
with only two coefficients.

For this experiment, the parameters used are as follows:
µ = 0.035,δ = 0.001,ρ = 0.001, SNR = 100dB, 2-tap adap-
tive filter initialisation: [0.01;1.4], true sparse echo system:
[1.4; 0.01]. Figure 4 shows the 2 - tap filter estimate for 500
iterations. It can clearly be seen how PNLMS favours trajec-
tories parallel to the basis vector. On the contrary, MPNLMS
updates the 2 tap coefficients on trajectories directly towards
their optimum value. In other words, under theµ-law re-
lationship, both coefficients converge to the region of their
optimum values in a number of iterations that is equal for all
coefficients, whereas under a proportionate relationship, one
coefficient reaches the vicinity of its optimal value later than
the other.

4. THE SMALL COEFFICIENT CASE

4.1 Simulation showing convergence time for all coeffi-
cients using different algorithm

Figure 5 compares the behaviour of NLMS, PNLMS,
IPNLMS and MPNLMS algorithms when estimating a
sparse echo path̃h = [h̃0, h̃1, . . . , h̃L−1], whereh̃i = hi for the

Figure 5: Normalised misalignment: comparison between
NLMS, PNLMS, IPNLMS and MPNLMS for a sparse echo
pathh̃.

active coefficients and̃hi = 0 for coefficients for whichhi are
arbitrarily close to zero.

Focusing on the differences between PNLMS and
MPNLMS algorithms, we observe that MPNLMS does not
suffer like PNLMS from the convergence speed decrease af-
ter a fast initial phase. It keeps roughly the same fast con-
vergence speed until it reaches its steady state. And even if,
at the very beginning of the updates, MPNLMS is not the
fastest algorithm, overall, it reaches its steady state far ear-
lier than all the considered algorithms. Mathematically, this
is explained in [6] by the fact that the update steps are de-
signed so that every tap coefficients of the filter to be esti-
mated reach their optimal value in the same number of iter-
ations. Reaching the optimal values after the same number
of iterations guarantees that the overall estimated filter con-
verges the fastest possible way. Instinctively, we can under-
stand why this non-linear updating function gives better re-
sults than proportionate update given theµ-law function. In
MPNLMS, each update is not proportionate to the estimated
amplitude of the corresponding tap coefficient, but to theµ-
law of this amplitude. So, the magnitude of the updates is in-
creased particularly for small amplitude coefficients. In con-
trast to PNLMS, even after all large magnitude coefficients
have reached their respective optimal values, small coeffi-
cient updates would be of large enough magnitude so that the
convergence speed does not decrease after an initial phase as
occurs in the PNLMS algorithm. It also compensates the fact
that the update is proportionate to a quite small error when
only small coefficients need to be approximated.

4.2 Study of the robustness of MPNLMS for small coef-
ficients

We have seen how efficient the MPNLMS algorithm can be
when estimating a sparse echo path . When performing the
same experiment on the echo pathh , which is similar to
h̃ except that many coefficients are very small but not true
zeros like inh̃ , the performances obtained are displayed in
Fig. 6.

It shows that in some case, MPNLMS performance drops
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Figure 6: Normalised misalignment: comparison between
NLMS, PNLMS, IPNLMS and MPNLMS for a sparse echo
pathh .

dramatically. It seems to be linked to the fact thath contains
many small, but not exactly zero, coefficients. Instinctively,
we can reason as follows:

• MPNLMS convergence speed is significantly increased
because theµ-law updating function increases the ampli-
tude of the update steps compared to proportionate updat-
ing function of PNLMS, especially for small magnitude
coefficients. Thus, at the beginning of the algorithm, ini-
tial small values are updated fast, with larger steps than
in PNLMS.

• For large magnitude coefficients, fast update towards the
target value is a good thing in terms of performance.

• For small magnitude coefficients, when the error between
the initial zero value and the target tap coefficient is be-
low 1/µ whereµ is the coefficient of theµ-law, the vicin-
ity of the target is reached from iteration number 1.

• However, for small coefficients above 1/µ, the definition
of optimality as it was considered in [6] may not be ap-
propriate: specifically the approximation of an exponen-
tial convergence for each tap coefficient is not valid. Typ-
ically, on the echo path shown in Fig. 2, tap coefficients
between number 300 and 350 enter this category.

In a typical echo path (as forh), a large number of the
tap coefficients can thus be considered as too small for the
optimality in the sense of a common convergence time to be
valid.

5. CONCLUSION

To find good solutions for sparse echo path echo cancel-
lation, adaptive techniques have been improved from the
NLMS algorithm. PNLMS introduces the idea of a propor-
tionate step-size to exploit the sparseness of the coefficients.
IPNLMS improves performances notably by combining de-
sirable properties from NLMS and PNLMS. MPNLMS,
based on a mathematical optimisation of converging sam-
ple time, introduces a step-size that is proportionate to the
logarithm of the tap coefficient magnitude, and increases the
overall convergence speed for sparse echo paths. The main

algorithms have been implemented and compared together,
with different echo path. Specific experiments have linked
theoretical and practical results, and provided an understand-
ing of how each algorithm works, and when it may fail. They
have highlighted possible improvements in robustness for
MPNLMS algorithm, mainly when the echo path contains
many small magnitude, non-zero, coefficients.
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