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ABSTRACT

Variable digital filters (VDFs) are useful for various sig-
nal processing and communication applications where the
frequency characteristics, such as fractional delays and cutoff
frequencies, can be varied online. In this paper, we present
a formulation that allows the trade-off between the integral
squared error and the maximum deviation from the desired
response in the passband and stopband. With this formula-
tion, the maximum deviation can be reduced below the least
square solution with a slight change in the performance of the
integral squared error. Similarly, the total square error can be
reduced below the minmax solution with a minor change in
the maximum deviation from the minmax solution. Numeri-
cal schemes with adaptive grid size are presented for solving
the optimization problems.

1. INTRODUCTION

Variable digital filters (VDFs) are digital filters with con-
trollable spectral characteristics such as variable cutoff fre-
quency, adjustable passband width and controllable frac-
tional delay [1], [2]. These spectral characteristics can be
varied online. Variable digital filters have many applications
in different areas of signal processing and communications.
Examples include arbitrary sample rate changers, digital syn-
chronizers and other applications involving online tuning of
frequency characteristics and timing adjustment for digital
receivers.

The least square design criterion is commonly used to de-
sign Farrow-based [3] Finite Impulse Response (FIR) VDFs.
This criterion is related to the noise gain of the filter. The de-
sign problem is simple and easy to formulate, which results
in the filters with low sidelobe energy but having large errors
near the discontinuities in the desired response. The least
square criterion gives rise to a quadratic optimization prob-
lem [4]. Linear programming technique has also been used
for the design of variable digital filters with minmax design
error criterion. With the minmax criterion, the emphasis is
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to minimize the maximum amplitude distortion of signals to
be passed by a filter without taking into consideration the er-
ror energy. Thus, minmax filters typically have high sidelobe
energy.

In this paper, we investigate the design of filters with
Farrow structure, [3], which allows a trade-off between the
minmax and least square criteria. The design poblem can
be formulated as a semi-infinite quadratic optimization prob-
lem. The design problem with minmax criterion, on the
other hand, can be formulated as a semi-infinite linear pro-
gramming problem. Numerical schemes with adaptive grid
size are presented for solving the semi-infinite quadratic and
linear optimization problems. Following from general win-
dow design [5], we show the trade-off between the integral
squared error and the peak error for VDFs. The minmax and
least square solutions are at the end points of the trade-off.

The outline of the paper is given as follows. Variable
digital filter and the desired frequency response are given in
Section 2. The problem formulation is formulated in Sec-
tion 3. The discretized optimization methods for solving
the semi-infinite linear and quadratic programming problems
with adaptive scheme are presented in Section 4. Design ex-
amples are given in Section 5 and finally, conclusions are
given in Section 6.

2. VARIABLE DIGITAL FILTER AND THE
DESIRED FREQUENCY RESPONSE

In a VDF design problem, the objective is to achieve a design
responseHd(z,δ ) that is a function of a control or tuning
parameterδ defined to lie in some range∆,

∆ = [δmin,δmax].

The desired frequency response for the VDF is specified
by

Hd(ejω ,δ ) =
{

e− jωτ(δ ), ω ∈P(δ )
0, ω ∈S (δ ),

whereP(δ ), S (δ ) and τ(δ ) are the passband, stopband
regions, and the desired group delay, respectively.
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The VDF structure consists ofL FIR subfilters, depicted
as in Figure 1. Thez transform of the VDF can be expressed
as

H(z,δ ) =
L−1

∑
l=0

Hl (z)δ l , (1)

whereHl (z) is thez transform for thel th subfilter,

Hl (z) =
N−1

∑
n=0

hl (n)z−n = hT
l φ(z). (2)

Here,hl andφ(z) areN×1 vectors,

hl = [hl (0), · · · ,hl (N−1)]T ,

andφ(z) = [1, · · · ,z−(N−1)]T . The notation[·]T denotes the
transposition of a vector[·].

The frequency response of the VDF can be given in the
following form

H(ejω ,δ ) = hTs(ω,δ ),

whereh ands(ω,δ ) areNL×1 vectors,

h = [hT
0 , · · · ,hT

L−1]
T

and

s(ω,δ ) = [φT(ejω)δ 0, · · · ,φT(ejω)δ L−1]T .

x(n)

HL−1(z) HL−2(z) H1(z) H0(z)

δ δ
y(n)

Figure 1: Variable digital filter - Farrow structure.

3. PROBLEM FORMULATION

The integral squared error of the frequency response devia-
tion over all possibilities ofδ andω is given by

E(h) =
∫

∆

∫

Ω(δ )

W(ω,δ )|H(ejω ,δ )−Hd(ejω ,δ )|2dωdδ ,

(3)
whereW(ω,δ ) is the weighting function and

Ω(δ ) = P(δ )∪S (δ ).

Since we consider real coefficient vectorh, the error in
(3) can be reduced to the following quadratic function,

E(h) = hTQh+pTh+c, (4)

whereQ is anNL×NL matrix,

Q = R

{∫

∆

∫

Ω(δ )
W(ω,δ )s(ω,δ )sH(ω,δ )dωdδ

}
,

p is anNL×1 vector,

p =−2R

{∫

∆

∫

Ω(δ )
W(ω,δ )s(ω,δ )H∗

d(ejω ,δ )dωdδ
}

andc is a constant,

c =
∫

∆

∫

Ω(δ )
W(ω,δ )|Hd(ejω ,δ )|2dωdδ .

The notations(·)H and(·)∗ denote the Hermitian transpose
and the complex conjugate of(·), respectively. The least
square solution is obtained by minimizing the quadratic cost
function in (4). The solution to this optimization problem
can be expressed as

hLS =−1
2
Q−1p. (5)

Now we consider the minmax criterion. The design prob-
lem can be formulated as

min
h

max
δ∈∆

max
ω∈Ω(δ )

W(ω,δ )|H(ejω ,δ )−Hd(ejω ,δ )|. (6)

By introducing a positive parameterγ, the optimization prob-
lem (6) can be re-formulated as





min
h,γ

γ

subject to
W(ω,δ )|H(ejω ,δ )−Hd(ejω ,δ )| ≤ γ,
∀ω ∈Ω(δ ), δ ∈ ∆.

(7)

By using the real rotation theorem [6], the problem (7)
can be formulated as




min
h,γ

γ

subject to
W(ω,δ )R{s(ejω ,δ )ej2πλ}Th− γ ≤W(ω,δ )×
R

{
Hd(ejω ,δ )ej2πλ }

,∀ω ∈Ω(δ ), δ ∈ ∆, λ ∈ [0,1].
(8)

The problem (8) is a semi-infinite linear optimization
problem. Denote byELS, EMM and γMM, γLS the integral
squared error and maximum deviation level for the least
square problem and the minmax problem (8), respectively.
Since the minmax solution has the lowest maximum error
deviation while the least square solution has the lowest inte-
gral squared error, we have

ELS≤ EMM andγMM ≤ γLS.

In the following, we present a design criterion that allows
the trade-off between the minmax and least square criteria.
The optimization problem can be formulated as minimizing
the integral squared error with the maximum error deviation
being restricted to be less than or equal to a positive valueα,
where

γMM ≤ α ≤ γLS.
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This problem can be expressed as




min
h

E(h)
subject to
W(ω,δ )|H(ejω ,δ )−Hd(ejω ,δ )| ≤ α,∀ ω ∈Ω(δ ), δ ∈ ∆.

(9)
By using the real rotation theorem, this optimization

problem can be reduced to the following semi-infinite
quadratic optimization problem




min
h

hTQh+pTh+c

subject to

W(ω,δ )R
{
s(ejω ,δ )ej2πλ }T

h≤ α +W(ω,δ )×
R

{
Hd(ejω ,δ )ej2πλ }

,∀ω ∈Ω(δ ),δ ∈ ∆,λ ∈ [0,1].
(10)

4. OPTIMIZATION ALGORITHM

The problem (10) is a semi-infinite quadratic optimization
problem with three continuous parametersω, δ andλ . This
problem can be solved by using: (1) semi-infinite quadratic
optimization techniques or (2) discretization approach. In
this paper, we present a discretization scheme with adaptive
grid size for solving the quadratic optimization problem (10).
Similar scheme has been developed in [7] for solving the
semi-infinite linear programming problem.

If the continuous sets∆, Ω and [0,1] are approximated
with grid sets of sizesK1, K2 andK3, then the problem (10)
reduces to a quadratic optimization problem withK1K2K3
constraints. It can be seen from [6] that if a unit circle gener-
ated byej2πλ for λ ∈ [0,1] is approximated by 16 points,

Λ = [0,1/16, · · · ,15/16],

then the difference between the absolute complex value and
the maximum discretized value is relatively small. Thus,
the value ofK3 is set asK3 = 16. For the discretization
problem obtained to be a good approximation to the original
problem, the valuesK1 andK2 should be sufficiently large.
Thus, the discretization problem has a large number of con-
straints. Consequently, a discretization method with adaptive
grid points is employed, where the sequence grid points are
refined gradually.

In many cases, the number of constraints turn out to be
too large to be handled. Thus, a near active set constraint
scheme is used which includes a procedure to eliminate un-
necessary constraints [7], [8]. The optimization scheme is
presented as follows.

Procedure 4.1 Quadratic programming approach employ-
ing adaptive grid scheme.
• Step 1: Initialize the numbers of discretization pointsK1,

K2, and two positive numbersε, ε1 whereε1 > ε. Denote
by ∆̂ and Ω̂(δ ) the uniform discretization sets for∆ and
Ω(δ ), respectively, withK1 and K2 grid points for all
δ ∈ ∆̂.

• Step 2: Ifh has not been initialized, then set̂X = X
whereX is the set of all discretization points for(ω,δ )
and go to Step 3. Otherwise, let̂X be the set of(ω,δ )
such that

X̂ = {(ω,δ ) ∈X : W(ω,δ )×
|hTs(ejω ,δ )−Hd(ejω ,δ )| ≥ α− ε1

}
.

(11)

• Step 3: Solve the problem (10) with constraints

W(ω,δ )R
{
s(ejω ,δ )ej2πλ }T

h≤ α−
ε +W(ω,δ )R

{
Hd(ejω ,δ )ej2πλ }

,

for all (ω,δ ) ∈ X̂ andλ ∈ Λ.
• Step 4: If the numbers of grid pointsK1 andK2 are less

than the maximum numbers of discretization pointsKmax
1

and Kmax
2 , then increaseK1 ← 2K1 and K2 ← 2K2 and

update the discretization setX . Otherwise,X remains
unchanged. Ifε is small enough andK1 ≥ Kmax

1 , K2 ≥
Kmax

2 , then go to Step 6. Otherwise, setε = ε/10 and
return to Step 2. Here, the value ofε1 is chosen asε1 =
max(2ε,10−2).

• Step 6: Stop the procedure. ¤
The proposed algorithm does not require the discretiza-

tion of λ in (11). For the problem (8), a scheme similar to that
described in Procedure 4.1 can be devised for the discretized
linear optimization problem with adaptive grid points. The
variable in this case is

[
hT ,γ

]T
instead ofh. Convergence

properties for the algorithm can be shown similar to that in
[7] and [8].

5. DESIGN EXAMPLES

Case 1: Consider the design of a lowpass VDF withvariable
cutoff frequency. The range ofδ is chosen as∆ = [0,1]. The
passband and stopband cutoff frequenciesωp(δ ) andωs(δ )
change linearly with respect toδ . Consequently, whenδ
changes from 0 to 1, the normalized passband region in-
creases from

[−0.2π,0.2π] to [−0.4π,0.4π]

while the stopband region reduces from

[−π,−0.4π]∪ [0.4π,π] to [−π,−0.6π]∪ [0.6π,π].

The length of the filter isN = 21 while L = 5. The
weighting function is one for all the frequencies. The val-
uesKmax

1 andKmax
2 are chosen as

Kmax
1 = 256and Kmax

2 = 128.

Figure 2 shows an example of the VDF magnitude re-
sponses for minmax criterion and different values ofδ . The
filters satisfy the specification and have approximately the
same levels in the passband and stopband.

Figure 3 shows the trade-off between the integral squared
error and the maximum error for cases with the desired delay
being reduced from10 to 6. The min-max and least square
solutions are at the two ends of the trade-off curve. It is noted
that the maximum and the integral squared errors increase
with a reduction in the desired delay. In addition, the maxi-
mum error can be reduced from the least square solution with
a minor change in the integral squared error. Similarly, the
integral squared error can be reduced from the minmax solu-
tion with a minor change in the maximum error.

Case 2: Consider the design of a lowpass VDF withvari-
able delay. The desired delay changes linearly over one sam-
ple delay with

τ(δ ) = τd +δ ,
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Figure 2: Magnitude response of VDF with variable cutoff
frequency and minmax criterion withτ(δ ) = τd = 10.

while the passband and stopband regions are unchanged,
P = [−0.2π,0.2π] andS = [−π,−0.4π]∪ [0.4π,π]. The
parameters are chosen the same as in Case 1.

The trade-off between the integral squared error and peak
error is shown in Figure 4 for cases with the desired delay re-
duced from 10 to 6. The maximum error and integral squared
error are increased when the desired delay is decreased. Sim-
ilar to the first case, the maximum error can be reduced from
the least square solution with a minor change on the integral
squared error while the integral squared error can be reduced
from the minmax solution.

6. CONCLUSIONS

In this paper, we have investigated the design of the VDF
filters with least square criterion and peak gain constraints.
We have shown that a trade-off can be achieved between the
maximum error and the integral squared error. The maximum
deviation can be reduced below the least square solution with
a minor change in the performance of the total squared error.
Similarly, the total squared error can be reduced below the
minmax solution with a slightly increase in the maximum
deviation from the minmax solution.

REFERENCES

[1] C. K. S. Pun, S. C. Chan, K. S. Yeung, and K. L.
Ho, “On the Design and Implementation of FIR and
IIR Digital Filters with Variable Frequency Character-
icstics,” IEEE Trans. Circuits Syst. II, vol. 49, no. 11.
pp. 689–703, Nov. 2002.

[2] H. Johansson and P. Lowenborg, “On the Design of Ad-
justable Fractional Delay FIR Filters,”IEEE Trans. Cir-
cuits Syst. II, vol. 50, no. 4, pp. 164–169, Apr. 2003.

[3] C. W. Farrow, “A Continuously Variable Digital Delay
Element,” inProc. IEEE Int. Symposium Circuits Syst.,
vol. 3, pp. 2641-2645, Jun. 1988.

[4] T. B. Deng, “Discretization-Free Design of Variable
Fractional-Delay FIR Digital Filters,”IEEE Trans. Cir-
cuits Syst. II, vol. 48, no. 6, pp. 637–644, Jun. 2001.

−40 −38 −36 −34 −32 −30 −28 −26
−40

−39

−38

−37

−36

−35

−34

−33

−32

Maximum error [dB]

In
te

gr
al

 s
qu

ar
ed

 e
rr

or
 [d

B
]

τ
d
=10

τ
d
=8

τ
d
=6

Figure 3: Integral squared error versus maximum error for
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