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ABSTRACT

The robustness of phoneme recognition using support vector ma-
chines to additive noise is investigated for three kinds of speech
representation. The representations considered are PLP, PLP with
RASTA processing, and a high-dimensional principal component
approximation of acoustic waveforms. While the classification
in the PLP and PLP/RASTA domains attains superb accuracy on
clean data, the classification in the high-dimensional space proves
to be much more robust to additive noise.

1. INTRODUCTION

Substantial research efforts over the past decades, devoted to the
higher levels of speech recognition systems, i.e. language and con-
text modeling, have resulted in major breakthroughs that have made
automatic speech recognition (ASR) possible. ASR systems, how-
ever, still lack the level of robustness inherent to human speech
recognition [6, 9]. While language and context modeling are es-
sential, reducing many errors in speech recognition, the impor-
tance of robust recognition of nonsense syllables does not appear
to have been sufficiently appreciated, despite the fact that it is well
known that humans attain a major portion of their inherent robust-
ness in speech recognition early on in the process, before and inde-
pendently of context effects [3, 7, 8]. Language can be thought of
as a layer of redundancy that is built into speech, and while exploit-
ing this by language modeling is clearly important, it is not suf-
ficient for making automatic speech recognition work optimally.
From the information theoretic perspective, language and context
are channel codes and they can successfully decode messages car-
ried by speech signals only if the elementary speech units which
are fed into them are recognized sufficiently accurately; in the ex-
treme case when phonemes or syllables are recognized at the level
of chance (random guessing), no context and language modeling
can retrieve any information from speech. In recognizing sylla-
bles or isolated words, the human auditory system performs above
chance level already at -18dB SNR (signal-to-noise ratio) and sig-
nificantly above it at -9dB SNR [3, 7, 8]. No automatic speech
classifier is able to achieve performance close to that of the human
auditory systems in recognizing such isolated words or phonemes
under severe noise conditions, as has been reconfirmed recently in
an extensive study by Sroka and Braida [9].

The first step in all speech recognition algorithms is to repre-
sent consecutive speech segments using low-dimensional feature
vectors. Two major reasons for using feature vectors are to repre-
sent speech in a low-dimensional space in order to facilitate accu-

rate estimation of probability density functions from limited data,
and to remove non-lexical variability irrelevant to recognition, e.g.
speaker related nuances such as pitch, time alignment, etc. The ac-
curacy of ASR continues to improve, with many new judicious ap-
proaches to feature extraction, but the problem of robustness per-
sists.

Speech production is a channel coding process designed to
embed redundancy in speech waveforms in a highly structured
manner, keeping different speech units far apart from each other so
that they can withstand a significant amount of additive noise and
mangling distortion before they overlap significantly. Any state-
of-the-art ASR front end performs a considerable compression of
speech signals, representing them in a space of a relatively low
dimension where different speech units, even though separated,
may not be sufficiently apart from each other; they may then over-
lap considerably already at lower noise levels than in the origi-
nal domain of acoustic waveforms. We are not of course argu-
ing that speech units such as phonemes, syllables or sub-phonetic
units do not overlap in the acoustic waveform domain; they cer-
tainly do. However, it is quite possible that in the presence of
noise the overlap is smaller in the space of acoustic waveforms, or
a high-dimensional approximation of it, than in low-dimensional
spaces of feature vectors. In addition, nonlinear transformations
which take place in feature extraction algorithms may complicate
the structure of the sets corresponding to different speech units, so
that more sophisticated classification procedures may be required
than for classification in the acoustic waveform domain or in some
high-dimensional linear approximation space.

To test this hypothesis about separation of phonetic units in
different representation domains and the impact of dimension re-
duction we perform classification of phonemes using support vec-
tor machines (SVMs) for three different representations: PLP [4],
PLP with RASTA processing [5], and a high-dimensional principal
component (PC) representation of acoustic waveforms of speech.
The details of the classification techniques are provided in Section
2. The experiments, the results of which are reported in Section
3, show that while the classification using PLP and PLP/RASTA
representations achieves considerably better results on clean data
than the classification using the PC representation, it is much more
sensitive to additive noise.
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2. PHONEME CLASSIFICATION USING SUPPORT
VECTOR MACHINES

The data set used in this study are ��� ms segments ( ������� sam-
ples) of phonemes from the TIMIT data base. For the purpose of
our proof-of-concept study, the classification task was restricted
to distinguishing the following six phonemes: /b/, /t/, /m/, /r/, /f/,
and /z/. This still requires a multiclass classification algorithm.
We used SVMs as base classifiers for distinguishing two groups
of phonemes at a time; a number of these binary classifiers are
then combined using error-correcting code (ECOC) methods. In
order to separate 	 ( 
�� , in our case) classes, one proceeds as
follows [1]. A total of � binary classifiers are trained to distin-
guish between specific subsets of phonemes. The allocation of
these subsets is determined by a 	�
�� matrix matrix � with
elements ������������������� : classifier  receives as training data the
phonemes with class labels ! for which � ���#"
$� , with effective
class labels %�� or &'� as determined by ����� . It therefore learns
to separate phonemes with �����(
)� from those with �����(
*&'� ,
but has no knowledge about phoneme classes ! with � ��� 
+� . In
the simplest case of one-vs-all classification, �*
,	 and the  -th
column of � has a %�� entry in row  and &'� ’s elsewhere; clas-
sifier  then learns to distinguish phoneme class  from all others.
In the opposite extreme of pairwise classification, each classifier
sees only two phoneme classes. Then ��
-	�./	0&,��1324� , and
the elements of � are zero except for one %�� and one &'� in each
column. We also investigated other choices: (1) Three-vs-three,
where a total of �)
+�5� classifiers are trained on all possible splits
of the 	0
6� classes into two groups of three; here each column
of � contains exactly three %�� ’s and three &'� ’s. (2) Random
dense � with �7
8�59 , where each element � ��� 
0��� with
equal probability. We sampled �:�;�<�4�5� such matrices, excluded
those which had any columns or rows with all elements equal, and
chose the one with the maximum smallest Hamming distance be-
tween columns (or their negatives). (3) A random sparse ECOC
matrix � was produced in the same way, except that �����=
>�
with probability 0.5 and 
+��� with probability 0.25 each.

To make predictions with the resulting array of binary classi-
fiers, one obtains for a given input ? the outputs (decision values)@ � .A?B1 of all � classifiers. If ? is in class ! , one expects these out-
puts to follow the pattern set by the ! -th row of the matrix � . The
predicted class CD.A?B1 is therefore chosen as the one for which the
vector �5������� (  E
)�GF�F�F3� ) is closest to � @ ��.A?H1I� :

CD.A?B1G
+J�KILNM=OQP�>R .S���������T��� @ ��.A?H1I��1 (1)

The relevant distance measure is taken to be of the form

R .S�5�U��������� @ ��.A?H1I��1V

WX
�ZYH[]\ ./^����<1 (2)

where \ is some loss function and ^5���_
`����� @ ��.A?B1 defines a
margin: classifier  predicts that ? belongs to one of the phoneme
classes ! with ^����bac� , and does not belong to one of the classes
with ^����edf� ; for classes with ^����N
,� it makes no definite predic-
tion (since it not been trained on them). We experiment with three
different choices of the loss function:g Hamming loss: the hard predictions h3L4P]. @ ��.A?B131 are used

instead of the decision values
@ ��.A?B1 themselves, and a loss

of 0 or 1 assigned depending on whether or not the for-
mer agree with ����� . This corresponds to \ ./^T1#
`ij�k&

h3L5PB./^T1Slm25� ; for unseen classes this loss function contributes�:24� to the distance R . In pairwise classification, minimizing
the resulting distance gives majority voting, where the pre-
dicted class is the one having the most “for” votes among
the classifiers that were trained on it.g Hinge loss: \ ./^T1V
n.o�E&�^T13p_
qMrJ�st��^��I�T� .g Exponential loss: \ ./^�1V
vu�wyx .For one-vs-all classification, the distance (2) is easily seen to be

\ .
@ �z.A?B131{& \ .o&

@ ��.A?B131 up to a ! -independent constant, so that
the last two choices correspond to max-wins, i.e. predicting the
class ! which has the largest among the �|
}	 decision values@ � .

As regards the binary SVM classifiers, preliminary tests showed
that linear kernels resulting in unsatisfactory performance; we there-
fore used the more general radial basis function kernel [2]. The
two resulting SVM parameters (kernel width ~ and misclassifi-
cation penalty � ) were tuned individually for each classifier by
cross-validation. Each classifier was trained on 800 examples from
each phoneme class included in its training set, and we tested the
overall multiclass predictions on 200 test examples per phoneme.
In the one-vs-all case, somewhat better performance can be ob-
tained by balancing each classifier’s training set (800 examples
from the +1-phoneme, 160 examples each from the five other pho-
nemes; results not shown).

3. CLASSIFICATION RESULTS

Classification of the six selected phonemes is performed on �5� ms
( �:�4��� -sample) segments of their acoustic waveforms, using PLP
and PLP/RASTA representations, and a high-dimensional PC rep-
resentation of these acoustic waveforms. The PC representation
is generated by projecting acoustic waveforms onto the first �4�5�
principal components obtained by performing principal compo-
nent analysis (PCA) of the set of all available waveforms. ECOC
multiclass classifiers are built using the following coding matri-
ces: one-versus-all, pairwise, three-versus-three, random dense,
and random sparse; and each of these is combined with one of
the three loss functions: Hamming, hinge, and exponential, as de-
scribed in the previous section. This gives ��9 classification meth-
ods. The SVM classifiers are trained and tuned on clean data, and
then the classification was performed on clean data, and noisy data
with noise levels of ��� , � , � and &�� dB SNR.

The results of the classification using the PCA data are shown
in Figure 1. The misclassification (test error) rate for most of the��9 methods is around �5�4� for clean data. At &�� dB SNR most of
the classifiers were operating at chance level, with error rates near
5/6=83%, and the best result, 72% error rate was obtained with
pairwise classification and hinge cost function. One observes that
additive noise does not considerably affect misclassification rate
up to � dB SNR.

The results of the classification in the PLP and PLP/RASTA
domains are displayed in Figure 2 and Figure 3. One can see that
both PLP and PLP/RASTA give excellent results for most of the
classifiers when tested on clean data. This again confirms the ef-
fectiveness of these two representations in capturing that part of
the information in the acoustic waveforms which is most relevant
for recognition. However, the performance of almost all classi-
fiers degrades considerably with even small levels of noise. This
performance degradation is particularly drastic in the case of the
PLP/RASTA representation where almost all the classifiers tested
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operate at chance level already at ��� dB SNR. On the other hand,
classification in the PLP and PLP/RASTA domains gave very good
results when classifiers were trained on noisy data and tested on
data with the same noise level. In particular, some classifiers at-
tained classification errors around �5�4� at &�� dB SNR if the clas-
sifiers were trained under the same noise conditions.

It is worth noting that when going from acoustic waveforms to
the PLP representation the dimension of the representation space
is reduced by a factor around twenty. The loss of robustness in
classification in the case when there is a mismatch between train-
ing and testing conditions may be a result of this drastic dimension
reduction. Note also that the classifiers were trained on the same
amount of data for all three representations. Conclusions about
the superiority of classification in the PLP and PLP/RASTA do-
mains compared to the classification in the PCA domain therefore
require some caution: relative to the dimension of the represen-
tation space, the classifiers in the PLP and PLP/RASTA domains
were trained on around ten times larger data sets.

4. CONCLUSION

We have presented results of phoneme classification using SVMs
with three representations of speech signals: PLP, PLP/RASTA,
and a high-dimensional PC representation. Fifteen different SVM-
based multiclass classification algorithms were investigated. The
results show that while the PLP and PLP/RASTA representations
facilitate very accurate classification of clean data, their perfor-
mance degrades significantly with even small levels of additive
noise on the test data. On the other hand, the classification us-
ing the high-dimensional PC representation, even though inferior
on clean data, gives better results when speech is degraded by ad-
ditive noise.
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Figure 1: Classification in the PCA domain. Test error (misclas-
sification) rates are for different ECOC matrices � as indicated
above each graph. The SNR increases from left to right in both
columns; within each group of three results the loss function \ is
exponential, hinge and Hamming from left to right.
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Figure 2: Classification in the PLP domain. Test error (misclas-
sification) rates are for different ECOC matrices � as indicated
above each graph. The SNR increases from left to right in both
columns; within each group of three results the loss function \ is
exponential, hinge and Hamming from left to right.
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Figure 3: Classification in the RASTA domain. Test error (mis-
classification) rates are for different ECOC matrices � as indi-
cated above each graph. The SNR increases from left to right in
both columns; within each group of three results the loss function

\ is exponential, hinge and Hamming from left to right.
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