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ABSTRACT to minimize the maximum amplitude distortion of signals to
Variable digital filters (VDFs) are useful for various sig- be passed by a filter without taking into consideration the er-

nal processing and communication applications where thE’" €nergy. Thus, minmax filters typically have high sidelobe

frequency characteristics, such as fractional delays and cutdff'€'9Y: . . . . .
frequencies, can be varied online. In this paper, we present !N this paper, we investigate the design of filters with

a formulation that allows the trade-off between the integraf @ToW structure, [3], which allows a trade-off between the

squared error and the maximum deviation from the desireflinMax and least square criteria. The design poblem can
response in the passband and stopband. With this formul@€ formulated as a semi-infinite quadratic optimization prob-
tion, the maximum deviation can be reduced below the leadg™- The design problem with minmax criterion, on the

square solution with a slight change in the performance of thgther hand, can be formulated as a semi-infinite linear pro-
integral squared error. Similarly, the total square error can bgf@mming problem. Numerical schemes with adaptive grid
reduced below the minmax solution with a minor change irp'2€ &ré presented for solving the semi-infinite quadratic and
the maximum deviation from the minmax solution. Numeri-Inear optimization problems. Following from general win-

cal schemes with adaptive grid size are presented for solvinfgPW design [5], we show the trade-off between the integral
the optimization problems. quared error and the peak error for VDFs. The minmax and

least square solutions are at the end points of the trade-off.

The outline of the paper is given as follows. Variable
1. INTRODUCTION digital filter and the desired frequency response are given in

Variable digital filters (VDFs) are digital filters with con- Section 2. The problem formulation is formulated in Sec-

trollable spectral characteristics such as variable cutoff fretion 3. The discretized optimization methods for solving

quency, adjustable passband width and controllable fradhe semi-infinite linear and quadratic programming problems

tional delay [1], [2]. These spectral characteristics can b&vith adaptive scheme are presented in Section 4. Design ex-

varied online. Variable digital filters have many applicationsamples are given in Section 5 and finally, conclusions are

in different areas of signal processing and communicationggiven in Section 6.

Examples include arbitrary sample rate changers, digital syn-

chronizers and other applications involving online tuning of 2. VARIABLE DIGITAL FILTER AND THE

frequency characteristics and timing adjustment for digital DESIRED FREQUENCY RESPONSE
receivers.

The least square design criterion is commonly used to dé @ VDF design problem, the objective is to achieve a design
sign Farrow-based [3] Finite Impulse Response (FIR) VDFs/€sponseHy(z 6) that is a function of a control or tuning
This criterion is related to the noise gain of the filter. The deParameted defined to lie in some rangk,
sign problem is simple and easy to formulate, which results
in the filters with low sidelobe energy but having large errors A = [Omin, Smax -
near the discontinuities in the desired response. The least ) ) N
square criterion gives rise to a quadratic optimization prob-  The desired frequency response for the VDF is specified
lem [4]. Linear programming technique has also been use@ly
for the design of variable digital filters with minmax design '
error criterion. With the minmax criterion, the emphasis is o (el® 5) — { e 1wt we ()

d(e 76) - 0
) we .7 (9),
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The VDF structure consists &f FIR subfilters, depicted whereQ is anNL x NL matrix,
as in Figure 1. The transform of the VDF can be expressed

as s Q=% {/ / W(w, 8)s(w,8)s" (@, 5)dwd5} :
H(zd) = ZJ Hi(2)d, 1) £70(0)

1= pis anNL x 1 vector,

whereH| (2) is thez transform for thé'" subfilter,

- p= 2% {/A/Q(6>W(w, 8)s(w,5)H; (e1®, 5)da)d6}
Hi(z) = thl (Mz "=h9(2). 2)

andc is a constant,

Here, h; andg(z) areN x 1 vectors, e // W(w, 6)\Hd(ei“’,6)|2dwd6.
AJQ(3)
h| = [h|(0), 7h|(N71)]Ta
_ The notationg-)" and(-)* denote the Hermitian transpose
and@(2) = [1,---,z N"D]T. The notation-]” denotes the and the complex conjugate ¢f), respectively. The least

transposition of a vectdy|. ~ square solution is obtained by minimizing the quadratic cost
The frequency response of the VDF can be given in th@unction in (4). The solution to this optimization problem
following form can be expressed as

H(e'®,5) =h"s(w,d 1.
( ) ) S(wv )7 hLS:*EQ 1p' (5)

whereh ands(w, d) areNL x 1 vectors,
Now we consider the minmax criterion. The design prob-
h= [hg, ... 7h[_1]T lem can be formulated as

i W(w,8)[H(e/®,5) —Hq(e/®,3)|. (6
and minmax max (w,8)|H(e!”,8) —Hq(e'*,8)].  (6)
1T (@l 0\ 50 T ajoy sL—11T
s(w,0) =g’ (€)5, -, ¢’ (€%)5-]". By introducing a positive parametgrthe optimization prob-
lem (6) can be re-formulated as

x(n) :
iy
' \ ' ' subject to . - @)
W(w,8)|H(e!”,8) —Hq(e!®,3) <y,
HL,]_(Z) HL,2(Z) .. H]_(Z) Ho(Z) Vw e 9(5)7 ocA.
0 0 By using the real rotation theorem [6], the problem (7)
% y(n) can be formulated as
fiid
subject to . _
W(w, )% {s(el®,5)el2™ }Th — y < W(w, d)x
\[4] j 21\
Figure 1: Variable digital filter - Farrow structure. 7 {Hd(e ,0)e },Vw €Q(d), 6en A0 '(8)
The problem (8) is a semi-infinite linear optimization
problem. Denote by s, Ewm and yium, Ws the integral
3. PROBLEM FORMULATION squared error and maximqm deviation level for the I.east
The integral squared error of the frequency response devigquare problem and the minmax problem (8), respectively.
tion over all possibilities o andw is given by Since the minmax solution has the lowest maximum error

deviation while the least square solution has the lowest inte-

E(h) = / / W(@, 8)[H (69, 5) — Hy(e®, 5 [2dcod, gral squared error, we have
A Q(5)

ELs < Emm andyum < Us.

®3)
whereW(w, d) is the weighting function and In the following, we present a design criterion that allows
the trade-off between the minmax and least square criteria.
Q(0) = Z(d)U.7(9). The optimization problem can be formulated as minimizing

] ) o _ theintegral squared error with the maximum error deviation
Since we consider real coefficient vectorthe error in  being restricted to be less than or equal to a positive value
(3) can be reduced to the following quadratic function, where

E(h)=h"Qh+p'h+c, @) WM < a < fs.
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This problem can be expressed as e Step 3: Solve the problem (10) with constraints

MinE () W(w,5)% {s(e/®,5)e”7" ) h < a—
subject to _ _ £+W(w7 3% {Hd(ejw75)ej2n)\ } 7
W(w,d)|H(e!®,8) —Hq(e!®,d)| < a,VweQ(d), d €A

9)
By using the real rotation theorem, this optimization
problem can be reduced to the following semi-infinite
quadratic optimization problem

forall (w,d) € 2 andA € A.

e Step 4: If the numbers of grid poinkg and K are less
than the maximum numbers of discretization pokit$™
and K3'® then increase<; — 2K; and K, — 2K and

N T T update the discretization seét”. Otherwise, 2" remains
rqlmlh Qh+p hitc uﬁchanged. I£ is small enough an&; > K"® Ky >
subject to K" then go to Step 6. Otherwise, set= £/10 and
W(w,8)% {s(e®,5)el2™ }T h < a+W(w,d)x return to Step 2. Here, the value gf is chosen ag; =
% {Ha(e1®,8)e1?™ } Vw e Q(5),6 € A,A € [0,1]. max(2¢,1072).

(10) e Step 6: Stop the procedure. O

The proposed algorithm does not require the discretiza-
4. OPTIMIZATION ALGORITHM tion of A in (11). For the problem (8), a scheme similar to that

The problem (10) is a semi-infinite quadratic optimizationdescribed in Procedure 4.1 can be devised for the discretized

problem with three continuous parametersd andA. This  linear optimization problem with adaptive grid points. The

problem can be solved by using: (1) semi-infinite quadratig/ariable in this case i%hﬂy]T instead ofh. Convergence

optimization techniques or (2) discretization approach. Irproperties for the algorithm can be shown similar to that in
this paper, we present a discretization scheme with adaptig] and [8].

grid size for solving the quadratic optimization problem (10).
Similar scheme has been developed in [7] for solving the 5. DESIGN EXAMPLES
semi-infinite linear programming problem. . , .

If the continuous setd, Q and[0,1] are approximated Case 1: Consider the design of a lowpass VDF wifiable
with grid sets of size&;, Kz andKs, then the problem (10) cutoff frequencyThe range o is chosen aa = [0, 1]. The
reduces to a quadratic optimization problem wipk,Ks ~ Passband and stopband cutoff frequenciged) and ws(9)
constraints. It can be seen from [6] that if a unit circle generchange linearly with respect t. Consequently, whed
ated byei2™ for A € [0,1] is approximated by 16 points, changes from 0 to 1, the normalized passband region in-

creases from
A=1[0,1/16,--- ,15/16],

[~0.27,0.27] to [—0.477,0.471]
then the difference between the absolute complex value and
the maximum discretized value is relatively small. Thuswhile the stopband region reduces from
the value ofKz is set askz = 16. For the discretization
problem obtained to be a good approximation to the original [~ 71, —0.4m U [0.4mT, 71| to [, —0.67 U[0.677, 71].
problem, the value&; andK, should be sufficiently large. . . .
Thus, the discretization problem has a large number of con- _The length of the filter isN = 21 while L = 5. The
straints. Consequently, a discretization method with adaptiv\é’e'gr]ﬁ'ar}(g f“”%‘&” is one for all the frequencies. The val-
grid points is employed, where the sequence grid points ardeSK1™ andK;™ are chosen as

refined gradually. max _ max _
In many cases, the number of constraints turn out to be Ky™=256and Ky ™= 128

too large to be handled. Thus, a near active set constraint Figure 2 shows an example of the VDF magnitude re-

scheme is used WhiCh includes a proce.du.re to eliminate u.%'ponses for minmax criterion and different value®ofThe
necessary constraints [7], [8]. The optimization scheme ilters satisfy the specification and have approximately the
presented as follows. same levels in the passband and stopband.

Figure 3 shows the trade-off between the integral squared
error and the maximum error for cases with the desired delay
being reduced froml0to 6. The min-max and least square
solutions are at the two ends of the trade-off curve. Itis noted

Procedure 4.1 Quadratic programming approach employ-
ing adaptive grid scheme.
e Step 1: Initialize the numbers of discretization poiis
K>, and two positive numbeks €; whereg; > €. Denote

by A and Q () the uniform discretization sets fdrand
Q(9), respectively, wittK; and Ky grid points for all
deA. i

Step 2: Ifh has not been initialized, then s¢t’ = 2~
where 2" is the set of all discretization points fow, o)
and go to Step 3. Otherwise, lé&t be the set ofw, d)
such that

2 ={(w,8) e 2 : W(w,d)x

hTs(19,8) — Hg(€®,8)| > a —&}. D)

that the maximum and the integral squared errors increase
with a reduction in the desired delay. In addition, the maxi-
mum error can be reduced from the least square solution with
a minor change in the integral squared error. Similarly, the
integral squared error can be reduced from the minmax solu-
tion with a minor change in the maximum error.

Case 2: Consider the design of a lowpass VDF wéli-
able delay The desired delay changes linearly over one sam-
ple delay with

1(0) = T4+ 9,



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

-32
‘‘‘‘‘ T~10
-33 T.=8 |
1.=6
__-34r 1
I o)
3 =3 S}
8 § -35 5 ,
2 < 1
7] i =
o g 36 1 1
>
2 g r a
£l g -37 A 1
g g s
i = AP
-38} g e, 1
~, o ‘.
~, Cr .
Soe
S i
-39t ~ i |
‘‘‘‘‘‘‘‘‘‘‘‘‘ 8
~100 i i i i —40 i i i i i i
0 0.2 0.4 0.6 0.8 1 -40 -38 -36 -34 -32 -30 -28 -26
/Tt Maximum error [dB]

Figure 2: Magnitude response of VDF with variable cutoff Figure 3: Integral squared error versus maximum error for
frequency and minmax criterion with(d) = 14 = 10. VDF with variable cutoff frequency and differery.

while the passband and stopband regions are unchanged,-32

2 =[-0.2m,0.2n1 and. = [—-m,—0.4r U [0.4m, 11]. The © - - =Tl
parameters are chosen the same as in Case 1. 8y e T8
The trade-off between the integral squared error and peak _;,!| W ]

error is shown in Figure 4 for cases with the desired delay rew
duced from 10 to 6. The maximum error and integral squared§ -35[
error are increased when the desired delay is decreased. Sing-
ilar to the first case, the maximum error can be reduced fromg ~>°| o
the least square solution with a minor change on the integrak _s7| -
squared error while the integral squared error can be reduceg : \

from the minmax solution. g 38y s 1

e em==®

6. CONCLUSIONS ' e Tl

In this paper, we have investigated the design of the VDF R o

filters with least square criterion and peak gain constraints. -a: : ‘ ‘ ‘ ‘ ‘
We have shown that a trade-off can be achieved between the ~# ™ =% 2% = e o 0 7
maximum error and the integral squared error. The maximum

deviation can be reduced below the least square solution with, )

a minor change in the performance of the total squared errorigure 4: Integral squared error versus maximum error for
Similarly, the total squared error can be reduced below th¢/ DF with variable delay and differert.

minmax solution with a slightly increase in the maximum

deviation from the minmax solution.
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